Помощь в написании студенческих работ
Антистрессовый сервис

Обучение счёту старших дошкольников

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

На первом занятии создают ситуации, при которых возникает необходимость разделить предмет на 2 равные части, например, разделить угощение между 2 куклами или 2 детьми (гостями), помочь 2 жадным медвежатам разделить сыр и т. п. Воспитатель показывает, как надо делить предметы на 2 равные части, т. е. пополам, подчеркивает, что он точно складывает и разрезает предмет посередине, потом сравнивает… Читать ещё >

Обучение счёту старших дошкольников (реферат, курсовая, диплом, контрольная)

Введение

Система образования — одна из наиболее бурно развивающихся, поскольку «информационное общество» требует по-новому образованных людей. Психологическая готовность к жизни в информационном обществе, начальная компьютерная грамотность как средства решения задач деятельности становятся сейчас необходимыми каждому человеку независимо от профессии. Всё это предъявляет качественно новые требования и к дошкольному воспитанию — первому звену непрерывного образования, одна из главных задач которого — заложить потенциал обогащенного развития личности ребёнка.

В условиях развития вариативности и разнообразия дошкольного образования в последнее десятилетие происходит внедрение в практику работы дошкольных образовательных учреждений альтернативных образовательных программ, реализующих различные подходы к вопросам образования и развития ребенка дошкольного возраста.

Ребенок старшего дошкольного возраста отличается активностью в познании окружающего, проявляет интерес к математике. У него начинают складываться представления о свойствах предметов: величине, форме, цвете, составе, количестве; о действиях, которые можно производить с ними, — уменьшить, увеличить, разделить, пересчитать, измерить.

Накопленный чувственный и интеллектуальный опыт ребенка может быть объемным, но неупорядоченным, неорганизованным. Направить его в нужное русло, сформировать частные и обобщенные способы познания и необходимо в процессе обучения и познавательного общения. Все это служит фундаментом дальнейшего математического образования детей.

Счет — одно из ведущих понятий в математике. Люди научились считать в глубокой древности. Начало развития счета ученые находят уже у первобытных народов. С возникновением цивилизации потребность в счете и в умении производить арифметические действия резко увеличилась.

Дошкольная педагогика тоже не обошла своим вниманием обучение счету. Долгое время концепции первоначального обучения маленьких детей числу и счету строились либо на основе умозрительных теоретических построениях, либо путем эмпирического опыта.

Выдающиеся мыслители прошлого (Я.А. Коменский, И. Г. Песталоцци, К. Д. Ушинский, Л.Н. Толстой), видные деятели в области дошкольного воспитания за рубежом (Ф. Фебель, М. Монтессори, В.А. Лай) и в России (Е.И. Тихеева, А. М Леушина, Л. С. Метлина, А. Белшистая, Т. И. Ерофеева и др.) успешно совмещали и совмещают непосредственную работу с детьми с ее теоретическим осмыслением.

Актуальность проблемы послужила выбору темы исследования.

Цель исследования: теоретически обосновать и экспериментально проверить эффективность педагогических условий обучения счёту детей дошкольного возраста посредством игровых приёмов.

Объект: процесс математического развития дошкольников.

Предмет исследования: игровые приёмы как средство обучения счёту детей дошкольного возраста.

Гипотеза: обучение счёту детей дошкольного возраста посредством игровых приёмов будет эффективно при соблюдении следующих педагогических условий:

— учёт индивидуальных и возрастных особенностей детей;

— использование комплекса методов и средств обучения счёту;

— поддержание интереса детей к игре;

— позиция взрослого-воспитателя, его игровая компетентность.

Задачи исследования:

1. Изучить основные понятия проблемы исследования.

2. Определить уровень сформированности количественных представлений старших дошкольников.

Глава 1. Теоретические основы проблемы обучения счёту старших дошкольников средствами игровых приёмов

1.1 Взгляды учёных на понятие счёт как математическая деятельность Возникновение математических понятий произошло задолго до появления собственно математических текстов. Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом, пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления.

Некоторые ученые, например известный немецкий математик М. Кантор считали, что счёт имеется уже у животных. По М. Кантору, «счёт, поскольку под ним подразумевают лишь сознательное сведение воедино определенных сущностей, не составляет особенности человека, ибо утка также считает своих утят». Современные исследователи отмечают, что животные разных видов, начиная с рептилий, обладают способностями обобщения по признаку «соответствия», абстрагирования, ряд позвоночных способны к зачаткам «символического мышления человека». Вороны «способны не только к обобщению относительного признака «соответствие», но также к формированию довербального понятия «число».

Как пишет Ф. Кликс: «Способность распознавать различные количества предметов одного и того же или разного вида встречается уже среди врожденных поведенческих программ.

Пчелы дифференцируют различное число лепестков у цветов. Некоторые виды птиц, например, голуби, могут научиться различать количество точек и пятен, числом 7 или 9″.

По мнению советских авторов «Истории математики» счёт прерогатива, сугубо, человеческая, первобытно-пещерным «людям», как и уже высшим животным доступен так называемый «чувственный счет»: «Когда первобытному охотнику нужно было узнать, все ли собаки в своре на месте, он не считал их, а просто, окинув взором свору, видел, какой собаки не хватает. Такой „чувственный счёт“, доступный даже утке чувствующей, весь ли ее выводок следует за ней к водоёму, существовал задолго до возникновения счёта».

Действительно, существуют гипотезы, согласно которой счёт, способность к счёту — это то, «нечто», что принципиально отличают человека от животного.

Что появилось первым понятие числа или счёт? Очевидно, что понятие числа кристаллизовались на основе и в процессе развития счёта.

Можно выделить четыре этапа этой эволюции:

— установление соответствий предметов;

— выработка естественных эталонов счёта;

— выработка эталона-множества символизирующего некое конкретно число (где, впервые возникает понятие числа);

— выработка наиболее удобных счётных систем.

Первым шагом или этапом к возникновению счёта было установление «взаимно однозначного соответствия» между считаемыми предметами и некоторым другим множеством. Счёт строился на однозначных соответствиях; «у некоторых южноафриканских племен при счёте дотрагиваются до каждого предмета по очереди пальцами, начиная с мизинца левой руки».

