ΠΠ°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΈ ΠΈ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΡ Π½Π° ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π΅ Π΄Π»Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ Escherichia coli Π±ΠΈΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ
ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΡ «Disruptor» ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π’4 Ρ ΡΠ΅Π»ΡΡ Π·Π°Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ (Π½Π° 99,9%) ΠΈ"Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ E. coli Π. ΠΡΠ΅Π΄Π΅Π» ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Ρ Π½Π΅ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΌ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠΌ ΡΠΎΡΡΠ°Π²ΠΈΠ» 500 ΠΠΠ/ΠΌΠ», ΠΏΡΠΈ> ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Ρ Π’4-ΡΠ°Π³ΠΎΠΌ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΌ Π½Π° Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΠ΅, — 730 ΠΠΠ/ΠΌΠ». ΠΠΎΠΊΠ°Π·Π°Π½Π° Π²ΡΡΠΎΠΊΠ°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
ΠΠ°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΈ ΠΈ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΡ Π½Π° ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π΅ Π΄Π»Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ Escherichia coli Π±ΠΈΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠ ΠΠΠ―Π’Π«Π ΠΠΠΠΠΠΠ§ΠΠΠΠ―
- ΠΠΠΠΠ ΠΠΠ’ΠΠ ΠΠ’Π£Π Π«
- 1. ΠΠ°ΡΠΎΠ³Π΅Π½Π½ΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΈΡ
Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ
- 1. 1. ΠΠ°ΡΠΎΠ³Π΅Π½Ρ. Π£ΡΠ΅ΡΠ± ΠΎΡ ΠΏΠ°ΡΠΎΠ³Π΅Π½ΠΎΠ²
- 1. 2. Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ
- 1. 3. ΠΡΡΡΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ
- 1. 4. ΠΠΈΠ΄ Escherichia coli. ΠΠ΅ΡΠ΅ΠΊΡΠΈΡ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ E. col
- 2. ΠΠ°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΈ
- 2. 1. ΠΠ±ΡΠΈΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π°Ρ
- 2. 2. ΠΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ Π»ΠΈΠ·ΠΎΠ³Π΅Π½Π½ΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΈ
- 2. 3. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ² Π΄Π»Ρ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ
- 2. 4. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ² ΠΊΠ°ΠΊ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠΎΠ²
- 3. ΠΠΈΠΎΡΠ΅Π½ΡΠΎΡΡ
- 3. 1. ΠΠ±ΡΠΈΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ
- 3. 2. ΠΠΈΠΎΡΠ΅Π½ΡΠΎΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΡΠΊΠ°Π½Π΅ΠΉ
- ΠΠΠ‘ΠΠΠ ΠΠΠΠΠ’ΠΠΠ¬ΠΠΠ― Π§ΠΠ‘Π’
- 1. ΠΠ°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΈ ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°ΠΌΠΌΡ
- 2. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ²
- 2. 1. ΠΠ·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΊΠ»Π΅ΡΠΎΠΊ Π. coli Π Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π°ΠΌΠΈ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅
- 2. 2. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π³ΠΎΠ²
- 2. 3. ΠΡΠ΅Π½ΠΊΠ° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌΠΈ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠ°ΠΌΠΈ
- 2. 4. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π³ΠΎΠ²
- 2. 5. ΠΠ΅ΡΠ΅ΠΊΡΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli Π Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΠΎΠ² «Disruptor» ΠΈ ΡΠ°Π³Π° Π’4 Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅
- 2. 6. ΠΠ½Π°Π»ΠΈΠ· Π΄Π°Π½Π½ΡΡ
- 2. 7. ΠΠ·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ ΠΈ Π½Π΅ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ ΡΡΠ°ΠΌΠΌΠΎΠ² E. coli Ρ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ IleLa ΠΊΠ»Π΅ΡΠΊΠ°ΠΌΠΈ
- Π ΠΠΠ£ΠΠ¬Π’ΠΠ’Π« Π ΠΠΠ‘Π£ΠΠΠΠΠΠ.57 '
- 1. ΠΠ·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ E. coli Π Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠΌ Π’4 ΠΈ Π΅Π³ΠΎ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΠΌΠΈ Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ Π’4-ΠΠ‘Π‘Π ΠΈ T4-CBD Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅
- 1. 1. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π΄Π»Ρ ΠΏΡΡΠΌΠΎΠΉ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli Π Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π’4 ΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Π±ΠΈΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΠΠ’Π€-ΠΌΠ΅ΡΡΠΈΠΈ
- 1. 2. ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΡΡΠ° ΡΠ²Π΅ΡΡΡΠΈΡ ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli Π ΠΏΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ Π΄ΠΈΠΊΠΈΠΌ Π’4 ΡΠ°Π³ΠΎΠΌ, Π±ΠΈΠΎΡΠΈΠ½ΠΈΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ Π’4-ΠΠ‘Π‘Π ΠΈ ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·ΠΎΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠΌ T4-CBD ΡΠ°Π³Π°ΠΌΠΈ
