Погонная индуктивность витой пары на сверхвысоких частотах
Для вычисления интегралов (3) и (4) необходимы специальные программы, разработка которых требует дополнительных затрат сил и времени. В то же время можно предложить способ приближенного расчета погонной индуктивности, аналогичный способу, предложенному в. При расчете погонной индуктивности витой пары на весьма высоких частотах тоже можно использовать принцип средних геометрических расстояний, и… Читать ещё >
Погонная индуктивность витой пары на сверхвысоких частотах (реферат, курсовая, диплом, контрольная)
Известно, что сверхвысокочастотное электромагнитное поле практически не проникает внутрь проводников, и электрический ток распределяется в весьма тонком слое по их поверхности. Толщина этого, так называемого, скин-слоя определяется соотношением [1].
.
где f — частота (Гц), 0=4107 (Гн/м) — магнитная постоянная, (См/м) удельная электропроводность провода. Например, на частоте f=3 ГГц в медных проводниках с удельной проводимостью =5.88 107 См/м толщина скин-слоя составляет всего 2.9 мкм, что, например, в 170 раз меньше радиуса провода миллиметрового диаметра.
Характер распределения тока в проводниках длинной линии определяется не только скин-эффектом, но и эффектом близости проводников. Поэтому распределение тока по поверхности проводников длинной линии (и витой пары) зависит от конфигурации ее поперечного сечения. Поверхностная плотность тока равна касательной к поверхности составляющей напряженности магнитного поля, т.к. определяется соотношением.
.
где орт внешней нормали к поверхности проводника, как показано на рис. 1.
Итак, чтобы найти поверхностную плотность тока в любой точке поверхности проводника, надо знать в этой точке. Воспользуемся первым типом соответствия электростатического и магнитного полей [2], при котором картина магнитных силовых линий рассматриваемой системы совпадает с картиной ее электростатических эквипотенциалей, а картина магнитных эквипотенциалей совпадает с картиной электрических силовых линий. Исходя из этого соответствия, можно внешнее, по отношению к проводам, магнитное поле двухпроводной линии представить как магнитное поле двух линейных токов, смещенных от оси проводников [3] на расстояние (см. рис. 1).
Напряженность магнитного поля в произвольной точке m (R,) поверхности правого проводника линии можно записать в виде суперпозиции полей двух бесконечно длинных нитей тока I, т. е.
Где.
.
Рис. 1 К расчету магнитного поля двухпроводной линии
Следовательно,.
Где.
.
Результаты расчета распределения продольного поверхностного тока по верхней полуокружности правого проводника (см. рис. 1) представлены на рис. 2. Картина распределения тока по нижней полуокружности симметрична. Абсолютные значения на рис. 2 приведены для R=0.5мм=0.0005м и силы тока в линии I=1 А. Интеграл от по периметру провода при любом R/a дает один и тот же результат — силу тока в проводе (в нашем случае I=1А).
Погонная индуктивность двухпроводной линии на СВЧ. Определение погонной индуктивности при неравномерном распределении тока удается произвести далеко не всегда. Как правило, это можно сделать при ярко выраженном скин-эффекте, когда ток распределен строго по поверхности проводников, а его распределение известно, например, оно определяется эффектом близости проводов кругового сечения, как в нашем случае.
Рассмотрим для начала бесконечно длинную двухпроводную линию. Выделим две нити тока di и di, как показано на рис. 3. Векторный потенциал, создаваемый током di в любой точке нити di равен.
.
а потенциал, создаваемый всеми поверхностными токами на данной нити тока, соответственно.
.
Рис. 3 К расчету бесконечно длинной двухпроводной линии
проводник ток напряженность магнитный Потенциал A (2) обеспечивает потокосцепление только с di нитью тока. Чтобы определить полное потокосцепление нитей di и di на участке l линии, функцию необходимо умножить на 2l, т.к. нить di имеет прямой и обратный участок. Полученный результат необходимо проинтегрировать по всем нитям тока di. Наконец, чтобы найти погонную индуктивность линии, полученную выше функцию надо разделить на длину участка l и квадрат силы тока в линии и вычислить интеграл.
. (1).
Здесь.
Сравним расчетные данные, полученные с помощью справочной формулы [4]:
(2).
для двухпроводной линии при весьма высокой частоте с результатом численного интегрирования (1). Рис. 4 иллюстрирует почти идеальное совпадение результатов (рис. 4, а): ошибка не превышает 0.07% в диапазоне изменения 1.05a/R4/0. Численное интегрирование проведено в среде MathCAD 2001.
Рис. 4 Сравнение результатов расчета по справочной формуле с результатами численного интегрирования
Погонная индуктивность витой пары на СВЧ. Строго говоря, погонную индуктивность витой пары L1S можно определить, зная угол наклона жилы и параметры поперечного сечения пары a, R. Для этого необходимо вычислить интеграл.
(3).
в котором [5].
(4).
где h — шаг витой пары, а функция.
Здесь при вычислении взаимной индуктивности (4) двух выделенных нитей с целью увеличения точности результатов функцию интегрируем в пределах не одного, а двух шагов витой пары. Геометрия сечения пары плоскостью z=0 приведена на рис. 5.
При вычислении интегралов используются следующие обозначения [5]:
; ,.
; .
