Помощь в написании студенческих работ
Антистрессовый сервис

Инструктивные и селективные теории иммунитета

РефератПомощь в написанииУзнать стоимостьмоей работы

Методами рентгеноструктурного анализа выяснена структура молекул I и II классов главного комплекса гистосовместимости. Молекула I класса состоит из тяжелой цепи, включающей три домена: б1, б2, и б3, и одной легкой цепи — в2 — микроглобулина. Связывание антигенного пептида молекулой I класса происходит в антигенсвязывающей щели, образованной б — спиральными участками б1- и б2 — доменов… Читать ещё >

Инструктивные и селективные теории иммунитета (реферат, курсовая, диплом, контрольная)

В самой сжатой форме все появившиеся со времен П. Эрлиха гипотетические построения, касающиеся феномена иммунологической специфичности, можно разбить на две группы: инструктивные и селективные.

Инструктивные теории рассматривали антиген в качестве пассивного материала — матрицы, на которой формируется антигенсвязующий участок антител. По этой теории все антитела имеют одну и ту же последовательность аминокислотных остатков. Различия касаются третичной структуры и возникают в процессе окончательного формирования молекулы антитела вокруг антигена. С иммунологических позиций они не объясняли, во-первых, почему количество антител в молярном отношении значительно больше количества проникшего в организм антигена, и, во-вторых, не отвечали на вопрос, за счет чего формируется иммунологическая память. Теории противоречат современным фактам иммунологии и молекулярной биологии и представляют лишь исторический интерес.

Более плодотворными оказались селективные теории вариабельности антител. В основе всех селективных теорий лежит представление о том, что специфичность антител предопределена, и антиген выступает лишь в качестве фактора отбора соответствующих по специфичности иммуноглобулинов. В 1955 г. вариант селективной теории выдвинул Н. Ерне. По его представлениям, в организме постоянно присутствуют антитела самой разнообразной специфичности. Антитело после взаимодействия с соответствующим антигеном поглощается фагоцитирующими мононуклеарами, что приводит к активной продукции этими клетками антител исходной специфичности.

Особое место в иммунологии занимает клонально-селекционная теория иммунитета М. Ф. Бернета (1959). Она гласит, что при дифференцировке лимфоцитов от стволовой кроветворной клетки и при параллельно идущем процессе мутационных изменений в генах, ответственных за синтез антител, возникают клоны, которые способны взаимодействовать с антигеном одной конкретной специфичности. В результате подобного взаимодействия формируется отобранный по специфичности клон, который либо секретирует антитела заданной специфичности, либо обеспечивает строго специфическую клеточную реакцию. Клонально-селекционный принцип организации иммунной системы, выдвинутый Бернетом, полностью подтвердился в настоящее время. Недостатком теории являются представления о том, что многообразие антител возникает только за счет мутационного процесса. Основной принцип селекции специфических клонов сохранен в теории зародышевой линии Л. Худа и соавт. (1971). Однако первопричину многообразия клонов авторы видят не в повышенной мутабельности иммуноглобулиновых генов, а в исходном зародышевом их предсуществовании. Весь набор V — генов, контролирующих вариабельную область иммуноглобулинов, представлен изначально в геноме и передается из поколения к поколению без изменений. В процессе развития В-клеток происходит рекомбинация иммуноглобулиновых генов, так что отдельно взятая созревающая В-клетка способна синтезировать иммуноглобулин одной специфичности. Такая моноспецифическая клетка становится источником клона В-клеток, продуцирующих определенный по специфичности иммуноглобулин.

Объединяющим моментом всех этих теоретических построений является убежденность в том, что антиген — лишь фактор селекции, но не участник формирования специфичности.

1. Терминологическое разнообразие антигенов. Свойства антигенов.

Антигены представляют собой чужеродные вещества или структуры, которые способны вызывать иммунный ответ.

Серьезное изучение антигена как индуктора иммунного ответа началось после работ Ландштейнера в 20−30-х годах. Теоретически любая молекула может быть антигенной, попав в организм, который воспринимает ее как чужеродную и дает на нее иммунный ответ. В этом определении скрыты две основные характеристики антигена: иммуногенность и антигенная специфичность. Иммуногенность — это свойство антигена вызывать иммунный ответ. Степень иммуногенности зависит от ряда факторов: чужеродность, молекулярный вес, химический состав, вид животного и его генетическая конституция, способ введения антигена, чувствительность к катаболическому разрушению, действие адъювантов.

