Циклы паросиловых установок
Из насоса вода под давлением P2 поступает в барабан сепаратор, а затем в реактор, где к ней в изобарно (процессе 5−4 P1=const) подводится тепло. Вначале вода в реакторе нагревается до кипения (участок 5−4 изобары P1=const) а затем, по достижении температуры кипения, происходит процесс парообразования (участок 4−3 изобары P2=const). Пароводяная смесь поступает в барабан-сепаратор, где происходит… Читать ещё >
Циклы паросиловых установок (реферат, курсовая, диплом, контрольная)
Как было сказано выше, реакторную установку можно представить в виде тепловой машины, в которой осуществляется некий термодинамический цикл.
Теоретическим циклом современной паросиловой установки является цикл Ренкина.
Пароводяная смесь образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан — сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор.
Конденсатор играет двоякую роль в установке.
Во-первых, он имеет паровое и водяное пространство, разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей.
Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу (Рк 0,04−0,06 бар) и совершать за счет этого дополнительную работу.
Цикл Ренкина в T-S диаграмме.
Синяя линия в Т-S диаграмме воды является разделительной, при энтропии и температуре, соответствующим точкам, лежащим на диаграмме выше этой линии, существует только пар, ниже пароводяная смесь.
Влажный пар в конденсаторе полностью конденсируется по изобаре p2=const (точка 3). Затем вода сжимается насосом от давления P2 до давления P1, этот адиабатный процесс изображен в T-S-диаграмме вертикальным отрезком 3−5.
Длина отрезка 3−5 в T-S-диаграмме весьма мала, так как в области жидкости, изобары (линии постоянного давления) в T-S-диаграмме проходят очень близко друг от друга. Благодаря этому при изоэптропном (при постоянной энтропии) сжатии воды, температура воды возрастает менее чем на 2−3 єС, и можно с хорошей степенью приближения считать, что в области жидкости изобары воды практически совпадают с левой пограничной криво (синяя линия); поэтому зачастую при изображении цикла Ренкина в Т-S-диаграмме изобары в области жидкости изображают сливающимися с левой пограничной кривой. Малая величина отрезка адиабаты 3−5 свидетельствует о малой работе, затрачиваемой насосом на сжатие воды. Малая величина работы сжатия по сравнению с величиной работы, производимой водяным паром в процессе расширения 1−2, является важным преимуществом цикла Ренкина.
Из насоса вода под давлением P2 поступает в барабан сепаратор, а затем в реактор, где к ней в изобарно (процессе 5−4 P1=const) подводится тепло. Вначале вода в реакторе нагревается до кипения (участок 5−4 изобары P1=const) а затем, по достижении температуры кипения, происходит процесс парообразования (участок 4−3 изобары P2=const). Пароводяная смесь поступает в барабан-сепаратор, где происходит разделение воды и пара. Насыщенный пар, из барабана сепаратора поступает в турбину. Процесс расширения в турбине изображается адиабатой 1−2 (Этот процесс относится к классическому циклу Ренкина в реальной установке процесс расширения пара в турбине несколько отличается от классического). Отработанный влажный пар поступает в конденсатор, и цикл замыкается.
С точки зрения термического к.п.д. цикл Ренкина представляете менее выгодным, чем цикл Карно, изображенный выше, поскольку степень заполнения цикла (равно как и средняя температур подвода тепла) для цикла Ренкина оказывается меньше, чем в случае цикла Карно. Однако с учетом реальных условий осуществления экономичность цикла Ренкина выше экономичности соответствующего цикла Карно во влажном паре.
Для того чтобы увеличить термический к.п.д. цикла Ренкина, часто применяют так называемый перегрев пара в специальном элемент установки — пароперегревателе, где пар нагревается до температуры, превышающей температуру насыщения при данном давлении P1. В этом случае средняя температура подвода тепла увеличивается по сравнению с температурой подвода тепла в цикле без перегрева и, следовательно, термический к.п.д. цикла возрастает. Цикл Ренкина с перегревом пара является основным циклом теплосиловых установок, применяемых в современной теплоэнергетике.
Поскольку в настоящее время не существует промышленных энергетических установок с ядерным перегревом пара (перегрев пара непосредственно в активной зоне ядерного реактора), то для одноконтурных ядерных реакторов BWR и РБМК используется цикл с промежуточным перегревом пара.
Т-S диаграмма цикла с промежуточным перегревом пара.
Для повышения КПД в цикле с промежуточным перегревом пара, используется двух ступенчатая турбина, состоящая из цилиндра высокого давления и нескольких (4 для РБМК) цилиндров низкого давления. Пар из барабана сепаратора направляется в цилиндр высокого давления (ЦВД), часть пара отбирается для перегрева. Расширяясь в цилиндре высокого давления процесс на диаграмме 1−6, пар совершает работу. После ЦВД пар направляется в пароперегреватель, где за счет охлаждения отобранной в начале части пара, осушается и нагревается до более высокой температуры, (но уже при более низком давлении, процесс 6−7 на диаграмме) и поступает в цилиндры низкого давления турбины (ЦНД). В ЦНД пар расширяясь, снова совершает работу (процесс 7−2 на диаграмме) и поступает в конденсатор. Остальные процессы соответствуют процессам в выше рассмотренном цикле Ренкина.
Регенеративный цикл.
Малое значение КПД цикла Ренкина по сравнению с циклом Карно связано с тем, что большое количество тепловой энергии при конденсации пара передается охлаждающей воде в конденсаторе. Для снижения потерь часть пара из турбины отбирается и направляется на регенерационные подогреватели, где тепловая энергия, высвобождаемая при конденсации отобранного пара, используется для подогрева воды, полученной после конденсации основного парового потока.
В реальных паросиловых циклах регенерация осуществляется с помощью регенеративных, поверхностных или смешивающих, теплообменников, в каждый из которых поступает пар из промежуточных ступеней турбины (так называемый регенеративный отбор). Пар конденсируется в регенеративных теплообменниках, нагревая питательную воду, поступающую в реактор. Конденсат греющего пара смешивается с основным потоком питательной воды.