- 1. 3. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ·ΠΈΡΠ° ΠΊΠ»Π΅ΡΠΎΠΊ E. coli Π ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΡΠ°Π³Π° Π΄ΠΈΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Π’4 ΠΈ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ ΡΠ°Π³ΠΎΠ² Π’4-ΠΠ‘Π‘Π ΠΈ T4-CBD ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄Π° Π±ΠΈΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΠΠ’Π€-ΠΌΠ΅ΡΡΠΈΠΈ
- 2. ΠΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ°Π³ΠΎΠ². ΠΡ
ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π΄Π»Ρ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ E. col
- 2. 1. ΠΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ² Π½Π° ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΠΈ ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Π½ΡΡ ΡΠ°ΡΡΠΈΡΠ°Ρ
- 2. 2. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠΎΠ²
- 3. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΠΎΠ² «Disruptor» ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π’4 Π΄Π»Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ E. col
- 3. 1. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΠΎΠ² ΠΈ ΡΠ°Π³Π° Π’4 ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΅Π³ΠΎ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ
- 3. 2. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΠΈΡΡΠ΅ΠΌΡ «Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ Π’4 + Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΡ» Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ²Π΅ΡΡΡΠΈΡ ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli Π (lux)
- 3. 3. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΠΎΠ² Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠΌ Π’
- 3. 4. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ² Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠΎΠ² ΡΠ°Π·Π½ΡΡ ΡΠΈΠΏΠΎΠ² ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ²Π΅ΡΡΡΠΈΡ ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli Π (lux)
- 4. ΠΠ·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ
ΠΈ Π½Π΅ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ
Π±ΠΈΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΡΡ
ΡΡΠ°ΠΌΠΌΠΎΠ² E. coli Ρ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ HeLa ΠΊΠ»Π΅ΡΠΊΠ°ΠΌΠΈ
- 4. 1. ΠΠΈΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΡ ΡΡΠ°ΠΌΠΌΠΎΠ² Π coli (lux)
- 4. 2. Π ΠΎΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ΅Π΄Π°Ρ
- 4. 3. ΠΠ΄Π³Π΅Π·ΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π. coli ΠΊ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΠΎΠΉ HeLa ΡΠΊΠ°Π½ΠΈ
- ΠΠ«ΠΠΠΠ«
Π²ΡΠ²ΠΎΠ΄Ρ l
1. ΠΠ·ΡΡΠ΅Π½ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ E. coli Π Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅ Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠΌ Π’4 ΠΈ Π΅Π³ΠΎ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΠΌΠΈ Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ: ΡΠ°Π³ΠΎΠΌ Π’4, ΡΠ»ΠΈΡΡΠΌ Ρ Π±ΠΈΠΎΡΠΈΠ½ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠΌ Π±Π΅Π»ΠΊΠΎΠΌ (Π’4-ΠΠ‘Π‘Π ) ΠΈ ΡΠ°Π³ΠΎΠΌ Π’4, ΡΠ»ΠΈΡΡΠΌ Ρ Π΄ΠΎΠΌΠ΅Π½ΠΎΠΌ ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·ΠΎΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠ΅Π³ΠΎ Π±Π΅Π»ΠΊΠ° (Π’4-CBD). ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ Π’4-ΡΠ°Π³ΠΎΠ² Π½ΠΈΠΆΠ΅, ΡΠ΅ΠΌ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π’4.
2. ΠΠΎΠ»ΡΡΠ΅Π½Ρ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΡ ΠΏΡΡΡΠΌ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ°Π³Π°. Π’4-ΠΠ‘Π‘Π Π½Π° ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΡΡΡΠ΅ΠΏΡΠ°Π²ΠΈΠ΄ΠΈΠ½ΠΎΠ²ΡΡ ΡΠ°ΡΡΠΈΡΠ°Ρ , ΠΈ ΡΠ°Π³Π° T4-CBD Π½Π°! ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Π½ΡΡ ΡΠ°ΡΡΠΈΡΠ°Ρ . ΠΠΎΠΊΠ°Π·Π°Π½Π° Π²ΡΡΠΎΠΊΠ°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ Π’4-ΠΠ‘Π‘Π ΠΈ T4-CBD ΡΠ°Π³ΠΎΠ² fΡ Π½ΠΎΡΠΈΡΠ΅Π»ΡΠΌΠΈ, ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° ΠΏΡΠΎΡΠ½ΠΎΡΡΡ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ.
3. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠΉ Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠ² ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΠΌΠΈ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠ°ΠΌΠΈ ΠΏΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π’4. ΠΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ ΡΠ°Π³ΠΎΠ² ΡΠ½ΠΈΠΆΠ΅Π½Π° ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ°Π³Π°ΠΌΠΈ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅.
4. ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΡ «Disruptor» ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π±ΠΈΠΎΡΠΎΡΠ±Π΅Π½ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π’4 Ρ ΡΠ΅Π»ΡΡ Π·Π°Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ (Π½Π° 99,9%) ΠΈ"Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ E. coli Π. ΠΡΠ΅Π΄Π΅Π» ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Ρ Π½Π΅ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΌ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³ΠΎΠΌ ΡΠΎΡΡΠ°Π²ΠΈΠ» 500 ΠΠΠ/ΠΌΠ», ΠΏΡΠΈ> ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Ρ Π’4-ΡΠ°Π³ΠΎΠΌ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΌ Π½Π° Π½Π°Π½ΠΎΡΠΈΠ»ΡΡΡΠ΅, — 730 ΠΠΠ/ΠΌΠ». ΠΠΎΠΊΠ°Π·Π°Π½Π° Π²ΡΡΠΎΠΊΠ°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli Π² ΡΠΌΠ΅ΡΠΈ Ρ ΠΊΡΠ»ΡΡΡΡΠΎΠΉ Salmonella Typhimurium.
5. ΠΠ·ΡΡΠ΅Π½ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΡ HeLa ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠΎ ΡΠ²Π΅ΡΡΡΠΈΠΌΠΈΡΡ ΠΊΠ»Π΅ΡΠΊΠ°ΠΌΠΈ Π. coli, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΌΠΈ ΠΏΠΎΠ»Π½ΡΠΉ IwcCDABE ΠΎΠΏΠ΅ΡΠΎΠ½ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π»ΡΡΠΈΡΠ΅ΡΠ°Π·Ρ (15 ΡΡΠ°ΠΌΠΌΠΎΠ², ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ 5 — Π½Π΅ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΠ΅ ΡΡΠ°ΠΌΠΌΡ Π. coli, 10 — ΡΠ½ΡΠ΅ΡΠΎΠ³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°ΠΌΠΌΡ (ΠΠΠΠ‘), ΠΈΠ· Π½ΠΈΡ 5 — ΡΡΠ°ΠΌΠΌΡ Π. coli 0157: Π7 ΠΈ 5 — ΡΡΠ°ΠΌΠΌΡ Π. coli Π΄ΡΡΠ³ΠΈΡ 0: Π ΡΠ΅ΡΠΎΡΠΈΠΏΠΎΠ²). ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ HeLa ΠΊΠ»Π΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΡΡ ΡΠΎΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°ΠΌΠΌΠΎΠ² Π coli, ΡΡΠΎ ΠΌΠΎΠΆΠ΅Ρ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ! Π½Π° Π²Π°ΠΆΠ½ΡΡ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΡ ΡΠΎΠ»Ρ HeLa ΠΊΠ»Π΅ΡΠΎΠΊ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΏΠΈΡΠ΅Π»ΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΌΠΈ.
6. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π°Π΄Π³Π΅Π·ΠΈΠ²Π½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli ΠΊ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΠΌ IleLa ΠΊΠ»Π΅ΡΠΊΠ°ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ Π°Π΄Π³Π΅Π·ΠΈΠ²Π½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ E. coli ΠΎΡ ΠΈΡ Π²ΠΈΡΡΠ»Π΅Π½ΡΠ½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ². Π₯Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π coli Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ HeLa ΠΊΠ»Π΅ΡΠΎΠΊ Π±ΡΠ» ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅Π½ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΡΠ°ΠΌΠΌΠ°.
1. Squirrell D.J., Price R.L., Murphy M.J. Rapid and specific detection of bacterial using bioluminescence. // Analytica Chimica Acta. 2002. V. 457. P. 109−114.
2. Gracias K.S., Mckillip J.L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. II Can J Microbiol. 2004. V. 50. P. 883−890.
3. Fung D.Y.C. Rapid methods and automation and Microbiology II Comprehensive reviews in food scince and food safety. 2002. V. 1. P. 3−22.
4. Favrin S. J-, Jassim S.A., Griffiths M.W. Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enter itidis and Escherichia coli 0157.-H7 in food. Π Int J Food Microbiol. 2003. V. 85. P. 63−71.
5. Wu Y., Brovko L., Griffiths M.W. Influence of phage population on the phage-mediated bioluminescent' adenylate kinase (AK) assay for detection of bacteria. // Lett Appl Microbiol. 200 Π. V. 33. P. 311−315.
6. Blasco R., Murphy M.J., Sanders M.F., Squirrell D.J. Specific assays for bacteria using phage mediated release of adenylate kinase. IIJ Appl Microbiol. 1998. V. 84. P: 661−666.