Австралийцы и полинизийцы, пользовались своим телом как живой шкалой, каждая часть тела которого имела свое название и место в системе счисления. Таким телом «живой шкалой» пользовались, чтобы сообщить, например, дружественному племени о количестве воинов, собираемых племенами, или о числе дней, по прошествии которых следует выходить на охоту.

Самым трудным этапом, который прошло человечество при выработке понятия о числе, считается выделение им понятия единицы из понятия «много». Оно произошло, по всей вероятности, еще тогда, когда человечество находилось на низшей ступени развития. В. В. Бобынин объясняет такое выделение тем, что человек обычно захватывает рукой один предмет, а это, по его мнению, и выделило единицу из множества. Таким образом, начало счисления, по мнению Бобынина, это создание системы, состоящей из двух представлений: «единица» и «неопределенное множество».

У первобытного человека не было потребности в счёте больших количеств. Поэтому счет доходил до 2 или до 3 — всё превышающее этот рубеж, первобытному человеку представлялось как «много». Числительное «два» имело качественное происхождение — пара рук, ног, глаз и пр.

«Ручной счет сыграл в развитии счета столь же важную роль, как и открытие огня в общем развитии первобытного человека» — заключает Э. Кольман. По его мнению, счет пальцами рук и ног, сменился знаками «заместителями» отсчитываемых предметов. Такими «знаками заместителями» стали камешки, ракушки, которые в процессе счета откладывались в кучки, наносились зарубки, завязывались узелки и пр. Понятия 1, 2, 3 и т. д. появляются раньше самого понятия числа.

С развитием хозяйства возникла потребность в расширении пространства счета. При возникновении потребности в расширении числовой области низшие числительные, зачастую, просто повторялись.

Однако необходимость счета больших количеств выявил неспособность прежнего способа счета (когда низшие числительные повторяются) справится с этой задачей. «Высшим числам даются особые названия, возникают высшие числительные». Крайние числительные теперь простираются гораздо дальше 10 и даже 20. За крайним числом по-прежнему простирается неопределенное «много». (Интересно, что у русских названия «пыль», «звезды», «тьма» были равнозначны понятию «много»).

На первой ступени развития счета человек еще отнюдь не пользовался наименованием чисел, а выражал их соответствующими телодвижениями или жестами.

Дальнейшее развитие счета относится к эпохе, когда человечество ознакомилось с некоторыми формами производства — охотой и рыболовством. Человеку пришлось изготавливать простейшие орудия для овладения этими производствами. Кроме того, продвижение человека в холодные страны заставило его делать одежду и создавать орудия для обработки кожи.

Развитие счета пошло гораздо быстрее, когда человек догадался использовать самый естественный счетный аппарат — свои пальцы. Пальцевый счет постепенно приводил к упорядочению счета, и человек стихийно приходил к упрощению словесного выражения счета.

На современном этапе счет является ведущей ступенью в образовании человека. Еще с раннего детства человеку стремятся преподать навыки счета, которые используются и усовершенствуются всю жизнь. Началом формирования навыков счета является дошкольное обучение математике.

Основоположники системы математического образования дошкольников Я. А. Коменский и И. Г. Песталоцци считали, что основы арифметики можно заложить уже на третьем году жизни, когда дети начинают считать до пяти, а в последствии до десяти или, по крайней мере, начинают ясно выговаривать эта числа. Если на четвертом, на пятом, на шестом году они научатся считать по порядку до двадцати и быстро различая, что 7 больше 5, 15 меньше 30, то этого будет достаточно.

Песталоции И.Г. — швейцарский педагог-демократ и основоположник теории начального обучения, указывал на недостатки существующих методов обучения, в основе которых лежит зубрежка, и рекомендовал учить детей счету конкретных предметов, пониманию действий над числами, умению определять время.

Чешский педагог Я. А. Коменский в руководстве «Материнская школа» в программу по арифметике включил:

— счет в пределах первых двух десятков (для 4−6 летних детей);

— различение чисел;

— определение большего и меньшего из них;

— сравнение предметов;

— знакомство с геометрическими фигурами;

— ввел меры измерения (дюйм, пядь, шаг, фунт).

Русский педагог — демократ К. Д. Ушинский предлагал обучать детей счету отдельных предметов и групп действиям сложения и вычитания, формировать понимание десятка, как единицы счета.

В педагогических сочинениях К. Д. Ушинского говорится, что, прежде всего, следует выучить детей считать до десяти на наглядных предметах: на пальцах, орехах, и т. д., которые не жалко было бы и разломать, если придется показать наглядно половину, треть, и т. д.

Считать следует учить назад и вперед так, чтобы дети с одинаковой легкостью считали от единицы до десяти и от десяти до единицы. Потом следует научить считать их парами, тройками, пятерками, чтобы дети поняли, что половина десяти равна пяти и т. д. Ушинский говорил, что надо просто «приучить дитя распоряжаться с десятком совершенно свободно — и делить, и умножать, и дробить…».

Великий русский мыслитель Л. Н. Толстой в 1872 г. издал «Азбуку», одной из частей которой является «Счет». Он предлагал обучать детей счету вперед и назад в пределах сотни, изучать нумерацию, основываясь на детский практический опыт, приобретенный в игре.

Методы формирования у детей понятия о числе, форме нашли свое отражение и дальнейшее развитие в системах сенсорного воспитания немецкого педагога Ф. Фребеля и итальянского педагога М. Монтесори. Передовые педагоги прошлого, русские и зарубежные, признавали роль и необходимость первичных математических знаний в развитии и воспитании детей до школы, выделяли при этом счет в качестве средства умственного развития и рекомендовали обучать детей, как можно раньше примерно с 3-х лет. Обучение понималось ими как упражнения в практических, игровых действиях с использованием наглядного материала, накопленного детьми опыта в различении числе, времени, мер пространства.

