Помощь в написании студенческих работ
Антистрессовый сервис

Введение. 
Сверхтекучесть жидкого гелия

РефератПомощь в написанииУзнать стоимостьмоей работы

Представьте себе, что цилиндрический сосуд с гелием начинает вращаться, причем вращаться очень медленно, настолько медленно, что жидкость должна увлекаться при своем движении стенками сосуда. Так как жидкий гелий способен к двум движениям и его масса состоит из двух масс, то увлекаться будет только одна из них, именно нормальная масса гелия. Сверхтекучее движение, не будучи связано пи с какой… Читать ещё >

Введение. Сверхтекучесть жидкого гелия (реферат, курсовая, диплом, контрольная)

Гелий — самая холодная жидкость в природе и единственное, которое не затвердевает при абсолютном нуле. В твердое состояние он может быть превращен только под давлением в несколько десятков атмосфер. Наиболее важной особенностью жидкого гелия является существование двух его модификаций, переходящих одна в другую при 2,186 К. Эти две модификации называются Не I и Не II. Точка перехода Не I — Не II называется л-точкой. Этот переход называется фазовым переходом II рода, характерным признаком которого является скачок теплоемкости.

Гелий II обладает поразительным свойством — сверхтекучестью, открытой в 1938 г. П. Л. Капицей и объясненной Л. Д. Ландау. Сверхтекучий гелий не обладает вязкостью, он без трения протекает через очень узкие капилляры и щели.

Сверхтекучесть жидкого гелия

Жидкий гелий I обладает малой вязкостью по сравнению с другими жидкостями. Но эта вязкость еще вполне нормальна и измерима. Она в 500 раз меньше вязкости воды. Петр Леонидович Капица произвел очень простой и необычайно важный эксперимент. Он наблюдал протекание гелия через очень тонкие щели. Щели эти были настолько тонкие, что даже такая с обычной точки зрения невязкая жидкость, как вода, вытекала бы через эти щели в течение многих-многих суток. Оказалось, что жидкий гелий II протекает через щели в течение нескольких секунд. Петру Леонидовичу Капице удалось показать, что вязкость гелия отличается от вязкости воды не менее чем в миллиард раз. Это только верхний предел, связанный с точностью экспериментов, тот предел вязкости, который наблюдал Петр Леонидович Капица. Вязкость гелия II оказалась столь маленькой, что вообще не могла быть измерена. Можно утверждать, что жидкий гелий II просто лишен всякой вязкости.

Это явление получило название сверхтекучести. Поэтому гелий II называют сверхтекучей жидкостью.

С открытием сверхтекучести гелия, открылись многие другие явления, оказавшиеся еще более непонятными. Прежде всего оказалось, что когда гелий течет через щель, то происходит странное явление с теплом. Если гелий протекает из одного сосуда в другой через очень тонкую щель, то оказывается, что при этом гелий в том сосуде, куда он вытекает, охлаждается, а в том сосуде, из которого он вытекает, нагревается. Это явление получило название термомеханического эффекта и само по себе представлялось крайне удивительным.

Капице удалось сделать ещё ряд экспериментов, кажущихся еще более удивительными.

В частности один из экспериментов заключается в следующем. В большой сосуд с гелием была погружена бульбочка с идущей от нее трубочкой, открытой и наполненной гелием. В этой бульбочке гелий слегка подогревался. Что произошло бы с какой-нибудь жидкостью? Жидкость нагревалась бы, тепло выходило бы в окружающую жидкость, и можно было бы обнаружить, что разные места жидкости обладают разной температурой.

Петр Леонидович Капица поместил напротив отверстия капилляра легкое крылышко и, двигая этим крылышком, показал, что из отверстия капилляра бьет струя гелия. Обстоятельство, удивительное во всех отношениях. Удивителен не столько сам факт, что при нагревании ни с того ни с сего бьет струя гелия. Еще более удивительным является то обстоятельство, что сосуд при этом не пустеет. Если из сосуда систематически вырывается струя жидкости, то через короткое время в сосуде не должно ничего остаться. В данном случае никаких изменений не происходит. Сосуд остается наполненным гелием, как вначале.

