Приборы для поляризационно-оптических исследований
Рисунок 2.11 — Оптическая схема фотоэлектрического модуляционного поляриметра Лучистый поток источника света 1 сверхвысокого давления проходит через интерференционный светофильтр 2, поляризатор 3 и исследуемый объект 4, ориентированный так, что направления колебаний в ои е-лучах составляют углы с направлением колебаний в луче, вышедшем из поляризатора. Выходящий из объекта 4 эллиптически… Читать ещё >
Приборы для поляризационно-оптических исследований (реферат, курсовая, диплом, контрольная)
В настоящее время существует множество приборов для поляризационно-оптических исследований, которые отличают чрезвычайное разнообразие как сфер применения, так и конструктивного оформления и принципов действия. Их используют для фотометрических и пирометрических измерений, кристаллооптических исследований, изучения механических напряжений в конструкциях, в микроскопии, в поляриметрии и сахариметрии, в скоростной фотои киносъёмке, геодезических устройствах, в системах оптической локации и оптической связи, в схемах управления лазеров, для физических исследований электронной структуры атомов, молекул и твёрдых тел и др.
Элементом большинства поляризационных приборов является схема, состоящая из последовательно расположенных на одной оси линейного поляризатора и анализатора. Если их плоскости поляризации взаимно перпендикулярны, схема не пропускает света (установка на гашение). Изменение угла между этими плоскостями приводит к изменению интенсивности проходящего через систему света по закону Малюса (пропорционально квадрату косинуса угла). Особое удобство этой схемы для сравнения и измерения интенсивностей световых потоков обусловило её преимущественное применение в фотометрических поляризационных приборов — фотометрах и спектрофотометрах (как с визуальной, так и с фотоэлектрической регистрацией). Поляризационные приборы представляют собой основные элементы оборудования для кристаллооптических и иных исследований сред, обладающих оптической анизотропией — естественной или наведённой. При таких исследованиях широко применяются поляризационные микроскопы, позволяющие на основе визуальных наблюдений делать выводы о характере и величине оптической анизотропии вещества. Для прецизионного анализа оптической анизотропии и зависимости от длины волны излучения применяются автоматические приборы с фотоэлектрической регистрацией. Практически всегда при количественном анализе анизотропии требуется сопоставить оптические свойства среды для двух ортогональных поляризаций — линейных, если измеряется линейный дихроизм или линейное двулучепреломление, и круговых при измерении дихроизма или вращения плоскости поляризации. Это сопоставление в электронной схеме прибора производится на достаточно высокой частоте, удобной для усиления сигнала и подавления шумов. Поэтому поляризационные приборы такого назначения часто включают поляризационный модулятор.
Поляризационные приборы служат для обнаружения и количественного определения степени поляризации частично поляризованного света. Простейшими из них являются полярископы — двулучепреломляющие пластинки, в которых используется интерференция света в сходящихся поляризованных лучах (хроматическая поляризация). Типичный полярископ — полярископ Савара, который состоит из двух склеенных пластинок кристаллического кварца одинаковой толщины d, вырезанных так, что их оптические оси составляют с осью полярископа углы в 45° (пластинка Савара), и жестко связанного с ней анализатора, плоскость поляризации которого направлена под углом 45° к главным сечениям этой пластинки. поляриметр свет спектр Чрезвычайно существенную роль в химических и биофизических исследованиях играет обширный класс приборов, служащий для измерения вращения плоскости поляризации в средах с естественной или наведённой магнитным полем оптической активностью (поляриметры) и дисперсии этого вращения (спектрополяриметры). Относительно простыми, но практически очень важными являются сахариметры — приборы для измерения содержания сахаров и некоторых других оптически активных веществ в растворах.
Самые точные из полярископов позволяют обнаружить примесь поляризованного света к естественному, составляющую доли процента.
В качестве примера рассмотрим один из простейших поляриметров — СМ-3, который предназначен для определения угла поворота плоскости поляризации в жидких оптически активных веществах (рисунок 2.8).
Рисунок 2.8 — Оптическая схема поляриметра СМ-3.
