Помощь в написании студенческих работ
Антистрессовый сервис

Расчет прочности крыла самолета Як-40 при грубой посадке на три опоры с боковым ударом (со сносом) и частично заторможенными колесами главных опор

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Из формул видно, что жесткость (сопротивляемость) крыла на кручение весьма существенно зависит от площади замкнутого контура поперечного сечения, потом от толщины стенок контура. Поперечная сила Q вызывает наибольшие касательные напряжения в нейтральном слое балки, а у верхнего и нижнего слоя балки (где в крыле расположены обшивки, полки лонжеронов и стрингеры). Можно приближенно считать, что… Читать ещё >

Расчет прочности крыла самолета Як-40 при грубой посадке на три опоры с боковым ударом (со сносом) и частично заторможенными колесами главных опор (реферат, курсовая, диплом, контрольная)

Як-40 стал первым в мире пассажирским реактивным самолётом для местных авиалиний. Этот самолёт стал первым отечественным самолётом, получившим сертификаты лётной годности Италии и ФРГ.

Первоначально самолёт выпускался с взлётной массой 14,7 т и числом мест 27. Дальность полёта составляла 710 км (с резервами топлива). Позднее приступили к выпуску улучшенного варианта с взлётной массой 16,1 т и числом мест 32. На этой модификации удалось увеличить дальность полёта. Схема с прямым крылом и кормовой установкой трёх двигателей, средний из которых оснащён реверсивным устройством. Возможен горизонтальный полёт с одним из трёх двигателей.

Конструкция крыла

Крыло самолёта прямое, большого удлинения, состоит из двух консолей. Каждая консоль снабжена тремя секциями выдвижных взлётно-посадочных закрылков и двумя секциями элеронов. Каждая консоль лонжеронной конструкции. Продольный набор каркаса консоли крыла состоит из двух продольных стенок, одного лонжерона и шести пар стрингеров. Поперечный набор состоит из 34 нервюр. Обшивка конструкции выполнена из дюралюминиевых листов. В крыле сделаны вырезы под нишу, где в убранном положении размещаются амортизационная стойка и колесо главной опоры шасси.

Двигатели

Три турбореактивных двигателя АИ-25 (3×1720 кгс) разработанных ГП ЗМКБ «Прогресс» им. Академика А. Г. Ивченко: два двигателя установлены на пилонах в хвостовой части фюзеляжа, третий внутри хвостовой части фюзеляжа. Также на самолёте установлена ВСУ АИ-9.

В полете и на земле могут возникнуть случаи неправильной эксплуатации. Один из таких случаев — это грубая посадка на три точки. Такая посадка может произойти вследствие плохой подготовки летного экипажа, плохих погодных условий или других непредвиденных факторов.

В данном курсовом проекте стоят следующие задачи:

1. определить все силовые факторы, действующие на крыло;

2. определить наиболее нагруженные сечения крыла;

3. сделать выводы о работоспособности конструкции, испытавшей такие нагрузки.

Для определения наиболее нагруженных сечений нужно построить эпюры для всех силовых факторов, действующих на крыло (крутящий и изгибающий моменты, поперечная сила). Затем надо сосчитать напряжения, действующие в наиболее нагруженных сечения, и сравнить их со свойствами материала, из которого сделано крыло. По результатам сравнения сделать выводы о работоспособности конструкции.

1. Исходные данные

Тип ВС: Як-40

Вариант нагружения: Грубая посадка на три опоры с боковым ударом (со сносом) и частично заторможенными колесами главных опор.