М. Монтессори итальянский педагог — через сенсорное воспитание раскрывала вопросы ознакомления детей с формами, величинами, составлению рядов предметов по размеру, весу и т. д. Она считала необходимым создание специальной среды для развития представлений о числе, форме, величинах, а также изучение письменной и устной нумерации. Для этого она предлагала использовать счетные ящики, связки цветных бус, счеты, монеты; числовые штанги с табличками чисел, цифры из шершавой бумаги, цифры-кружки, башенки. Этот материал вводит детей в математическое познание мира. Отсюда ясно, почему Монтессори называла их «базовыми математическими материалами». (Розовая башенка, коричневая лестница, красные штанги, блоки с цифрами, вкладыши и т. д. опосредованно подготавливают детей к усвоению математических знаний — у детей развивается математическое мышление — дети измеряют, сравнивают). Детский ум одновременно впитывает многообразный сенсорный и моторный опыт, естественно развивая при этом математические способности.

Труды педагогов Л. В. Глаголевой, Л. К. Шлегер, Е. И, Тихеевой, Ф. Н. Блехер послужили основой дальнейшей разработки и совершенствования психолого-педагогических методов первоначального формирования математических представлений и именно счётной деятельности.

Елизавета Ивановна Тихеева в своих книгах «Счет в жизни маленьких детей», «Современный детский сад» высказывается против систематического обучения дошкольников. Она считает, что до семи лет дети должны сами научиться считать в процессе повседневной жизни и игры. В то же время она возражает и против полной стихийности обучения. В обучение детей счету Е. И. Тихеева включила:

1. Счет до 10 (разработала 60 задач для игр-занятий, на закрепление количественных и пространственных представлений; определила объем знаний, которыми должны овладеть дети; особо подчеркивала важность овладения детьми первого десятка).

2. Ознакомление детей с цифрами (для этого предлагались игры с парными картинками, счетные ящики).

3. Знакомство детей со сложением и вычитанием, (через решение задач из практической жизни).

4. Знакомство детей с величиной (больше, меньше, выше-ниже, ширеуже и т. д).

5. Знакомство детей с измерением в игре.

6. Знакомство детей с объемом, измерения емкости сосуда. Для знакомства с массой использовались весы.

Е. И. Тихеева была за свободное обучение детей в игре, в непринужденной обстановке, в повседневной жизни.

Фаина Николаевна Блехер — представительница теории автодидактизма.

Основные мысли о содержании и методах обучения изложила в книге «Математика в детском саду и нулевой группе», ставшей первым учебным пособием и программой по математике в детском саду.

Ф. Н. Блехер предлагала обучать детей элементам математики с 3−4 лет и выделять понятия «много» и «один», формировать представления о числах 1, 2, 3. В среднем дошкольном возрасте учить определять количественные характеристики предметов в пределах 10. На основе счета сравнивать числа, пользоваться порядковым счетом. В старшей группе учить детей составу чисел, цифрам, составлять практически числа из меньших групп; производить действия сложения, вычитания; освоить второй десяток; решать простые задачи.

Обучение предлагалось вести в играх, обучая счету — больше использовать природный материал. В играх дети усваивают сравнение предметов по размерам, знакомятся с геометрическими фигурами, пространственными направлениями. Дети должны участвовать в практических жизненных ситуациях. Методика обучения счету Ф. Н. Блехер отражала идеи монографического метода — идти в обучении от числа к числу. (Учить счету не допустимо, но число ребенок должен знать, схватывать число глазами, а не обучать счету), разработала дидактические игры, советовала больше использовать природного материала.

Анна Михайловна Леушина — педагог, создавший методику формирования элементарных математических представлений у детей дошкольного возраста. Благодаря ее работам методика получила теоретическое, научное и психолого-педагогическое обоснование, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в детском саду. А. М. Леушина, вскрыв закономерности формирования и развития у детей разного возраста представлений о множестве, числе и операции счета, разработала способы и методы обучения детей счетной деятельности в разных возрастных группах, обеспечивающие преемственность между ними.

На современном этапе совершенствование методики формирования элементарных математических представлений направлено на уточнение, поиск и внедрение методов обучения счёту детей дошкольного возраста.

З.С. Пигулевская в пособии «Счет в детском саду» раскрыла опыт обучения детей счету на материале содержания занятий, приемов обучения, проведения игр и использования некоторых дидактических средств.

Содержание обучения заключалось в последовательном изучении каждого из чисел первого десятка в отдельности. Дети образовывали числа путем последовательного присоединения к одному предмету другого, затем — третьего и т. д. Одновременно с рассмотрением состава числа дети изучали счет.

Занимаясь по методике Н. Зайцева математикой, дети знакомятся сразу с первой сотней, находят любое число на числовой ленте, решают любые задачи и примеры на сложение и вычитание в пределах ста. Пяти-шестилетние прекрасно считают в уме, подходят к умножению и делению, выходят за пре­делы первой сотни.

В 1968 году появилась и была апробирована на практике методика Б. П. Никитина, который впервые призвал «заниматься с ребенком как можно раньше», то есть, как выражался этот замечательный педагог — «Своевременно!» Игры должны быть организованы так, что бы развивать высочайший интеллект.

Из множества различных мнений о возникновении у детей понятия о числе можно обозначить три наиболее характерных.

Немецкий педагог В. А. Лай утверждает, что понятие числа возникает у детей путем непосредственного восприятия, т. е. если ребенку дать несколько предметов (от 10 до 12), расположенных правильными фигурами, то он может узнать число этих предметов сразу, не считая их. И сообразно с этим сторонники непосредственного восприятия чисел первоначальное обучение арифметике обосновывают на так называемых числовых фигурах, т. е. на группе одинаковых значков или тел, расположенных в определенном порядке.

Другая версия состоит в том, что числовое понятие возникает только посредством счета.

Третья версия Д. Л. Волковского заключается в том, что «понятие числа психологически получается, как результат измерений. И сообразно с этим в начале обучения на первое место выдвигается изучение количественной изменяемости величин и их функциональной зависимости».

Он подчёркивал, что понятие о числе может возникнуть путем непосредственного восприятия. Точно так же справедливо, что представление числа может возникать путем счета.

