Помощь в написании студенческих работ
Антистрессовый сервис

Теория звезд. 
Почему светят звёзды

РефератПомощь в написанииУзнать стоимостьмоей работы

Квазары — это сверкающие объекты, которые излучают самое значительное количество энергии, обнаруженное во Вселенной. Находясь на колоссальном расстоянии от Земли, они демонстрируют большую яркость, чем космические тела, расположенные в 1000 раз ближе. Согласно современному определению, квазар — это активное ядро галактики, где протекают процессы, освобождающие огромную массу энергии. Сам термин… Читать ещё >

Теория звезд. Почему светят звёзды (реферат, курсовая, диплом, контрольная)

Звезда — массивный газовый шар, излучающий свет и удерживаемый силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза.

Основные характеристики звезд:

Светимость Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояние до звезд определить не так просто. Для сравнительно близких звезд, расстояние определяется известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Этот метод имеет довольно большую точность и достаточно надежен. Однако для большинства других более удаленных звезд он уже не годится: слишком малые смещения положения звезд надо измерять — меньше одной сотой доли секунды дуги. На помощь приходят другие методы, значительно менее точные, но, тем не менее, достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения.

По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют «карлики», светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая «абсолютная величина» звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой — от расстояния до нее. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например, +8, +10.

Химический состав звезд Химический состав наружных слоев звезды, откуда к нам «непосредственно» приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов сравнительно невелико. Приблизительно на каждые 10 000 атомов водорода приходится тысяча атомов гелия, около десяти атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно.

Можно сказать, что наружные слои звезд — это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов.

Хотя химический состав звезд в первом приближении одинаков, все же имеются звезды, показывающие определенные особенности в этом отношении. Например, есть звезда с аномально высоким содержанием углерода, или встречаются объекты с аномально высоким содержанием редких земель. Если у подавляющего большинства звезд обилие лития совершенно ничтожно (приблизительно 1011 от водорода), то изредка попадаются «уникумы», где этот редкий элемент довольно обилен.

Спектры звезд Исключительно богатую информацию дает изучение спектров звезд. Сейчас принята так называемая гарвардская спектральная классификация. В ней десять классов, обозначенных латинскими буквами: O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и, А обозначается как В0, В1… В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего «черного» тела с некоторой температурой Т. Эти температуры плавно меняются от 40−50 тысяч кельвинов у звезд спектрального класса О до 3000 кельвинов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли.

Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Различия в спектрах в первую очередь объясняются различием в температурах наружных слоев звезды. По этой причине состояние ионизации и возбуждения разных элементов в наружных слоях звезд резко отличаются, что приводит к сильным различиям в спектрах.

Температура Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3−4тыс. К., то ее цвет красноватый, 6−7 тыс. К. — желтоватый. Очень горячие звезды с температурой свыше 10−12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым «показателем цвета», равным разности фотографической и визуальной величины. Каждому значению показателя цвета соответствует определенный тип спектра.

У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, СП, Н20 и др.). По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К. наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра.

Масса звезд Астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (то есть не входящей в состав кратных систем) изолированной звезды. И это весьма серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее «сестра», входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.

Считается, что объекты с массами меньшими 0,02 М уже не являются звездами. Они лишены внутренних источников энергии, и их светимость близка к нулю. Обычно эти объекты относят к планетам. Наибольшие непосредственно измеренные массы не превышают 60 М.

КЛАССИФИКАЦИЯ ЗВЕЗД

Классификации звёзд начали строить сразу после того, как начали получать их спектры. В начале XX века, Герцщпрунг и Рассел нанесли на диаграмму различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Диаграмма Герцшпрунга —показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звёзды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма даёт возможность найти абсолютную величину по спектральному классу. Особенно для спектральных классов O—F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.

Около 90% звёзд находятся на главной последовательности. Их светимость обусловлена термоядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд — гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики.

Рис.2.

Рис. 2.

ВИДЫ ЗВЕЗД

Гиганты — тип звёзд со значительно большим радиусом и высокой светимостью, чем у звёзд главной последовательности, имеющих такую же температуру поверхности. Обычно звёзды-гиганты имеют радиусы от 10 до 100 солнечных радиусов и светимости от 10 до 1000 светимостей Солнца. Звёзды со светимостью большей, чем у гигантов, называются сверхгиганты и гипергиганты. Горячие и яркие звёзды главной последовательности также могут быть отнесены к белым гигантам. Помимо этого, из-за своего большого радиуса и высокой светимости, гиганты лежат выше главной последовательности.