1.1 Летные характеристики самолета Як-40 для варианта нагружения

Максимальная взлетная масса твзл, кг 16 100

Максимальная посадочная масса тпос, кг 15 000

Максимальная масса топлива т Тмах, кг 4000

Площадь крыла S, м2 70

Размах крыла (реальный) l, м 25,0

Длина средней аэродинамической хорды bсах, м 2,97

Диаметр фюзеляжа dф, м 2,4

Предельно передняя эксплуатационная центровка Xпп, % 19

Предельно задняя эксплуатационная центровка Xпз, % 37

Корневая и концевая хорды bo/bк, м 3,7 /1,61

Расстояние для средней центровки lго, м 8,76

Расстояние для средней центровки lво, м 6,22

Расстояние от ц.д. вертикального оперения до оси фюзеляжа hво, м 3,1

Расстояние от оси двигателя до оси ВС lэ, м 2,0

Максимальная вертикальная эксплуатационная перегрузка (по РЛЭ) nмах 3,5

Расстояние от оси двигателя до ц.м. ВС (по оси) hэ, м 0,837

Тяга I двигателя Rdмах, кН 15

Крейсерская скорость Vкрейс, км/ч 510

Посадочная скорость Vпос, км/ч 180

Коэффициент лобового сопротивления в полете Cx 0,0257

Коэффициент лобового сопротивления на ВПП Cх 0,18

Плотность наружного воздуха (крейс.) сн, кг/м3 0,556

Размах элеронов между ц.д. lэ, м 19,6

Расстояние от оси самолета до ц.д. подъемной силы закрылка lЗ, м 4,3

Колея шасси К, м 4,52

База шасси Б, м 7,465

Расстояние от передней опоры до ц.м. самолета b, м 6,7

Высота шасси hш, м 2,1

Расстояние от оси шасси до ц.ж. крыла rш, м 0,6

Расстояние от ц.д. закрылка до ц.д. крыла r3, м 1,4

Скорость восходящего вертикального порыва W, м/с 15

Высота полета Hпол, м 7000

1.2 Геометрические характеристики силовых элементов крыла

летный самолет крыло напряжение Относительная толщина крыла c 0,145

Расстояние от ц.ж. крыла до подъемной силы элерона rэ, м 1,35

Толщина верхней панели обшивки дов, см 0,25

Толщина нижней панели обшивки дон, см 0,22

Площадь стрингера прилегающего к верхней панели обшивки f стр.в, см2 2,8

Число стрингеров на верхней панели nстр.в, шт. 8

Площадь стрингера прилегающего к нижней панели обшивки f стр. н, см2 2,2

Число стрингеров на верхней панели nстр.н, шт. 7

Площадь передне — верхней полки лонжерона fп.-п.в., см2 3,8

Площадь задне — верхней полки лонжерона fп.-з.в., см2 4,0

Площадь переднее — нижней полки лонжерона fп.-п.н., см2 3,5

Площадь задне — нижней полки лонжерона fп.-з.н., см2 3,5

Толщина передней стенки лонжерона дст. п., см 0,22

Толщина задней стенки лонжерона дст. з., см 0,25

1.3 Преобразование прямоугольного-трапециевидного полукрыла в трапециевидное

В методических указаниях для упрощения дальнейших расчетов нам предлагают стреловидное крыло нашего самолета преобразовать в прямое трапециевидное методом «поворота вперед». Такой необходимости нам не понадобиться, так как у Як-40 крыло и есть — прямое трапециевидное (Рис. 1.):

Рис. 1.2. Преоброзавание сложного в плане крыло в прямоугольное

м

м

м

2. Расчет сил, нагрузок и моментов

2.1 Расчет основных нагружающих сил во время грубой посадки на три опоры с боковым ударом и частично заторможенными колесами главных опор шасси

Посадка самолета на ВПП происходит с вертикальной, продольной и боковой перегрузкой. Все три опоры неодинаково нагружаются боковыми силами (рис. 2.), поэтому распределение сил реакций от бокового удара на опоры принимаем равными:

От передней опоры шасси: [Н]

От правой опоры шасси: [Н]

От левой опоры шасси: [Н]

Рис. 2. Посадка самолета на ВПП с сильным боковым ветром Вертикальные реакции и и сила торможения определяются из уравнений равновесия, составленных при помощи рисунка 3:

[Н]

[Н]

Рассчитаем вертикальную силу реакции опоры для каждой основной опоры в отдельности:

Рис. 3. Силы действующие на ЯК-40 во время грубой посадке с боковым ударом

2.2 Расчет распределенных нагрузок действующих на крыло в различных условиях эксплуатации

В полете крыло нагружается аэродинамической распределенной нагрузкой и массовой силой от веса собственной конструкции крыла и размещенного в нем топлива.