Известный психолог Прейнер в одном из своих исследований говорит, что «имея перед глазами группу предметов в числе трех, мы можем непосредственно узнать это число, не производя счета, и называет такой процесс условным выражением „бессознательный счет“. Если же число предметов, находящихся перед глазами, превосходит этот ограниченный предел и если предметы размещены в ряд, то такое узнавание-схватывание числа их становится затруднительным и даже невозможным, вследствие чего мы ощущаем непреоборимую потребность прибегнуть к счету».

Делая выводы, следует сказать, что счет необходим как один из процессов изучения чисел. Это видно из того, что его не отвергают и сторонники непосредственного восприятия чисел. Непосредственное восприятие числа опирается преимущественно на пространственные элементы, а счет — на временные элементы числа и действий над числами.

Таким образом, изучая взгляды учёных на понятие, счёт мы увидели, что данный вопрос изучался как в прошлом развитии науки, так и на современном этапе, подчёркивая важность счёта как математической деятельности для детей дошкольного возраста.

1.2 Характеристика этапов развития счетной деятельности у дошкольников Счет — это деятельность с конечными множествами. Счет включает в себя структурные компоненты:

· цель (выразить количество предметов числом),

· средства достижения (процесс счета, состоящий из ряда действий, отражающих степень освоения деятельности),

· результат (итоговое число): сложность представляется для детей в достижении результата счета, то есть итог, обобщение. Выработка умения отвечать на вопрос «сколько?» словами много, мало, один два, столько же, поровну, больше, чем… ускоряет процесс осмысления детьми знания итогового числа при счете.

Представление о числах, их последовательности, отношениях, месте в натуральном ряду формируется у детей дошкольного возраста под влиянием счета — длительного и сложного процесса. Истоки счетной деятельности усматриваются в манипуляциях детей раннего возраста с предметами. Счет как деятельность формируется поэтапно:

1 этап — 1,5−2 года. Детей привлекают разнородные виды множественности: предметов, звуков, движений. Все движения с предметами сопровождаются повторением одного и того же слова: «вот», «вот» …,"вот". ., или «еще…», «еще…», или «на … на… на». Важно, что каждое слово соотносится с одним предметом или с одним движением. Слово помогает выделять элементы из множественности однородных предметов, движений, более четко обособлять один элемент от другого. Этот прием ребенок использует стихийно, он служит известной подготовкой ребенка к счетной деятельности в будущем.

2 этап — 2−3 года. Появляется интерес к сравнению множеств (наложение, приложение). Все эти факты свидетельствуют о стремлении детей определить численность той или иной совокупности или размеров предметов — больше, меньше, поровну. Это первые попытки познать число путем сравнения.

3 этап — 4 года. В развитие счетной деятельности при сопоставлении элементов множеств начинает включаться последовательное название слов — числительных. Дети через обучение осваивают операции счета до пяти, соотносят числительные с предметами. В это время дети часто допускают ошибки пропускают элементы множеств или наоборот, соотносят одно числительное с несколькими объектами, и как правило, не умеют обобщать все перечисленное множество.

4 этап — 5 лет. Дети уже четко усваивают последовательность в названии числительных, более точно соотносят числительное с каждым элементом множества, осваивают закон натурального ряда чисел п +, — 1, т. е. усваивают взаимообратные отношения между смежными числами.

5 этап — 6−7 лет. Дети осваивают счет с различным основанием единицы, считают уже не отдельные предметы, а группы, состоящие из нескольких предметов. Дети усваивают, что единицей счета может быть целая группа, а не только отдельный предмет.

6 этап — школа, развитие счетной деятельности в первом классе.

Процесс счета состоит из двух компонентов: двигательного и речевого.

Двигательный компонент:

— ребенок передвигает предметы;

— прикасается к ним;

— указывает предметы на расстоянии;

— выделяет каждый предмет лишь глазами.

Речевой компонент:

— громко произносит слова числительные вслух в процессе счетной деятельности;

— считает шепотом;

— считает, лишь шевеля губами;

— считает про себя.

Обучение количественному счету должно помочь детям понять цель счета и овладеть средствами (правилами счета). Постепенно детей обучают порядковому счету. Чтобы дети усвоили закономерность образования чисел, добавляется окончание к количественному числительному пять — пятый. Наглядный материал берется такой, где каждая единица чем-то выделена. Детей следует научить различать вопросы: «Сколько?», «Какой?», «Который?» — и правильно отвечать на них.

Обучение детей приему счета предметов идет в следующей последовательности:

— отсчет по образцу;

— отсчет по названному числу;

— на основе счета установление равенства (неравенства) групп предметов в ситуации, когда предметы расположены на разном расстоянии друг от друга, когда они отличаются по размерам, по форме расположения в пространстве.

Из теории арифметики известно, что счет — это установление взаимно однозначного соответствия элементов между двумя сравниваемыми множествами. Дается также счет по осязанию, счет на слух и счет различных движений в пределах 5. Вводится знакомство с символикой — цифрами в пределах 5. В процессе обучения счету необходимо одновременно и знакомить с цифрами — соответствующими обозначениями чисел.

По мере ознакомления детей с первыми тремя числами их учат порядковому счету в пределах 5 и умению отличать его от количественного счета, правильно отвечать на вопросы: «Сколько всего?», «Который по счету?». Порядковый счет дается вместе с количественным в целях отличия их. На первом занятии необходимо раскрыть значение порядковых числительных. Раскрыть порядковое значение числа позволяет сопоставление его с количественным значением. Количественный счет: «Сколько?» — «один, два, три». Порядковый счет: «Который?», «Какой по счету?» — «первый, второй, третий».

Одной из важных задач в этой группе является обучение детей умению отсчитывать предметы. Обучать отсчитыванию целесообразно в привычной для детей обстановке, где меньше отвлекающих моментов. При этом необходимо показать детям способ отсчета, указать, когда следует произносить числительное, отбирая предметы.