Это обстоятельство является одним из многочисленных примеров (некоторые из которых я уже упомянул) парадоксальности свойств жидкого гелия. Получается ощущение, что вообще такого не может быть.

Само собою разумеется, что никаких логических противоречий здесь, как и в других областях физики, быть не может. Это показывает только на то, что причины этих свойств лежат в очень необычных вещах, очень чуждых нашему представлению. И действительно, существует теория, которая объяснила некоторые существенные свойства жидкого гелия. Она основана на одном из величайших достижений физики двадцатого века, так называемой квантовой механике.

Оказывается, что чисто теоретически квантовая механика наделила жидкость, находящуюся при низких температурах, близких к абсолютному нулю, при которых находится жидкий гелий, изложенной особенностью. Для того чтобы объяснить эту особенность, есть одна старая история о некоторой теории, которая в свое время фигурировала в физике. В свое время в физике фигурировала такая, разумеется никогда не существовавшая, жидкость, как теплород. Считалось, что наряду с обыкновенной жидкостью существует еще тепловая жидкость и что если тело является теплым, то это значит, что в нем больше теплорода. Если же меньше теплорода, значит, оно соответственно становится более холодным. Теплород — жидкость, специально придуманная для объяснения этих явлений.

Эксперименты доказали, что никакой тепловой жидкости не существует, а тепло есть движение частиц жидкости. Оказывается, что в гелии сохранилось кое-что от теплорода, кое-что, конечно, в очень своеобразном смысле. Именно в обыкновенной жидкости тепло непосредственно связано со всей жидкостью, точнее говоря, со всей массой жидкости.

Иначе обстоит дело в жидком гелии. Там оказывается, что тепло связано не со всей массой жидкости, а только с ее частью, причем меньшей частью, то есть если говорить как бы о тепловой жидкости, то в обыкновенных жидкостях тепловая жидкость — это вся жидкость, в жидком же гелии тепловая жидкость — это часть жидкости. Чем меньшая часть, тем ниже температура.

Эта часть получила название нормальной массы гелия. При температуре 2,19 градуса Кельвина происходит переход от гелия II к гелию I. Выше этой температуры вся масса гелия — это нормальная масса. Ниже этой температуры — часть гелия, которая не связана с теплом. И чем ниже температура, тем меньшая часть гелия связана с теплом. При абсолютном нуле весь гелий никак с теплом не связан.

Из существования таких двух масс гелия — массы нормальной и остальной массы, которая получила название массы сверхтекучести, следует другое, не менее на первый взгляд чудовищное утверждение, что гелий способен одновременно к двум движениям. Имея две массы, хотя в одном и том же месте, в одном и том же объеме, гелий может совершать одновременно два различных движения одновременно в одной точке жидкости. В то время как обычная жидкость в одной точке имеет одну определенную скорость, гелий в одной точке имеет две скорости, совершенно различные. Одна из скоростей называется скоростью нормального движения, другая — скоростью сверхтекучего движения.

Теория показывает, что оба эти движения должны обладать существенно различными свойствами. Нормальное движение, связанное с теплом, является нормальным во всех смыслах. Именно оно обладает всеми свойствами всякого нормального движения, в частности оно связано с вязкостью. Наоборот, сверхтекучее движение не связано с теплом, не связано ни с какой вязкостью.

На первый взгляд такая концепция имеет характер почти абсурда. Может показаться, что это довольно бессмысленное рассуждение, которое если и объясняет что-нибудь, то чисто словесным образом, без всякого реального результата. Однако это не так. Теория не только объяснила те явления, о которых говорилось выше, но и предсказала ряд явлений, которые в дальнейшем были обнаружены экспериментами. Больше того, те два движения, о которых сказано выше и существование которых производит такое смешанное впечатление, может быть непосредственно наблюдено на экспериментах.

Представьте себе, что цилиндрический сосуд с гелием начинает вращаться, причем вращаться очень медленно, настолько медленно, что жидкость должна увлекаться при своем движении стенками сосуда. Так как жидкий гелий способен к двум движениям и его масса состоит из двух масс, то увлекаться будет только одна из них, именно нормальная масса гелия. Сверхтекучее движение, не будучи связано пи с какой вязкостью, не будет ни в каком взаимодействии со стенками сосуда и увлекаться не будет. При вращении гелия будет вращаться часть гелия, между тем как при вращении любой другой жидкости будет вращаться вся жидкость.