Аэродинамическая нагрузка распределяется по размаху крыла по закону близкому к параболическому. Для упрощения заменим его трапециевидным законом (рис. 3). если принять допущение, что постоянен по размаху крыла, то закон изменения аэродинамической силы пропорционален хорде крыла b:

Где значение текущей хорды крыла можно вычислить по формуле:

[м], где

— хорда корневой нервюры

— хорда концевой нервюры

— длина полукрыла без центроплана

— текущая длина крыла

— расчетный коэффициент текущей хорды крыла, равный

[м]

Считаем, что топливо распределено по крылу равномерно, тогда распределенная нагрузка от массовых сил крыла (его собственного веса и топлива) изменяется по его размаху также пропорционально хорде b:

, где Общая распределенная нагрузка, действующая на крыло, равна разности и :

(Н/м).

Рис. 4. Способы замены истинного закона изменения аэродинамической силы по размаху крыла кусочно-прямоугольным и трапецеивыдным Таким образом, закон изменения и можно выразить через геометрические данные крыла:

Произведем расчет распределенных аэродинамических и массовых нагрузок в концевой, корневой части крыла, а также в местах действия сосредоточенных сил от массы шасси, подъемной силы закрылков и реакции основной опоры шасси :

а) Расчет распределенной нагрузки на конце крыла, т. е. при z=0:

Результирующая нагрузка на конце крыла равна

[Н/м]

б) расчет распределенной нагрузки в корневой части крыла, т. е. при [м]

Результирующая нагрузка у фюзеляжа равна: [Н/м]

в) Расчет распределенной нагрузки в районе шасси равна:, [м]

Результирующая нагрузка в районе шасси равна:, [Н/м]

г) Расчет распределенной нагрузки в районе элерона, т. е. при, [м]

Результирующая нагрузка в районе элерона равна: [Н/м]

2.3 Расчет распределенного крутящего момента действующего на различные участки крыла планера

Крутящий момент крыла возникает в том случае, если равнодейтсвующая сила не проходит через центр жесткости (ц.ж) крыла. Обычно ц.ж. расположен на 36% хорды крыла от его носка, центр давления аэродинамических сил на 24% хорды (впереди ц.ж.), а центр масс (ц.м.) на 48% хорды. Поэтому погонный (распределенный) крутящий момент от распределенных аэродинамических и массовых сил крыла равен:

(Нм/м)

Обычно топливо в крыле расположено таким образом, что его ц.м. совпадает с ц.м. крыла. С учетом этого предположения, а также подставив выражение формула будет иметь вид:

(Нм/м).

(Нм/м).

Произведем расчет распределенного крутящего момента в концевой, корневой части крыла, а также в местах действия сосредоточенных сил от массы шасси, подъемной силы элеронов .

а) Расчет распределенного крутящего момента в корневой части крыла, т. е. при z=0, [м]:

[Н*м/м]

б) расчет распределенной нагрузки в корневой части крыла, т. е. при [м]:

[Н*м/м]

в) Расчет распределенной нагрузки в районе шасси равна:, [м]:

[Н*м/м]

г) Расчет распределенной нагрузки в районе элерона, т. е. при[м]:

[Н*м/м]

2.4 Расчетно-силовая схема крыла

На основании того, что размах крыла гораздо больше длины хорды, и тем более строительной высоты, можно сделать допущение о том, что крыло представляет собой балку. Следовательно, расчетно-силовая схема крыла — это балка, опирающаяся на две опоры, которыми являются корневые нервюры крыла (поэтому расстояние между опорными балками равно). Балка нагружена распределенными нагрузками аэродинамических и массовых сил, которые мы заменили на общую распределенную нагрузку, а также сосредоточенными силами, Y, R.

Наибольшую опасность для крыла представляет изгибающий момент, затем крутящий момент, а потом уже поперечная сила. Поэтому расчет напряжений в первую очередь следует проводить там, где максимален.

Построение эпюр изгибающего момента, крутящего момента, и поперечной силы невозможно без предварительного вычисления реакций опор и .

Для упрощения расчетов вычислим сначала составляющие реакции от симметричных и несимметричных, распределенных и сосредоточенных сил, а затем с учетом их знаков сложим, используя принцип суперпозиции. В нашем случае несимметричные нагрузки отсутствуют, т.к. посадка происходит без отклонения элеронов при выпущенных обоих стоек шасси, закрылках и предкрылках.