Например, отобрав кубик и поставив его на другой край стола, ребенок говорит: «Один», отобрав молча другой и поставив его к первому, говорит: «Два» и т. д. числительное произносить тогда, когда практическое действие отбора уже завершено. Этому способу важно обучить детей, так как, многие называют числительное, когда берут предмет, и называют следующее числительное, когда ставят его к первому, то есть считают свои движения, а не предметы. Следует учить отсчитывать, выкладывать, приносить определенное число предметов сначала по образцу, а затем по названному числу. Считать и отсчитывать по образцу детям легче, чем по названному числу. Воспитатель должен это знать и усложнять задания постепенно: сначала предлагать работать по наглядному образцу (дается образец-карточка с кружками и предлагается детям найти столько же игрушек, поставить каждую игрушку на кружок карточки, затем по названному числу (числовой карточке или цифре) найти трех уточек, поставить столько машин, сколько цифр на доске).

Еще более сложным заданием будет отсчитывание предметов из большего количества. В начале обучения детям предлагают три предмета, которые необходимо расположить по порядку, далее количество предметов увеличить до пяти и более. Хорошую упражняемость в различении количественных отношений обеспечивает выполнение детьми поручений педагога. Например: принести много зайцев и одного мишку; найти, где лежит мало карандашей и много тетрадей; принести один стул и несколько кукол.

Программа старшей группы направлена на расширение, углубление и обобщение у детей элементарных математических представлений, дальнейшее развитие деятельности счета. Детей учат считать в пределах 10, продолжают знакомить с цифрами первого десятка. На основе действий с множествами и измерения с помощью условной меры продолжается формирование представлений о числах до десяти.

Образование каждого из новых чисел от 5 до 10 дается по методике, используемой в средней группе, на основе сравнения двух групп предметов путем попарного соотнесения элементов одной группы с элементами другой детям показывают принцип образования числа. Например, на счетной линейке раскладываются две группы предметов в ряд: на верхней полоске пять ромашек, на нижней — пять васильков. Сравнивая эти две группы предметов, дети убеждаются, что их поровну. Затем им предлагают пересчитать предметы на верхней и нижней полосках. Добавляется еще одна ромашка. Дети выясняют, что ромашек стало больше, а васильков меньше. Воспитатель обращает внимание на то, что образовалось новое число — шесть. Оно больше пяти. Число шесть получилось, когда к пяти добавили один. На основе этих знаний и умений у детей развивают глазомер.

В ходе упражнений по количественному сравнению групп предметов педагог показывает детям разные способы обозначения какого-либо количества. Для этого справа от группы предметов выкладывают такое же количество палочек, вывешивают счетную карточку, числовую фигуру и т. д. затем показывается графический способ обозначения числа — цифра. В дальнейшем необходимо предоставить детям возможность выбрать нужную цифру, воспроизвести, нарисовать количество предметов, указанное цифрой. Параллельно с показом образования числа детей продолжают знакомить с цифрами. Соотнося определенную цифру с числом, образованным тем или иным количеством предметов, воспитатель рассматривает изображенные цифры, анализируя его, сопоставляет с уже знакомыми цифрами, дети производят образные сравнения (единица, как солдатик, восемь похожа на снеговика и т. д.).

Особого внимания заслуживает число 10, так как оно записывается двумя цифрами: 0 и 1. Поэтому, прежде необходимо познакомить детей с нулем. Понятие о нуле дети получают, выполняя задание отсчитывать предметы по одному. Например, у детей 9 игрушек, они по одной убирают и пересчитывают, остается 8, 7, 6, 5, 4, 3, 2, 1. Воспитатель просит убрать и последнюю игрушку. Объясняет детям, что не осталось ни одной игрушки. Или по-другому как говорят математики ноль игрушек. Ноль игрушек обозначается цифрой 0. Воспитатель предлагает отыскать место нуля в числовом ряду. Дети самостоятельно или с помощью педагога решают, что ноль должен стоять перед единицей, так как он меньше единицы на один. Возвращаем игрушки по одной пока не получится опять 9. Воспитатель добавляет еще одну игрушку, получает число10 и показывает, что оно записывается двумя цифрами: 0 и 1.

В течение всего учебного года дети упражняются в счете в пределах десяти. Они пересчитывают предметы, игрушки, отсчитывают из большего количества предметов меньшее, отсчитывают предметы по заданному числу, по цифре, по образцу. Образец может быть дан в виде числовой карточки с определенным количеством игрушек, предметов, геометрических фигур, в виде звуков, движений. При выполнении этих упражнений важно научить детей внимательно слушать задания воспитателя, запоминать их, а затем выполнять.

Важной задачей в старшей группе остается установление связей между смежными числами, понимание их отношений в пределах 10. Какое число следует за каким, какое из смежных чисел больше или меньше и как их сделать равными. Для этого все изучаемые детьми числа сравниваются на конкретном материале. Например, два мяча меньше, чем три квадрата. Знания закрепляются на разных группах предметах, чтобы дети убедились в постоянстве отношений между числами.

Продолжая работу, начатую в средней группе, педагог должен уточнить представления детей о том, что число не зависит от величины предметов, от расстояния между ними, от направления счета. Решение этой программной задачи позволит сформировать у детей представление об отвлеченности числа, покажет независимость числа от направления счета. Детей необходимо учить считать, начиная с любого указанного предмета в любом направлении, при этом, не пропуская предметы и не пересчитывая их дважды.

Детей учат различать порядковый и количественный счет. Считая предметы по порядку, необходимо условиться с какой стороны надо считать. Так как именно от этого зависит результат счета. Например, если дети пересчитывают 10 игрушек слева направо, то матрешка будет третья, а если считать справа налево, то матрешка будет восьмая. Порядковый счет используется при определении того, которым, каким по счету стоит предмет. Детей знакомят с количественным составом числа из единиц в пределах 10, например, число 3: «Одна кукла, да еще одна матрешка, да еще одна рыбка. Всего три предмета». Обязательно на занятиях следует использовать разнообразный наглядный материал. На протяжении всего учебного года повторяется эта задача.

В старшей группе у детей формируется понятия о том, что некоторые предметы можно разделить на несколько частей: на две, на четыре. Например, яблоко. Здесь обязательно нужно обратить внимание детей на то, что части меньше целого, показать это на наглядном примере. Начинать деление предметов на равные части путем сгибания листа бумаги пополам (на 2 части), еще раз пополам (на 4 части). Когда ребята хорошо усвоят деление предметов путем сгибания, используются другие приемы: разрезание ножом, ножницами или разрывание.