Специфичность антигена — это способность антигена избирательно реагировать с антителами или сенсибилизированными лимфоцитами, которые появились в результате иммунизации. За специфичность антигена ответственны определенные участки его молекулы, называемые детерминантами (или эпитопами). Специфичность антигена определяется набором детерминант. Детерминанта — область молекулы антигена, к которой выработаны специфические антидетерминанты (активные центры антител). Специфичность выражается в том, насколько точно антигенная детерминанта «пригнана» к антиген — связующему центру (антидетерминанте). Специфичность взаимодействия антигена с антителом зависит от пространственной конфигурации детерминант.

Различают:

секвенциальную (англ. seguence — последовательность), представленную определенной аминокислотной последовательностью в произвольно свернутой молекуле белка;

конформационную, представленную определенными областями белков, расположенными на поверхности молекул.

2. Антигены HLA.

Главный комплекс гистосовместимости был открыт в связи с разработкой вопросов внутривидовой пересадки тканей. Комплекс расположен у человека на 6-й, а у мышей — на 17-й хромосоме и занимает значительный участок ДНК, включающий до 4×106 пар оснований, или около 50 генов. Основными особенностями комплекса являются его значительная полигенность — наличие нескольких неаллельных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции, а также полиморфизм — присутствие многих аллельных форм одного и того же гена. Все гены комплекса наследуются по кодоминантному типу.

Главный комплекс гистосовместимости как у мышей, так и у человека включает три группы генов:

  • 1. гены, контролирующие молекулы II класса (Н-2К, Н-2D и Н-2L — у мышей и HLA — А, -В, -С — у человека);
  • 2. гены, контролирующие молекулы II класса (б и в — цепи молекул, А и Е — у мышей и DP, DQ, DR — учеловека); к этой же группе генов относятся LMP и ТАР, контролирующие соответствующие белки, которые участвуют в образовании комплекса антигенного пептида с молекулами МНС;
  • 3. гены III класса отвественны за синтез одного из компонентов системы комплемента, фактора некроза опухолей — б и в, ферментов, участвующих в синтезе гормонов.

Наиболее важными в иммунологическом смысле гликопротеинами, контролируемыми комплексом, являются антигены I и II классов.

Методами рентгеноструктурного анализа выяснена структура молекул I и II классов главного комплекса гистосовместимости. Молекула I класса состоит из тяжелой цепи, включающей три домена: б1, б2, и б3, и одной легкой цепи — в2 — микроглобулина. Связывание антигенного пептида молекулой I класса происходит в антигенсвязывающей щели, образованной б — спиральными участками б1- и б2 — доменов. Молекула II класса представляет собой гетеродимер, состоящий из двух нековалентно связанных цепей: б и в, каждая из которых включает два домена: б1, б2, и в1, в2, соответственно. Антигенсвязывающая область, как и у молекул I класса, образована б — спиральными участками. В построении этой области принимают участие б1 и в1 — цепи. Между молекулами I и II классов видно структурное сходство: однотипная пространственная организация, общее количество доменов, принцип построения антигенсвязывающей области.

HLAантигены принимают участие в распознавании и устранении аномальных клеток цитотоксическими лимфоцитами.

3. Иммуноглобулины: структура, функции.

Антитела представляют собой глобулины, специфически реагирующие с антигеном, который определил их образование. С 1964 г. антитела принято называть иммуноглобулинами.

При анализе структуры и функции иммуноглобулинов следует различать два понятия: гетерогенность и вариабельность. Гетерогенность определяет свойства иммуноглобулинов, обусловленные постоянной частью молекулы, т. е. теми структурными особенностями, которые позволяют делить всю группу этих белков на классы, подклассы, аллотипы, и типы легких цепей. Гетерогенность подразумевает также различия в функциональной активности разных классов иммуноглобулинов за исключением их свойства специфического взаимодействия с антигеном. Вариабельность — это индивидуальная характеристика иммуноглобулинов, относящаяся к одному и тому же классу или подклассу. Она проявляется в специфической антигенсвязующей активности и обусловлена меняющейся от белка к белку последовательностью аминокислотных остатков в N — концевой части молекулы.