Эти замечательные результаты были обнаружены докторантом Элевтером Андроникашвили, который непосредственно проделал, я бы не сказал, эти, но аналогичные опыты, отличающиеся от изложенного опыта только деталями. При этом эксперименте оказалось, что выше 2,19 градуса гелий увлекается весь, ниже этой температуры гелий увлекается тем меньшим количеством, чем ниже температура. Таким образом, Андроникашвили имел возможность непосредственно измерить, какая часть массы гелия является нормальной и какая часть массы гелия является сверхтекучей. Сверхтекучее движение не есть теоретическая функция, а это есть вообще реально наблюдающееся при эксперименте явление. Количественно полученные результаты тоже оказались в прекрасном согласии с теорией. Таким образом, эксперимент Андроникашвили наглядно показал, что заложенная в теории жидкого гелия основа, несмотря на свою странность, отвечает реальной действительности. Легко также видеть, что с помощью этих теоретических представлений действительно объясняются те кажущиеся противоречивыми явления, которые наблюдаются в жидком гелии.

Возьмем этот удивительный эксперимент Капицы с вытекающей струей жидкого гелия. С точки зрения теории сверхтекучести ясно, в чем тут дело. Нагревание жидкого гелия происходит необычным образом. Обычным образом тепло переходит от молекулы к молекуле, без всего движения в целом. В жидком гелии под влиянием нагревания возникают одновременно два движения: тепло скапливается слева, потом движется слева направо вместе с нормальным движением. Сверхтекучее же движение, наоборот, движется в противоположную сторону, так что полное количество гелия в бульбочке, естественно, установилось неизменно.

В жидком гелии, в котором распространяется тепло, имеется два встречных потока: поток нормальный и поток сверхтекучий, движущийся в противоположную сторону. Сверхтекучий поток благодаря отсутствию вязкости никак не действует на погруженные в пего предметы. Нормальный поток вследствие вязкости действует па погруженные предметы. Поэтому крылышко, погруженное в гелий, чувствуя струю вытекающего гелия, колеблется, по оно совершенно не чувствует струи втекающего гелия.

Этим же обстоятельством объясняется и грандиозная теплопроводность гелия — способность к передаче громадного количества тепла. В обыкновенной жидкости, где тепло передается молекулярным движением — от молекулы к молекуле, тепло передается медленно. В жидком гелии тепло буквально течет слева направо. Таким образом может быть передано огромное количество тепла.

Кроме этих явлений теорией было предсказано еще одно явление, также в дальнейшем открытое в эксперименте. Именно в жидком гелии, в отличие от обыкновенной жидкости, могут распространяться два разных звука. Звук — это колебание плотности жидкости. В вязкой жидкости могут происходить такие колебания, которые распространяются с определенной скоростью. Такие колебания могут распространяться в гелии I со скоростью 150 метров в секунду. С такой же скоростью звук может распространяться в гелии II.

Теория показала, что наряду с таким звуком в гелии может распространяться звук особого рода, связанный с возможностью двух движений. В гелии возможен еще один звук, когда в целом масса не перемещается, а колебание нормальной и сверхтекучей части происходит друг относительно друга. Содержащая тепло часть гелия колеблется относительно остального гелия.

Этот звук получил название второго звука и был открыт Пешковым, который обнаружил распространение этого звука в гелии II. Распространение второго звука легко отличить от распространения обыкновенного звука, потому что его скорость не имеет ничего общего со скоростью обыкновенного звука: вместо 250 метров в секунду составляет 20 метров в секунду. Пешкову удалось обнаружить, что в гелии действительно распространяется особого вида звук. Он вызывается колебанием тепла.

Если производить колебания температуры в обыкновенной жидкости, эти колебания быстро затухают. Никакого второго звука здесь не получается. Если колебать температуру в жидком гелии, то это колебание распространяется как звук с определенной скоростью, которая составляет около 20 метров в секунду.

сверхтекучесть жидкий гелий тепло.

Показать весь текст
Заполнить форму текущей работой