7. Goodridge L., Chen J., Griffiths M. The use of a fluorescent bacteriophage assay for detection of Escherichia coli 0157: H7 in inoculated ground beef and raw milk. II Int J Food Microbiol. 1999. V. 47. P. 43−50.
8. Leiman P.G., Kanamaru S., Mesyanzhinov V.V., Arisaka F., Rossmann M.G. Structure and morphogenesis of bacteriophage T4. Π Cell Mol Life Sci. 2003. V. 60. P. 2356−2370.
9. Bennett A.R., Davids F.G.C., Vlahodimou S., Banks J.G., Betts R.P. The use of bacteriophage-based systems for the separation and concentration of Salmonella. II Journal of Applied Microbiology. 1997. V. 83. P. 259−265.
10. Sun W., Brovko L., Griffiths M. Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. II J Ind Microbiol Biotechnol. 2001. V. 27. P. 126−128.
11. Karim M.R., Rhodes E.R., Brinkman N., Wymer L., Fout G.S. New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. II Appl Environ Microbiol. 2009. V. 75. P. 2393−2399.
12. Tolba M., Brovko L.Y., Minikh O., Griffiths M.W. Engineering of bacteriophages displaying affinity tags on its head for biosensor applications. II in NSTI Nana tech 2008 conference. 2008. Boston, USA.
13. Finlay B.B., Cossart P. Exploitation of mammalian host cell functions by bacterial pathogens. II Science. 1997. V. 276. P. 718−725.
14. Pace J., Hayman M.J., Galan J.E. Signal transduction and invasion of epithelial cells by S. Typhimurium. II Cell. 1993. V. 72. P. 505−514.
15. Dehio C., Prevost M.C., Sansonetti P.J. Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c-src-mediated signalling pathway. IIEMBO J. 1995. V. 14. P. 2471−2482.
16. Nisan I., Wolff C., Hanski E., Rosenshine I. Interaction of enteropathogenic Escherichia coli with host epithelial cells. II Folia Microbiol (Praha). 1998. V. 43. P. 247−252.
17. Wadsworth S.J., Goldfine H. Listeria monocytogenes phospholipase C-dependent calcium signaling modulates bacterial entry into J774 macrophage-like cells. If Infect Immun. 1999. V. 67. P. 1770−1778.
18. Shin S., Hur G.H., Kim Y.B., Park K.J., Park Y.M., Lee W.S. Intracellular calcium antagonist protects cultured peritoneal macrophages against anthrax lethal toxin-induced cytotoxicity. II Cell Biol Toxicol. 2000. V. 16. P. 137−144.
19. Cdc. Food-related disease information from the CDC 2009. http://www.cdc.gov/ncidod/diseases/food/index.htm.
20. Anon. The European standard 12 824: 1997. Microbiology for food and animal feedings stuff Horizontal method for the detetion of Salmonella. II. 1998. British Standard Institution, London, UK.
21. Robert D., Hooper W., Greenwood M. Methods for examinasion of food for microorganisms pf public health significance. // Practical food microbiology. 1995. Public health laboratory service. London, UK.
22. The Compendium of Analytical Methods of Health Canada. // Health Canada and the Canadian Food Inspection Agency (CFIA) 2005.
23. Haddock S.H.D. Luminous Marine Organisms. II in Photoproteins in Bioanalysis. / Daunert S" Deo S.K., Editors. 2006. Wiley-VCH. Weinheim. P. 25−47.
24. Wilson Π’., Hastings J. W BIOLUMINESCENCE. II Annual Review of Cell and Developmental Biology. 1998. V. 14. P. 197−230.
25. Hastings J. W Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. //Journal of Molecular Evolution. 1983. V. 19. P 309−321.
26. Hastings J.W., Johnson C.H. Bioluminescence and chemiluminescence. Π in Methods' in Enzymology. / 2003. Academic Press. P. 75−104.
27. Harvey E.N. Review of Bioluminescence. II Annual Review of Biochemistry. 1941. V. 10. P.531−552.
28. Seliger HH., Mcelroy W.D. Spectral emission and quantum yield of firefly bioluminescence. //Arch Biochem Biophys. 1960. V. 88 P. 136−141.
29. Ando Y., Niwa K., Yamada N., Enomoto Π’., Irie Π’., Kubota H., Ohmiya Y., Akiyama H. Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission //Nat Photon. 2008. V. 2. P. 44−47
30. Π£Π³Π°ΡΠΎΠ²Π° H.H., Π€ΡΡΠ½Π΄ΠΆΡΠ½ Π. Π. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΠΠ’Π€-ΠΌΠ΅ΡΡΠΈΠΈ Π² Π±ΠΈΠΎΠ°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅Π»ΡΡ . // Π₯ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π€Π°ΠΊΡΠ»ΡΡΠ΅Ρ ΠΠΠ£. 2003. 52 Π‘.