У млекопитающих известно пять классов иммуноглобулинов: IgM, IgG, IgA, IgD, IgE, которые имеют общий план строения, но отличаются структурными особенностями тяжелых (Н) цепей, физическими, химическими и биологическими свойствами.

IgG — это антитела, содержащиеся в сыворотке в самой высокой концентрации (12, 0 г/л). Концентрация IgG в сыворотке достигает нормы к 7- летнему возрасту. Повышенная концентрация IgG наблюдается при инфекциях, болезнях печени, аутоиммунных заболеваниях. Пониженная концентрация IgG наблюдается у новорожденных, при замедленном созревании иммунной системы и недостаточности гуморального иммунитета. IgG — единственный иммуноглобулин, обладающий способностью проходить через плаценту, благодаря этому плод получает материнские антитела. Молекулы IgG свободно диффундируют из плазмы крови в тканевую жидкость.

IgM — средняя концентрация IgM в сыворотке составляет у женщин до 1, 1 г/л, у мужчин от 0, 9 г/л. Повышение IgM наблюдается при инфекциях у новорожденных, остром гепатите, снижается — при отдельных формах иммунологической недостаточности. Наибольшую активность проявляет в антибактериальном иммунитете и при некоторых аутоиммунных заболеваниях. IgM находится преимущественно в плазме крови и в лимфе. IgM не проходит через плаценту. Обнаружение у плода антител класса IgM указывает на внутриматочную инфекцию.

IgA — различают секреторный и сывороточный. Концентрация достигает в сыворотке в среднем 2 г/л. Содержание IgA в сыворотке достигает нормальных значений к 10 годам. Повышенное содержание IgA в сыворотке наблюдается при инфекциях у новорожденных, при респираторных и кишечных заболеваниях; пониженная концентрация — при иммунологической недостаточности и лимфоидных опухолях. IgA, содержащийся в секретах характеризуется наличием добавочного структурного компонента, который обозначается как секреторный компонент — SC.

Биологическая функция IgA заключается в местной защите слизистых оболочек от инфекций. Секреторный IgA может препятствовать адгезии бактерий к эпителиальным клеткам, затрудняя этим колонизацию слизистых оболочек бактериями. В отличие от сывороточного IgA концентрация секреторного IgA в слюне достигает значений, характерных для взрослого, уже через 6 — 8 недель после рождения.

IgD — был открыт как необычный миелоидный белок. Затем его обнаружили в сыворотке крови, в очень небольшой концентрации 30 мг/л. Биологическая функция IgD не ясна, предполагают, что он служит рецептором для В-лимфоцитов.

IgE — концентрация в сыворотке составляет 0, 25 мг/л. IgE идентичен антителам, ранее названными реагинами. Функциональная активность IgE проявляется в развитии аллергических реакций. Данный иммуноглобулин способен взаимодействовать с тучными клетками и базофилами посредством Fcобласти и соответствующего рецептора на этих клетках. После связи IgE с антигеном (аллергеном) тучные клетки получают сигнал к секреции вазоактивных аминов и других фармакологически значимых соединений, что и приводит к развитию аллергической реакции.

4. Цитокины.

Для развития эффективного иммунного ответа необходимо участие целого ряда эффекторных и регуляторных клеток иммунной системы, клеток, участвующих в реакциях воспаления, гемопоэтических и других типов клеток. Взаимодействие между этими клетками осуществляется с помощью цитокинов. Цитокины — эндогенные низкомолекулярные белковые регуляторы, принимающие участие в наиболее эффективном проявлении иммунного ответа. Цитокины в основном играют регулирующую роль в межклеточных взаимодействиях, активируя или, ингибируя активность определенных клеток. Некоторым цитокинам свойственна прямая эффекторная функция. Цитокины секретируются разными типами клеток, в основном разными популяциями лейкоцитов, и действуют локально от клетки к клетки, соединяясь со специфическими высокоаффинными рецепторами. Термином «цитокины» объединяют разнообразные факторы роста, интерфероны, хемокины и интерлейкины. В настоящее время идентифицировано около 80 цитокинов. Однако предполагают, что их количество приближается к 1000.

Показать весь текст
Заполнить форму текущей работой