Осветитель 1 (лампа накаливания или натриевая лампа ДНаО140) устанавливается в фокальной плоскости оптической системы 8. В конструкции узла осветителя предусмотрены подвижки для установки нити накала лампы на оптической оси. При работе с лампой накаливания перед оптической системой 3 вводится желтый светофильтр 2. Параллельный монохроматический пучок лучей, выходящий из системы 3, проходит через поляризатор 4 (поляроид, заклеенный между двумя стеклами), кварцевую пластинку 5, создающую совместно с поляроидом полутеневую картину с тройным полем зрения, и кварцевую кювету 6 с исследуемым раствором. Обычно длина кюветы выбирается такой, чтобы концентрации 10−3 кг/см3 соответствовал угол поворота плоскости поляризации j=1°. После кюветы расположен анализатор 7, аналогичный поляризатору 4, и телескопическая система, состоящая из объектива 10 и окуляра 11, через который ведется наблюдение при уравнивании освещенностей частей поля зрения. Отсчет осуществляется по градусной шкале 8 неподвижного лимба (с оцифровкой от 0° до 360°) с помощью двух диаметрально противоположных нониусов 9 (шкалы нониусов имеют по 20 делений; цена одного деления 0,05°). Из показаний двух нониусов берут среднее значение (для учета эксцентриситета лимба). Отсчет снимается при наблюдении лимба и нониуса через лупы 12.
Достаточно просто устроен полярископ-поляриметр ПКС-56 (рисунок 2.9). Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), четвертьволновой пластинки 5, анализатора 6 и светофильтра 7 (максимум пропускания при 0.54 мкм). Порядок измерения, на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0°, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота Db анализатора.
Рисунок 2.9 — Оптическая схема полярископа-поляриметра ПКС-56.
Определив Db, можно определить no-ne из соотношения.
где l — толщина образца. При l=10 мм погрешность измерения no-ne составляет ±3Ч10−7. С увеличением l погрешность уменьшается.
Несколько более сложную схему имеет малогабаритный поляриметр ИГ-86 (рисунок 2.10), предназначенный для визуального исследования напряженного состояния изделий с помощью оптически чувствительных покрытий. Он позволяет наблюдать интерференционную картину в условиях плоской и круговой поляризации и измерять оптическую разность хода, как методом сопоставления цветов, так и компенсационным методом.
Рисунок 2.10 — Оптическая схема малогабаритного поляриметра ИГ-86.
Источник света 1 (лампа СЦ-61) размещен в фокусе объектива 3. Защитные стекла 2, 7 и 12 предохраняют прибор от попадания в него загрязнений. Параллельный пучок лучей проходит поляризационный светофильтр (поляризатор 4), полупрозрачное зеркало 8 и, отразившись от светоделительного слоя, падает на оптически чувствительное покрытие 6, нанесенное на исследуемый объект 5. После отражения от покрытия свет попадает в анализаторный узел прибора, проходит компенсатор 9, анализатор 10 и попадает в зрительную трубу (сменное увеличение 2 и 10ґ) со шкалой в совмещенной фокальной плоскости объектива 11 и окуляра 13. Перед глазной линзой окуляра и выходным зрачком 15 устанавливается светофильтр 14. Такая оптическая схема получила наименование Т-образной схемы. Предел измерения оптической разности хода — от 0 до 5 интерференционных порядков. Погрешность измерения — 0.05 интерференционных порядков.
Схема типичного фотоэлектрического модуляционного поляриметра, позволяющего измерять меняющуюся во времени разность фаз ои е-лучей, показана на рисунке 2.11.
Рисунок 2.11 — Оптическая схема фотоэлектрического модуляционного поляриметра Лучистый поток источника света 1 сверхвысокого давления проходит через интерференционный светофильтр 2, поляризатор 3 и исследуемый объект 4, ориентированный так, что направления колебаний в ои е-лучах составляют углы с направлением колебаний в луче, вышедшем из поляризатора. Выходящий из объекта 4 эллиптически поляризованный свет попадает на пластину 5, изготовленную из одноосного кристалла (например, кристалла ADP — дигидрофосфата аммония NH4H2PO4, вырезанную так, что ее плоскости перпендикулярны оптической оси) позволяющего реализовать эффект Поккельса и обеспечить модуляцию проходящего светового потока. При приложении к пластине 5 переменного электрического напряжения в направлении, параллельном оси лучистого потока и оптической оси кристалла, последний становится двухосным. Новые оптические оси образуют симметричные углы с прежним направлением оси, а проходящий через нее свет претерпевает двойное лучепреломление. Возникающая при этом разность фаз пропорциональна напряжению электрического поля и не зависит от толщины пластины 5. В связи с возникающей переменной разностью фаз эллиптически поляризованный свет периодически меняет форму эллипса поляризации. В результате на выходе компенсатора 6 плоскость линейно поляризованного света колеблется относительно среднего положения. После анализатора 11 модулированный поток света попадает на фотодетектор 10, сигнал с которого с основной частотой, соответствующей первой гармонике, поступает в усилитель 8 и приводит в действие сервомотор 9, поворачивающий анализатор 11 до тех пор, пока первая гармоника присутствует в сигнале. Остановка соответствует положению анализатора, при котором на фотодетектор падает минимальный поток излучения. Регистрирующее устройство 7 фиксирует углы поворота анализатора, причем измеряемая разность фаз равна удвоенному углу поворота анализатора.