В подготовительной к школе группе в начале года необходимо проверить, все ли дети, и в первую очередь те, которые впервые пришли в детский сад, умеют считать предметы, сопоставлять количество разных предметов и определять, каких больше (меньше) или их поровну, каким способом при этом пользуются.

На первых занятиях целесообразно напомнить детям, как образуются числа второго пятка. На одном занятии последовательно рассматривают образование двух чисел и производят сравнение их друг с другом (6 — из 5 и 1; 6 без 1 равно 5; 7 — из 6 и 1; 7 без 1 равно 6 и т. д.). Это помогает детям усвоить общий принцип образования последующего числа добавлением единицы к предыдущему, а также получения предыдущего числа удалением единицы из последующего (6−1= 5).

Каждое занятие, посвященное образованию последующих чисел, полезно начинать с повторения того, как были получены предыдущие числа. С этой целью можно использовать числовую лесенку. Двусторонние кружки синего и красного цвета раскладывают в 10 рядов: в каждом последующем ряду, считая слева (сверху), количество увеличивается на 1 («на 1 кружок больше»), причем дополнительный кружок повернут другой стороной. Числовая лесенка по мере получения последующих чисел постепенно надстраивается. В начале занятия, рассматривая лесенку, дети вспоминают, как были получены предыдущие числа.

К моменту перехода детей в школу у них должна быть воспитана привычка вести счет и раскладывать предметы слева направо, действуя правой рукой. Но, отвечая на вопрос «сколько?», дети могут считать предметы в любом направлении: слева направо и справа налево, а также сверху вниз и снизу вверх. Они убеждаются, что считать можно в любом направлении, но при этом важно не пропустить ни одного предмета и ни один предмет не сосчитать дважды. Особое внимание уделяют сопоставлению численностей множеств предметов разного размера (длинных и коротких, широких и узких, больших и маленьких), по-разному расположенных и занимающих разную площадь. Детей побуждают искать способы, как удобнее и быстрее можно сосчитать предметы в зависимости от характера их расположения.

У детей подготовительной к школе группы закрепляют знания о составе из единиц чисел первого пятка, они изучают состав из единиц чисел второго пятка, учатся устанавливать отношение между единицей и числом (6 это 1, 1, 1, 1, 1 и еще 1). Используют приемы: составление группы из разных предметов или игрушек; составление группы из однородных предметов, отличающихся качественными признаками; составление группы из картинок, на которых изображены разные предметы, объединенные родовым понятием (1 стул, 1 табуретка, 1 кресло, 1 секретер, 1 шкаф, 1 буфет — всего 6 предметов мебели).

В работе с детьми 6−7 лет используют и новые приемы: зарисовка определенного числа разных игрушек или геометрических фигур. («Я нарисовал всего 5 фигур: 1 круг, 1 фигуру овальной формы, 1 квадрат, 1 прямоугольник, 1 треугольник».) Распределение предметов по группам по одному из признаков, выделение каждой группы как единицы счета и определение общего количества групп. («Всего 4 группы флажков: 1 группа голубых флажков, еще 1 — розовых, еще 1 — желтых и еще 1 — синих».) Рассказывая каждый раз о том, сколько каких предметов и как они расположены, дети убеждаются, что количество предметов не зависит от места, которое они занимают, от их размеров и других качественных признаков.

От сравнения численностей 2 групп предметов, отличающихся каким-либо одним признаком, например размером, переходят к сравнению численностей групп предметов, отличающихся 2, 3 признаками, например размером, формой, расположением и т. д. Дети упражняются в последовательном выделении признаков предметов («Что это? Для чего нужно? Какой формы? Какого размера? Какого цвета? Сколько?»), в сравнении предметов и объединении их в группы на основе одного из выделенных признаков, в образовании групп. В результате у детей развивается способность к наблюдению, четкость мышления, смекалка. Они учатся выделять признаки, общие для всей группы предметов или лишь для части предметов данной группы, т. е. выделять подгруппы предметов по тому или иному признаку, устанавливать количественные соотношения между ними. Например: «Сколько всего игрушек? Сколько матрешек? Сколько машин? Сколько деревянных игрушек? Сколько металлических? Сколько больших игрушек? Сколько маленьких?». В заключение воспитатель предлагает придумать вопросы со словом сколько, основываясь на умении выделять признаки объектов и объединять их по общему для данной подгруппы или группы в целом признаку.

Сравнивая совокупности предметов, используют приемы сопоставления совокупностей предметов (выявляя отношения равенства и неравенства), дети осваивают способы практического сопоставления их элементов: наложение, приложение, раскладывание предметов 2 совокупностей парами, использование эквивалентов для сравнения 2 совокупностей, наконец, соединение предметов 2 совокупностей стрелочками. Например, педагог рисует на доске 6 кружков, а справа — 5 овалов и спрашивает: «Каких фигур больше (меньше) и почему? Как проверить? А если не считать?» Кому-либо из детей предлагает каждый кружок соединить стрелочкой с овалом. Выясняет, что 1 кружок оказался лишним, значит, их больше, чем других фигур, 1 овала не хватило, значит, их меньше, чем кружков. «Что надо сделать, чтобы фигур стало поровну?» и т. д. Детям предлагают самим нарисовать указанное число фигур 2 видов и разными способами сравнить их количество. Широко используют приемы, позволяющие подчеркнуть значение способов практического сопоставления элементов совокупностей для выявления количественных отношений. Например, воспитатель ставит 7 елочек. Дети их считают. Педагог предлагает им закрыть глаза. Под каждой елочкой ставит 1 грибок, а затем просит детей открыть глаза и, не считая грибки, сказать, сколько их. Ребята объясняют, как они догадались, что грибков 7. Позднее, когда средством установления количественных отношений («поровну», «больше», «меньше») все более становится счет и сравнение чисел, способы практического сопоставления используют как средство проверки, доказательства установленных отношений. Дети должны понять, что любых предметов может быть поровну: и по 3, и по 4, и по 5, и по 6. Полезны упражнения, требующие опосредствованного уравнивания числа элементов 2−3 совокупностей, когда детям предлагают сразу принести недостающее количество предметов, например, столько флажков и барабанов, чтобы всем пионерам хватило, столько лент, чтобы можно, было завязать банты всем мишкам. Для усвоения количественных отношений также используют упражнения и в нарушении равенства, например: «Сделай так, чтобы треугольников стало больше, чем квадратов. Докажи, что их стало больше. Что нужно сделать, чтобы кукол стало меньше, чем мишек? Сколько их будет? Почему?»