Карликитип звезд небольших размеров от 1 до 0,01 радиуса. Солнца и невысоких светимостей от 1 до 10−4 светимости Солнца с массой от 1 до 0,1 солнечной массы.

  • · Белый карлик — проэволюционировавшие звезды с массой, не превышающей 1,4 солнечных массы, лишенные собственных источников термоядерной энергии. Диаметр таких звезд может быть в сотни раз меньше солнечного, а потому плотность может быть в 1 000 000 раз больше плотности воды.
  • · Красный карлик — маленькая и относительно холодная звезда главной последовательности, имеющая спектральный класс М или верхний К. Они довольно сильно отличаются от других звезд. Диаметр и масса красных карликов не превышает трети солнечной (нижний предел массы — 0,08 солнечной, за этим идут коричневые карлики).
  • · Коричневый карлик — субзвездные объекты с массами в диапазоне 5—75 масс Юпитера (и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  • · Субкоричневые карлики или коричневые субкарлики — холодные формирования, по массе лежащие ниже предела коричневых карликов. Их в большей мере принято считать планетами.
  • · Черный карлик — остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Нейтронная звезда — звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10−20 км в диаметре. Плотность таких звезды может достигать 1000 000 000 000 плотностей воды. А магнитное поле во столько же раз больше, чем магнитное поле Земли. Такие звезды состоят в основном из нейтронов, плотно сжатых гравитационными силами. Часто такие звезды представляют собой пульсары.

Новая звезда— звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызываю вспышку светимости.

Сверхновая звезда— это звезда, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Двойная звезда — это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс. Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой. В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам — колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Пульсары — это нейтронные звезды, у которых магнитное поле наклонено к оси вращения и вращаясь, они вызывают модуляцию излучения, которое приходит на Землю.

Первый пульсар был открыт на радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета. Открытие сделала аспирантка Джоселин Белл в июне 1967 г на длине волны 3.5 м, то есть 85.7 МГц. Этот пульсар имеет название PSR J1921+2153. Наблюдения за пульсаром хранились несколько месяцев в тайне, и название он тогда получил LGM-1, что обозначает — «маленькие зеленые человечки». Причиной тому были радиоимпульсы, которые доходили до Земли с равномерной периодичностью, и потому было предположено, что эти радиоимпульсы искусственного происхождения.

Джоселин Белл была в группе Хьюиша, они нашли еще 3 источника аналогичных сигналов, после этого уже никто не сомневался, что сигналы не искусственного происхождения. До конца 1968 года уже было обнаружено 58 пульсаров. А в 2008 году было известно уже 1790 радиопульсаров. Самый близкий пульсар к нашей Солнечной системе находится на расстоянии 390 световых лет.

Квазары — это сверкающие объекты, которые излучают самое значительное количество энергии, обнаруженное во Вселенной. Находясь на колоссальном расстоянии от Земли, они демонстрируют большую яркость, чем космические тела, расположенные в 1000 раз ближе. Согласно современному определению, квазар — это активное ядро галактики, где протекают процессы, освобождающие огромную массу энергии. Сам термин означает «похожий на звезду радиоисточник». Первый квазар был замечен американскими астрономами А. Сендиджем и Т. Метьюзом, проводившими наблюдение за звездами в калифорнийской обсерватории. В 1963 году М. Шмидт с помощью рефлекторного телескопа, собирающего в одну точку электромагнитное излучение, обнаружил отклонение в спектре наблюдаемого объекта в красную сторону, определяющее, что его источник удаляется от нашей системы. Последующие исследования показали, что небесное тело, записанное как 3C 273, находится на отдалении в 3 млрд. св. лет и отдаляется с огромной скоростью — 240 000 км/с. Московские ученые Шаров и Ефремов изучили имевшиеся ранние фотографии объекта и выяснили, что он неоднократно менял свою яркость. Нерегулярная смена интенсивности блеска предполагает маленький размер источника.

Показать весь текст
Заполнить форму текущей работой