;
Рис. 5 К расчету взаимной индуктивности двух выделенных нитей
Для вычисления интегралов (3) и (4) необходимы специальные программы, разработка которых требует дополнительных затрат сил и времени. В то же время можно предложить способ приближенного расчета погонной индуктивности, аналогичный способу, предложенному в [6]. При расчете погонной индуктивности витой пары на весьма высоких частотах тоже можно использовать принцип средних геометрических расстояний, и, как показывают расчеты, результаты имеют хорошее совпадение при a/R3.0. При этом эквидистантные нити тока должны смещаться относительно геометрических осей проводников на расстояние.
.
а средним геометрическим расстоянием [4] поверхностно распределенных токов будет .
Сравним взаимные погонные индуктивности одинаковых эквидистантных пар нитей поверхностного тока в длинной линии Ml и в аналогичной витой паре Ms при малом угле наклона жилы (). Абсолютные значения Ms приведены на рис. 6, а, а их относительное отличие от Ml (%) на рис. 6, б.
Рис. 6 Результаты расчета взаимных погонных индуктивностей (а); их относительное отличие от Ml (%) (б)
Итак, для эквидистантных нитей тока Ms практически идеально совпадает с Ml при любых значениях a/R (ошибка не превышает 0.06% и объясняется, скорее всего, погрешностью численного интегрирования). Такой результат позволяет предложить следующий алгоритм приближенного расчета погонной индуктивности витой пары при любом угле наклона жилы:
.
где Lc — справочное значение погонной индуктивности прямой длинной линии (3) при весьма высокой частоте [4], а.
корректирующая функция. Расчет корректирующей функции для эквидистантных нитей проведен в среде MathCAD 2001, а его результаты представлены в табл. 1 и иллюстрируются кривыми рис. 7.
Таблица № 1.
Корректирующая функция f (a/R,).
a/R. | ||||||||||
1.1. | 1.2. | 1.4. | 1.6. | 1.8. | 2.0. | 2.5. | 3.0. | 3.5. | ||
0.999 455. | 0.999 547. | 0.999 669. | 0.999 705. | 0.999 788. | 0.999 819. | 0.999 876. | 0.999 909. | 0.999 933. | ||
1.1 831. | 1.2 222. | 1.2 648. | 1.2 848. | 1.2 845. | 1.2 989. | 1.3 002. | 1.2 971. | 1.2 932. | ||
1.6 136. | 1.6 959. | 1.7 930. | 1.8 218. | 1.8 391. | 1.8 454. | 1.8 410. | 1.8 281. | 1.8 142. | ||
1.11 850. | 1.13 239. | 1.14 700. | 1.15 351. | 1.15 633. | 1.15 731. | 1.15 636. | 1.15 408. | 1.15 157. | ||
1.18 760. | 1.20 770. | 1.22 938. | 1.23 916. | 1.24 353. | 1.24 518. | 1.24 425. | 1.24 098. | 1.23 739. | ||
1.26 580. | 1.29 358. | 1.32 342. | 1.33 723. | 1.34 355. | 1.34 627. | 1.34 580. | 1.34 190. | 1.33 735. | ||
1.35 254. | 1.38 852. | 1.42 778. | 1.44 649. | 1.45 539. | 1.45 911. | 1.45 999. | 1.45 578. | 1.45 056. | ||
1.44 680. | 1.49 186. | 1.54 174. | 1.56 590. | 1.57 808. | 1.58 385. | 1.58 620. | 1.58 211. | 1.57 643. | ||
1.54 811. | 1.60 312. | 1.66 472. | 1.69 527. | 1.71 113. | 1.71 930. | 1.72 414. | 1.72 065. | 1.71 484. | ||
1.65 817. | 1.72 196. | 1.79 858. | 1.83 438. | 1.85 465. | 1.86 554. | 1.87 383. | 1.87 148. | 1.86 590. | ||
Рис. 7 Корректирующая функция для эквидистантных нитей
Выводы
- 1. Для витой пары любого поперечного сечения погонная индуктивность больше погонной индуктивности прямой линии такого же поперечного размера и при заданном a/R отличается тем больше, чем больше угол наклона жилы .
- 2. Это отличие тем больше, чем больше a/R: например, при =20о витая пара с a/R=3.0 имеет погонную индуктивность на 8.7% больше чем соответствующая прямая линия, а при a/R=1.1 — только на 6.6%.
Результаты исследований изложенные в данной статье получены при финансовой поддержке Минобрнауки РФ в рамках реализации проекта «Создание высокотехнологичного производства по изготовлению информационно-телекоммуникационных комплексов спутниковой навигации ГЛОНАСС/GPS/Galileo» по постановлению правительства № 218 от 09.04.2010 г.
- 1. Рамо С., Уиннери Дж. Поля и волны в современной радиотехнике. [Текст] / Пер. с англ. // Под ред. Ю. Б. Кобзева. М: Мир. 1960 г.
- 2. Бессонов Л. А. Теоретические основы электротехники. Электромагнитное поле. [Текст] / М: Высшая школа. 1978 г.
- 3. Гольдштейн Л. Д., Зернов Н. В. Электромагнитные поля и волны. [Текст] / М: «Сов. радио». 1971 г.
- 4. Калантаров П. Л., Цейтлин Л. А. Расчет индуктивностей. [Текст] / Справочная книга. Л: Энергия. 1970 г. 416 с.