Изучение количественных отношений, определение большего и меньшего числа сочетают с тренировкой в счете с участием различных анализаторов: в счете звуков, движений, в счете предметов путем ощупывания. Упражнения по-разному комбинируют. Например, дети отсчитывают столько же игрушек, сколько звуков они услышали, находят карточку, на которой столько же кружков, сколько раз они подняли руки, или приседают столько раз, сколько кружков на карточке. Они считают на ощупь пуговицы, нашитые на карточку, и столько же раз хлопают в ладоши или на 1 раз больше (меньше). Например: «Отгадайте, сколько пуговиц на карточке у Сережи, если он хлопнул в ладоши на 1 раз больше (меньше). Сосчитайте, сколько флажков. Подумайте, сколько раз надо поднять руку, чтобы движений сделать на 1 больше (меньше), чем стоит флажков». Упражнения в установлении равенства и неравенства численностей множеств с включением разных анализаторов имеют место почти на каждом занятии.

В подготовке детей к деятельности вычисления большое значение имеет развитие памяти на числа. Воспитатель размещает на столе несколько групп предметов, по очереди вызывает кого-либо из детей сосчитать предметы той или иной группы, предлагает запомнить число предметов. Затем закрывает все салфеткой и проверяет, запомнил ли каждый, сколько было тех или иных предметов. Можно не вызывать персонально кого-либо из детей к столу, а предложить всем сосчитать игрушки про себя постепенно усложняя задания.

Дальнейшему развитию понятия о числе служат упражнения в делении предметов на равные части. Дети учатся видеть части в целом предмете, выявляют отношение целого и части. Делению предметов на равные части отводят б-7 (занятий, а затем до конца года к этому периодически возвращаются.

На первом занятии создают ситуации, при которых возникает необходимость разделить предмет на 2 равные части, например, разделить угощение между 2 куклами или 2 детьми (гостями), помочь 2 жадным медвежатам разделить сыр и т. п. Воспитатель показывает, как надо делить предметы на 2 равные части, т. е. пополам, подчеркивает, что он точно складывает и разрезает предмет посередине, потом сравнивает полученные части, накладывая одну на другую или прикладывая одну к другой. Дети считают части, убеждаются, что они равные. Воспитатель говорит, что любую из 2 равных частей обычно называют половиной. Следующий предмет воспитатель намеренно делит на 2 неравные части и спрашивает: «Можно ли такую часть назвать половиной? Почему нет?» Дети видят, что предметы могут быть разделены как на равные, так и на неравные части. Половиной 1 из 2 частей можно назвать лишь тогда, когда части равны. Постепенно дети убеждаются в том, как важно точно складывать, разрезать предметы, чтобы получились равные части. Выполнив действие, они проверяют (наложением и приложением), равные ли получились части, считают их и, соединив вместе, получают целый предмет, обводят его контур и части рукой, сравнивают размер целого и части.

На втором занятии воспитатель расширяет круг предметов, которые дети делят пополам. Можно использовать крупу, воду. Их распределяют поровну в 2 прозрачных стакана одинаковых размеров. На третьем занятии показывают способы деления предметов на 4 равные части, т. е. пополам и еще раз пополам. Устанавливают отношения между целым и частью: часть меньше целого, целое больше части. Если в подготовительную к школе группу поступило много новых детей целесообразно начать с деления предметов на части путем складывания. Дети получают по 2 предмета одинаковых размеров, в чем они убеждаются, накладывая 1 предмет на другой. Они делят 1 предмет на 2 равные части, другой — на 4. Соединив части вместе, они получают целый предмет, пересчитывают части, показывают 1 из 2 частей, 2 из 2 частей, соответственно 1 (2, 3, 4) из 4 равных частей. Сравнивают размер 1 части и целого. Для обобщения знаний можно использовать схемы деления того или иного предмета на равные части (яблока, круга, квадрата и пр.). Рассматривая с детьми схему, воспитатель спрашивает: «На сколько равных частей сначала разделили яблоко? Сколько получилось таких частей? На сколько равных частей потом разделили яблоко? Сколько получилось частей? Что больше и что меньше: половина или целое яблоко? 2 половины или целое яблоко? 1 из 4 частей (¼) или половина (½)?» и т. д.

На последующих занятиях проводят упражнения в делении геометрических фигур на 2, 4, 8 частей и в составлении целых фигур из частей, например: «Как надо сложить и разрезать квадрат, чтобы получились 2 равных прямоугольника?

В подготовительной к школе группе порядковому счету должно быть уделено большое внимание. У детей расширяют представление о том, в каких случаях люди пользуются порядковым счетом, когда они прибегают к нумерации и с какой целью (нумеруют дома, квартиры, детские сады, места в театре, в кино, транспорте и т. п.).