31. Lundin A. Use of firefly luciferase in atp-related assays of biomass, enzymes, and metabolites. II in Methods in Enzymology. / 2000. Academic Press. P. 346−370.
32. Roda A., Pasini P., Mirasoli M., Michelini E., Guardigli M. Biotechnological applications of bioluminescence and chemiluminescence II Trends Biotechnol. 2004. V. 22. P. 295−303.
33. Viviani V.R., Ohmiya Y. Beetle Luciferases Colorful Lights on Biological Processes and Diseases. // in Photoproteins in Bioanalysis. / Daunert S., Deo S.K., Editors. 2006 Wiley-VCH. Weinheim. P. 49−63.
34. Greer Iii L.F., Szalay A A. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. II Luminescence. 2002. V. 17. P 43−74.
35. Griffiths M.W., Brovko L.Y. ATP bioluminescence in Detecting Pathogens in food. // ed Mcmeekin T.A. 2003. Cambridge, UK. CRC Woodhead Publishing.
36. Rees C.E.D., Loessner M.J. Chapter 9: Phage for the detection of pathogenic bacteria. // in Bacteriophages: biology and applications. / Kutter E., Sulakvelidze A., Editors. 2005. CRC Press. P. 267−284.
37. Sun W., Brovko L., Griffiths M. Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. // J Ind Microbiol Biotechnol. 2001. V. 27. P. 126−128.
38. Lee H.A., Wyatt G.M., Bramham S., Morgan M.R. Enzyme-linked immunosorbent assay Jor Salmonella Typhunurium in food: feasibility of 1-day Salmonella detection. // Appl Enviion Microbiol. 1990. V. 56. P. 1541−1546.
39. Wyatt G.M., Langley M.N., Lee H.A., Morgan M.R. Further studies on the feasibility of one-day Salmonella detection by enzyme-linked immunosorbent assay. II Appl Environ Microbiol. 1993. V. 59. P. 1383−1390.
40. Swaminathan B., Feng P. Rapid detection of food-borne pathogenic bacteria. II Annu Rev Microbiol. 1994. V. 48. P. 401−426.
41. Cloak O.M., Duffy G., Sheridan J.J., Mcdowell D.A., Blair I.S. Development of a surface adhesion immunofluorescent technique for the rapid detection of Salmonella spp. from meat and poultry. IIJ Appl Microbiol. 1999. V. 86. P. 583−590.
42. Yang L., Li Y. Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. // J Microbiol Methods. 2006. V. 64. P. 9−16.
43. Fung D.Y.C. Rapid methods and automation and Microbiology. II Comprehensive reviews in food science and food safety. 2002. V. l.P. 3−22.
44. Kubitscheck H.E. Cell volume increase in Escherichia coli after shifts to richer media. // Journal of Bacteriology. 1990. V. 172. P. 94−101.
45. Conway P.L. ed. Human colonic bacteria: role in nutrition, physiology, and pathology. Microbial ecology of the human large intestine. // Ed. Gibson G.R., Macfarlane G.T. 1995. CRC Press. Boca Raton, FL. 1−24.
46. Ewing W.H. ed. Edwards and Ewing’s Identification of Enterobacteriaceae. 4th ed. 1986. Elsevier. New York.
47. Neill M.A., Tarr P.I., Taylor D.N., Trofa A.F. Eds. Escherichia coli. Foodborne Disease Handbook. // Ed. Hui Y.H., Gorham J.R., Murell K.D., Cliver D.O. 1994. Marcel Decker, Inc. New York. P. 169−213.
48. Donnenberg M.S., Whittam T.S. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. II J Clin Invest. 2001. V. 107. P. 539−548.
49. Ray B., Bhunia A. Eds. Fundamental Food Microbiology. 4th ed. 2007. CRC Press. Boca Raton, FL.
50. Wu S., Ueno D., Inoue K., Someya T. Direct viable count combined with Fluorecence in situ hybridization (DVC-FISH) for Specific Enmeration of viable Esherichia coli in Cow Manure. II Microbs Environment. 2009. V. 24. P. 33−38.
51. Ivanov V., Tay J.H., Tay S.T., Jiang H.L. Removal of micro-particles by microbial granules usedfor aerobic wastewater treatment. II Water Sei Technol. 2004. V. 50. P. 147 154.
52. Upadhyayula V.K.K., Deng S.G., Smith G.B., Mitchell M.C. Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram™. II WATER RESEARCH. 2009. V. 43. P. 148−156
53. Li H., Wu C., Tepper F., Lee J., Lee C.N. Removal and retention of viral aerosols by a novel alumina nanofiber filter. II Aerosol Science. 2009. V. 40. P. 65−71.