Составим уравнение равновесия и найдем искомое значение реакции опор у корневой нервюры:

=((0)+())/2-шg+ R/2=0.5 (305−701) — 449.8+4414/2=3553,017 [H].

2.5 Построение эпюр поперечных сил, изгибающих и крутящих моментов

Построение эпюр произведем раздельно, сначало для всегда симметричных распределеных нагрузок, а затем уже симметричных сосредоточенных сил.

Распределенная нагрузка, поперечная сила и изгибающий момент связаны между собой интеральными зависимостями:

Изгибающий момент и поперечная сила связаны между собой интегральной зависимостью:

Высчитаем значения (z),(z) в корневой, концевой части крыла, а также в местах крепления шасси и элеронов. Расчеты удобнее всего свести в таблицу:

Значения z

10,24

11,3

(z), H

944,5

4925,4

5643,6

(z), H

1218,1

22 104,8

27 702,9

(z), H*м

3261,8

24 309,8

29 056,3

Построив эпюру (), учитываем сосредоточенные силы, которые скачкообразно изменяют первоначальный вид эпюр. В точке крепления шасси учтем массу и реакцию основной опоры.

Эпюра (), получается симметричной относительно продольной оси самолета, причем изгибающим моментом нагружается и подфюзеляжная часть крыла (центроплан), на которую приходится максимальный изгибающий момент. В этом и назначение центроплана крыла: воспринимать изгибающие моменты консолей крыла, «гасить» (замыкать) их на центроплане, не передавать на фюзеляж (никакие силовые шпангоуты не выдержат таких нагрузок, они сомнутся). К величине (), необходимо прибавить значения изгибающего момента от сосредоточенных сил. В нашем случае — это основные опоры шасси, изгибающий момент который равен:

[Н*м]

Крутящий момент возникает в том случае, если сила не проходит через центр жесткости крыла. Положение жесткости зависит от формы профиля, распределения жесткости элементов по поперечному сечению и т. д. общий крутящий момент от распределенных сил получается непрерывным суммированием (интегрированием) всех погонных крутящих моментов:

Крутящий момент создает в бортовых нервюрах реакции опор, которые уравновешивают внешний (активный), то есть полностью его гасят; поэтому при симметричном нагружении крыла эпюры левой и правой плоскости получаются зеркально отображенными. Сосредоточенные силы, не проходящие через центр жесткости сечения крыла, скачкообразно из эпюру () с учетом знака. Так и у нас, крутящий момент от силы тяжести шасси и реакции опоры равен:

[Н*м]

3. Определение напряжений в сечении крыла

Критерием работоспособности конструкции (крыла, фюзеляжа или др.), то есть близости ее к состоянию разрушения или необратимых деформаций, является величина напряжений, возникающих в силовых элементах конструкции от действия на неё эксплуатационных нагрузок: изгибающего, крутящего моментов и поперечной силы.

По эпюрам, определяем наиболее нагруженное сечение, где моменты поперечиня сила максимальны. Если их максиумы не совпадают (не находятся в одном сечении), то расчет проводится для сечения с максимальным .

Схематизируем сечение крыла в соотвествие с реальным расположением силовых элементов.

Силовой частью сечения крыла является межложеронная часть, длинна и высота которй равны:

=0,6=0,63,7= 2,22 (м),

=0,85=0,850,1453,7= 0,45 603 (м),

где — длина межлонжеронной части;

— высота межлонжеронной части;

— текущая хорда крыла;

— относительная толщина крыла.

Поперечное сечение (расчетное) должно быть прямоугольным однозамкнутым, то есть иметь только два лонжерона, верхнюю и нижнюю обшивку (см. рис. 4) потому, если в действительности крыло трехлонжеронное, то толщина обшивки и стенок лонжеронов должна быть увеличена на 100%.