Для лучшего осознания детьми значения порядкового счета его постоянно сопоставляют с количественным счетом, чередуя вопросы сколько? какой по счету? Продолжают учить детей различать вопросы какой по счету? который? какой? Последний направлен на выделение качественных признаков объектов. Какие задачи решают дети в процессе упражнений в порядковом счёте? Определяют место предмета среди других. («Сколько всего флажков? Какой по порядку синий флажок? Какого цвета восьмой флажок?») Находят предмет по его порядковому номеру, при этом выполняют различные задания. («На место четвертой матрешки поставьте неваляшку. Замените шестой синий кружок красным. Поверните третий квадрат другой стороной вверх. Дайте флажки второму, четвертому и шестому мальчикам».) Располагают предметы в указанном порядке и одновременно определяют пространственные отношения между ними: впереди, после, за, между: «Расставьте игрушки так, чтобы первой была матрешка, второй — неваляшка, третьим — мишка. Поставьте куклу между вторым и третьим номерами…» Задают вопросы: «Какая по счету кукла? А мишка? Сколько всего игрушек? Кто стоит перед неваляшкой? Которая по счету неваляшка?» Целесообразны игры с мячом. Дети выстраиваются шеренгой и пересчитываются. Тот, кому ведущий бросил мяч, называет свой порядковый номер. Порядковый номер может называть ведущий. Например, он говорит: «Шестой!» Ребенок, стоящий на шестом месте, делает шаг вперед, произносит: «Я шестой!» — и ловит мяч.

Детей 6−7 лет знакомят не только со связями, но и с отношениями между смежными числами (на сколько одно из смежных чисел больше или меньше другого).

От упражнений в сравнении численностей множеств предметов, выраженных смежными числами, они переходят к сравнению чисел без опоры на наглядный материал. Такой переход намечается с первых занятий. Закрепляя знания об образовании чисел второго пятка, воспитатель спрашивает детей: «Какое число получится, если к 6 добавить 1?» Или: «Как получить 6 предметов, если есть 5 предметов?» и т. п.

Позднее дети сравнивают группы предметов разных размеров, занимающие больше или меньше места. Например, детям предлагают отсчитать, положить игрушки, хлопнуть в ладоши, поднять руку, подпрыгнуть и т. п. на 1 раз больше или меньше, чем поставлено игрушек, чем нарисовано кружков на карточке или чем-то число, которое называет воспитатель: «Хлопни в ладоши на 1 раз больше (меньше), чем у меня здесь матрешек. Сколько раз ты хлопнул? Почему?» Другой вариант: «Сколько кружков на карточке? Сколько ты поставишь елочек, чтобы их было на 1 больше (меньше)? Почему?» Более сложное задание: «На верхнюю полоску карточки положите на 1 кружок больше, чем у меня. На нижнюю полоску положите на 1 кружок меньше, чем на верхней полоске. Сколько кружков на моей карточке? Сколько кружков у вас на нижней полоске? Почему у вас на нижней полоске столько же кружков, сколько у меня?». Каждый раз дети объясняют, как было получено то или иное число, сравнивают смежные числа, устанавливают разностные отношения между ними. («Надо поставить 7 елочек, потому что у вас на карточке 6 кружков, а вы просили поставить на 1 елочку больше, чем кружков. 7 больше 6 на 1, а 6 меньше 7 на 1».) В ответах детей обязательно должен находить отражение взаимно-обратный характер отношений между смежными числами. В итоге данных упражнений можно перейти к сравнению чисел и без опоры на наглядный материал. («Назови число, большее 7 на 1. На сколько 8 больше 7? Какое число меньше 7 на 1? Объясни, почему назвал 6».) Упражнениям на разностное сравнение чисел отводят не менее 2- 3 занятий. В дальнейшем к этому вопросу следует периодически возвращаться до конца учебного года.

Закрепить знания детей о порядке следования чисел позволяют упражнения в увеличении и уменьшении числа на 1. Воспитатель ставит 1 предмет (флажок, матрешку), спрашивает: «Какое число получится, если я добавлю 1 предмет? Почему?». В интересной форме закрепить знания прямой и обратной последовательности чисел позволяют упражнения с лесенкой. Дети шагают по ступенькам лесенки то вверх, то вниз, считая либо количество ступенек, которые они уже прошли, либо то число ступенек, которое им еще осталось пройти, т. е. ведут счет то в прямом, то в обратном порядке. Для упражнения детей в прямом и обратном счете используют числовую лесенку. Упражнения с числовой лесенкой позволяют закрепить знания о связях и отношениях не только между смежными числами, но и между остальными числами в ряду.

Проводят ряд упражнений с числовыми фигурами. Например, вдоль доски в ряд педагог расставляет числовые фигуры с количеством кружков от 1 до 10; 2 фигуры он помещает не на свои места, детям предлагает определить, какие фигуры «заблудились». Ряд числовых фигур может быть выстроен как в прямом, так и в обратном порядке.

Надо следить за тем, чтобы дети обязательно называли оба сравниваемых числа. Это важное условие осознания того, что каждое число (кроме 1) больше одного, но меньше другого, смежного с ним, т. е. понимания относительности значения каждого числа. Постепенно дети усваивают, что выражение «до» требует назвать число меньше данного, а выражение «после» — больше данного. В плане подготовки детей к деятельности вычисления необходимо познакомить их с составом числа из 2 меньших чисел. Детям показывают все варианты состава чисел в пределах пятка: число 2 — это 1 и 1, 3 — это 2 и 1, 1 и 2, 4 — это 3 и 1, 2 и 2, 1 и 3, 5 — это 4 и 1, 3 и 2, 2 и 3, 1 и 4. Воспитатель выкладывает на наборном полотне в ряд 3 кружка одного цвета, просит детей сказать, сколько всего кружков, и указывает, что в данном случае группа составлена из 3 кружков красного цвета: 1, 1 и еще 1. «Группу из 3 кружков можно составить и по-другому», — говорит воспитатель и поворачивает третий кружок обратной стороной. «Как теперь составлена группа?» — спрашивает педагог. Дети отвечают, что группа составлена из 2 кружков красного цвета и 1 кружка синего цвета, а всего — из 3 разноцветных кружков. Воспитатель делает вывод, что число 3 можно составить из чисел 2 и 1, а 2 и 1 вместе составляют 3. Затем поворачивает обратной стороной второй кружок, и дети рассказывают, что теперь группа составлена из 1 красного и 2 синих кружков. Обобщая в заключение ответы детей, воспитатель подчеркивает, что число 3 можно составить по-разному: из 2 и 1, из 1 и 2. Данное упражнение наглядно выявляет состав числа, отношение целого и части, поэтому с него целесообразно начинать знакомство детей с составом чисел.

Показать весь текст
Заполнить форму текущей работой