54. Kong H., Jang J. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. II Langmuir. 2008. V. 24. P. 2051;2056.
55. Zadik P.M., Chapman P.A., Siddons C.A. Use of tellurite for the selection of verocytotoxigenic Escherichia coli 0157. II J Med Microbiol. 1993. V. 39. P. 155−158.
56. Voitoux E., Lafarge V., Collette C., Lombard B. Applicability of the draft standard method for the detection of Escherichia coli 0157 in dairy products. II Int J Food Microbiol. 2002. V. 77. P. 213−221.
57. Doyle M.P., Schoeni J.L. Isolation of Escherichia coli 0157: H7 from retail fresh meats and poultry. II Appl Environ Microbiol. 1987. V. 53. P. 2394−2396.
58. Padhye N.V., Doyle M.P. Production and characterization of a monoclonal antibody specific for enterohemorrhagic Escherichia coli of serotypes 0157: H7 and 026H11. II J Clin Microbiol. 1991. V. 29. P. 99−103.
59. Sernowski L.P., Ingham S.C. Frequency of false presumptive positive results obtained using a commercial ELISA kit to screen retail ground beef for E coli 0157-H7 II J. of Food Prot. 1992. V. 55. P. 846.
60. Chapman P.A., Malo A.T., Siddons C.A., Harkin M. Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli 0157 in bovine fecal samples. // Appl Environ Microbiol. 1997. V. 63. P. 2549−2553.
61. Chapman P.A., Ashton R. An evaluation of rapid methods for detecting Escherichia coli 0157 on beef carcasses. II Int J Food Microbiol. 2003. V. 87. P. 279−285.
62. Dauglas J. Bacteriophages. // 1975. London. Chapman and Hall Ltd. 1−3, 105−107.
63. Ackermann H.W. Bacteriophage observations and evolution. II Res Microbiol. 2003. V. 154. P. 245−251.
64. Birge E.A. ed. Bacterial and bacteriophage genetics. 3rd ed. 1994. Spring Verlag. New York. 16−51.
65. Maloy S.R., Cronan J.E., Freifelder D. Eds. Microbial Genetics. 2nd ed. 1994. Jones and Bartlett publishers. London. 81−86.
66. Leiman P.G., Kostyuchenko V.A., Shneider M.M., Kurochkina L.P., Mesyanzhinov V.V., Rossmann M.G. Structure of bacteriophage T4 gene product 11, the interface between the baseplate and short tail fibers. II J Mol Biol. 2000. V. 301. P. 975−985.
67. Aksyuk A.A., Leiman P.G., Kurochkina L.P., Shneider M.M., Kostyuchenko" V.A., Mesyanzhinov V.V., Rossmann M.G. The tail sheath structure of bacteriophage T4~ a molecular machine for infecting bacteria II EMBO J. 2009. V. 28. P. 821−829.
68. Campbell A. ed. Molecular Genetics. // Ed. Taylor J.H. Vol. 2. 1967. Academic Press Inc. New York. 323.
69. Duckworth D.H. ed. History and basic properties of bacterial viruses. Phage Ecology. // Ed. Goyal S.M., Gerba C.P., Bitton G. 1987. Raven Press. New York. P. 1 43.
70. Gottesman M., Oppenheim.A. Eds. Lysogeny and prophage. Encyclopedia of virology. // Ed. Webster R.G., Graof A. 1994. Academic Press. New York. P. 814−824.
71. Suttle C.A. Viruses in the sea II Nature. 2005. V. 437. P. 356−361.
72. Ward L.R., De Sa J.D., Rowe B. A phage-typing scheme for Salmonella enteritidis. II Epidemiol Infect. 1987. V. 99. P. 291−294.
73. Platte R., Reynolds D.L., Phillips G.J. Development of novel method of lytic phage delivery by use of a bacteriophage P22 site-specific recombination system: II FEMS Microbiol. Letters. 2003. V. 223. P. 259−265.
74. Alisky J., Iczkowski K., Rapoport A., Troitsky N. Bacteriophages show promise as antimicrobial agents. IIJ Infect. 1998. V, 36. P. 5−15.
75. Wagner P.L., Waldor M.K. Bacteriophage control of bacterial virulence. II Infect immun. 2002. V. 70. P. 3985−3993.
76. Goodridge L., Abedon A.T. Bacteriophage biocontrol and bioprocessing: application phage therapy to industry. Feature article. II SIM News. 2003. V. 53. P. 254−262.
77. Hennes K.P., Suttle C.A., Chan A.M. Fluorescently Labeled Virus Probes Show that Natural Virus Populations Can Control the Structure of Marine Microbial Communities. I I Appl Environ Microbiol. 1995. V. 61. P. 3623−3627.
78. Goodridge L., Chen J., Griffiths M. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli 0157: H7. // Appl Environ Microbiol. 1999. V. 65. P. 1397−1404.