Рис. 7. Напряжения в силовых элементах сечения крыла, возникающие от внешних сил и моментов Крыло является тонкостенной замкнутой конструкцией, основные силовые элементы которой сосредоточены в верхней и нижней панелях (обшивка, стрингеры, полки лонжеронов). При изгибе, например, вверх (от аэродинамических сил) верхняя панель сжимается, нижняя растягивается, то есть обе работают на нормальные напряжения; при этом изгибающий момент трансформируется в пару сил:

(Н),

а напряжения от них будут равны:

(Па),

(Па),

где — площадь верхней панели крыла;

где — площадь нижней панели крыла.

Площадь панели определяется площадью обшивки, площадями всех стрингеров и полок лонжеронов (переднего и заднего). Т. е.:

(),

(),

где , — толщина обшивки верхней и нижней панелей соответственно;

 — число стрингеров верхней и нижней панелей соответственно;

 — площади стрингеров верхней и нижней панелей соответственно;

, , — площади полок переднего верхнего, заднего верхнего, переднего нижнего и заднего нижнего лонжеронов соответственно.

Найдем площади верхней и нижней панелей крыла:

0,857 (),

0,712 ().

Крутящий момент тонкостенном однозамкнутом контуре создает касательные напряжения, обратно пропорциональные толщине стенок контура:

— погонная касательная сила, (Н/м) Момент от одной произвольной силы q:

Полный крутящий момент сечения получим суммированием по всему контуру

где =F,

Формула Брета, для определения напряжений при кручении тонкостенной балки.

(Па) Из формул видно, что жесткость (сопротивляемость) крыла на кручение весьма существенно зависит от площади замкнутого контура поперечного сечения, потом от толщины стенок контура. Поперечная сила Q вызывает наибольшие касательные напряжения в нейтральном слое балки, а у верхнего и нижнего слоя балки (где в крыле расположены обшивки, полки лонжеронов и стрингеры). Можно приближенно считать, что поперечную силу воспринимают две вертикальные стенки лонжеронов, причем передняя воспринимает 70% поперечной силы сечения, а задняя -30%, поэтому:

(Па)

(Па) В формуле принято считать, по высоте стенки постоянны, хотя, как уже указывалось, на нейтральной оси и в верхнем или нижнем слое балки (стенки лонжерона); ввиду малости высоты по отношению к длине (Н?В) можно приближенно принять, что по высоте стенки лонжерона .

Так как действует по всему замкнутому контуру, а — только по стенкам лонжеронов, то в стенках лонжеронов их величины суммируются (с учетом знаков):

(Па)

(Па) Полученные расчетные нормальные и касательные напряжения, вызванные нагружением крыла в заданном расчетном случае, сравним с напряжениями, при которых материал данной конструкции, не получит остаточных деформаций. Эти напряжения называются пропорциональными. Для дюралевых сплавов, из которых изготовлено большинство конструктивно-силовых элементов, предел пропорциональных напряжений современных самолетов равен:

Заключение

При грубой посадке на три опоры с боковым ударом на крыло самолета и частично заторможенными колесами главных опор Як-40 действуют поперечная сила, изгибающий и крутящий моменты. Наиболее нагруженные сечения:

1. корневое сечение, т.к. в этом сечении действует максимальный изгибающий момент и максимальная перерезывающая сила ;

2. в местах крепления опор шасси, т.к. в этом сечении действует максимальный крутящий момент .

При данном случае нагружения крыло самолета Як-40 не испытывает разрушающих нагрузок и имеет при этом еще запас прочности. Следовательно, можно сделать вывод о том, что такая посадка самолета Як-40 допустима. Чтобы не допустить разрушение конструкции, следует после подобных полетных нагружений осуществлять осмотр на предмет трещин и деформаций. Однако не стоит забывать и о том, что в этом случае большая нагрузка приходится на опоры шасси. Поэтому прежде, чем делать выводы о допустимости такой посадки, необходимо проверить на прочность также и опоры.

Список использованной литературы

1. Зинченко В. И., Федоров Н. Г. Методические указания к выполнению 2 части курсового проекта «Воздушные суда». Л.: ОЛАГА, 1990.

2. Конспект лекций по предмету «Конструкция и прочность ЛА».

3. Тарг В. М. Теоретическая механика. М.: Машиностроение, 1995 г.

Показать весь текст
Заполнить форму текущей работой