79. Mosier-Boss P.A., Lieberman S.H., Andrews J.M., Rohwer F.L., Wegley L.E., Breitbart M. Use of fluorescently labeled phage in the detection and identification of bacterial species. II Appl Spectrosc. 2003. V. 57. P. 1138−1144.
80. Stewart G.S. In vivo bioluminescence: new potentials for microbiology. II Lett Appl Microbiol. 1990. V. 10. P. 1−8.
81. Duzhii D.E., Zavirgel’skii G.B. Bacteriophage lambda: lux: design and expression of bioluminescence in E. coli cells. II Mol Gen Mikrobiol Virusol. 1994. P. 36−38!
82. Kodikara C.P., Crew H.H., Stewart G.S. Near on-line detection of enteric bacteria usingilux recombinant bacteriophage. //FEMS Microbiol Lett. 1991. V. 67. P. 261−265.
83. Chen J., Griffiths M.W. Salmonella detection in egg using Lux+ bacteriophages. II J. Food Prot. 1996. V. 59. P. 908−914.
84. Loessner M.J., Rees G.E., Stewart G.S., Scherer S. Construction of luciferase reporter bacteriophage A511: luxAB for rapid and sensitive detection of viable Listeria cells. II Appl Environ Microbiol: 1996. V. 62. P. 1133−1140.
85. Loessner M.J., Rudolf M., Scherer S. Evaluation of luciferase reporter bacteriophage A511: luxAB for detection of Listeria monocytogenes in contaminated foods II Appl Environ Microbiol. 1997. V. 63. P. 2961−2965.
86. Sarkis G.J., Jacobs W.R., Jr., Hatfull G.F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay oj live mycobacteria. II Mol Microbiol. 1995. V. 15. P. 1055−1067.
87. Wolber P.K., Green R.L. Detection of bacteria by transduction of ice nucleation genes. II Trends Biotechnol. 1990. V. 8. P. 276−279.
88. Wolber P.K. Bacterial ice nucleation. II Adv Microb Physiol. 1993. V. 34. P. 203−237.
89. Irwin P., Gehring A., Tu S.I., Brewster J., Fanelli J., Ehrenfeld E. Minimum detectable level of Salmonellae using a binomial-based bacterial ice nucleation detection assay (BIND). IIJ AO AC Int. 2000. V. 83. P. 1087−1095.
90. Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C. Green fluorescent protein as a marker for gene expression. II Science. 1994. V. 263. P. 802−805.
91. Funatsu T., Taniyama T., Tajima T., Tadakuma H., Namiki H. Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. // Microbiol Immunol. 2002. V. 46. P. 365−369.
92. Roth A. Purification and protease susceptibility of the green fluorescent protein of Aequorea Victoria with a note on Halistra ura. // 1985. Rutgers University. New Brunswick, NJ.
93. Ward W.W., Cody C., Hart R.C., Cormier M.J. Spectrophotometric identity of the energy transfer chromophores in renilla and aequorea green-fluorescent proteins. II Photochemistry and photobiology. 1980. V. 31. P. 611−615.
94. Okabe M., Ikawa M., Kominami K., Nakanishi T., Nishimune Y. 'Green mice' as a source of ubiquitous green cells. IIFEBS Lett. 1997. V. 407. P. 313−319.
95. Cubitt A.B., Heim R., Adams S.R., Boyd A.E., Gross L.A., Tsien R.Y. Understanding, improving and using green fluorescent proteins. II Trends Biochem Sci. 1995. V. 20. P. 448−455.
96. Prasher D.C. Using GFP to see the light. // Trends Genet. 1995. V. 11. P. 320−323.
97. Heim R., Prasher D.C., Tsien R.Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. II Proc Natl Acad Sci USA. 1994. V. 91. P. 12 501−12 504.
98. Stewart G.S., Smith T., Denyer S. Genetic engineering for biolumescent bacteria. // Food Science and Technology Today. 1989. V. 3. P. 19−22.
99. Burlage R.S., Yang Z.K., Mehlhorn T. A transposon for green fluorescent protein transcriptional fusions: application for bacterial transport experiments. 11 Gene. 1996. V. 173. P. 53−58.
100. Brovko L.Y., Griffiths M.W. Detection limits for bacteria with fluorescent and luminescent phenotypes using different instruments. II in the 10th International Symposium on Bioluinescent and Chemiluimencence. 1998. Bologna.
101. Oda M., Morita M., Unno H., Tanji Y. Rapid detection of Escherichia coli 0157: H7 by using green fluorescent protein-labeled PP01 bacteriophage. II Appl Environ Microbiol. 2004. V. 70. P. 527−534.
102. Tanji Y., Furukawa C., Na S.H., Hijikata T., Miyanaga K., Unno H. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage IIJ Biotechnol. 2004. V. 114. P. 11−20.
103. Srewart G.S.A.B., Jassim S.A.A., Denyer S. PNewby P., Linley K, Dhir V.K. The specific and sensitive detection of pathogens within 4 h bactriophage amplification. II Journal of Applied Microbiology. 2002. V. 84.
104. Favrin S.J., Jassim S.A., Griffiths M.W. Development and optimization oj a novel immunomagnetic separationbacteriophage assay for detection* of Salmonella enterica serovar enteritidis in broth. II Appl Enviion Microbiol. 2001. V. 67. P 217−224.
105. Stanley P.E. A review of bioluminescent ATP techniques in rapid microbiology. II J Biolumin Chemilumin. 1989. V. 4. P. 375−380.
106. Gregg C.T. ed. Bioluminescence in clinical microbiology. Physical Methods for Microorganisms Detection. // Ed. Nelson W.H. 1991. CRC Press Inc. London, pp. 3−4.
107. Schuch R., Nelson D., Fischetti V.A. A bacteriolytic agent that detects and kills Bacillus anthracis. //Nature. 2002. V. 418. P. 884−889.
108. Chang T.C., Ding H.C., Chen S. A conductance method for the identification of Escherichia coli 0157: H7 using bacteriophage AR1. IIJ Food Prot. 2002. V. 65. P. 12−17.
109. Mcintyre L. Application and evaluation of bacterial viruses in rapid methodologies for the detection of food-borne pathogens. // 1998. University of Guelph. Guelph.
110. Mcintyre L., Griffiths M.W. A bacteriophage-based impedimetric method for the detection of pathogens in dairy products. II J. of Dairy Science. 1997. V. 80 (Suppl. 1). P. 107 (Abstract No. D142G).
111. Neufeld T., Schwartz-Mittelmann A., Biran D., Ron E.Z., Rishpon J. Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. II Anal Chem. 2003. V. 75. P. 580−585.
112. Balasubramanian S., Sorokulova I.B., Vodyanoy V.J., Simonian A.L. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—A surface plasmon resonance spectroscopic study. II Biosens Bioelectron. 2007. V. 22. P. 948−955.
113. Gervais L., Gel M., B. A., Tolba M., Brovko L.Y., Zourob M., Mandeville R., Griffiths M.W., Evoy S. Immobilization of biotinylated bacteriophage on biosensor surfaces. II Sensors and actuators B-Chemicals. 2007. V. 125. P. 615−621.
114. Nissim A., Hoogenboom H.R., Tomlinson I.M., Flynn G., Midgley C., Lane D., Winter G. Antibody fragments from a 'single pot' phage display library as immunochemical reagents. IIEMBO J. 1994. V. 13. P. 692−698.
115. Wilson D.S., Nock S. Functional protein microarrays. II Curr Opin Chem Biol. 2002. V. 6. P. 81−85.
116. Hoogenboom H.R., De Bruine A.P., Hufton S.E., Hoet R.M., Arends J.W., Roovers R.C. Antibody phage display technology and its applications. If Immunotechnology. 1998. V. 4. P. 1−20.
117. Heitzmann H., Richards F.M. Use of the avidin-biotin complex for specific staining of biological membranes in electron microscopy. II Proc Natl Acad Sci USA. 1974. V. 71. P. 3537−3541.
118. Bayer E.A., Wilchek M., Skutelsky E. Affinity cytochemistry: the localization of lectin and antibody receptors on erythrocytes via the avidin-biotin complex. II FEBS Lett. 1976. V. 68. P. 240−244.
119. Bayer E.A., Wilchek M. Biotin-binding proteins: overview and prospects. II Methods Enzymol. 1990. V. 184. P. 49−51.
120. Duffy S., Tsao K.L., Waugh D.S. Site-specific, enzymatic biotinylation of recombinant proteins in Spodoptera frugiperda cells using biotin acceptor peptides. II Anal Biochem. 1998. V. 262. P. 122−128.
121. Fall R.R. Analysis of microbial biotin proteins. II Methods Enzymol. 1979. V. 62. P. 390 398.
122. Cronan J.E., Jr., Waldrop G.L. Midti-subunit acetyl-CoA carboxylases. II Prog Lipid Res. 2002. V.41.P. 407−435.
123. Choi-Rhee E., Cronan J.E. The Biotin Carboxylase-Biotin Carboxyl Carrier Protein Complex of Escherichia coli Acetyl-Co-A Carboxylase. II Journal of Biological Chemistry. 2003. V. 278. P. 30 806−30 812.
124. Cronan J.E. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. II Journal of Biological Chemistry. 1990. V. 265. P. 1 032 710 333.
125. Li S., Cronan J.E. The gene encoding the biotin carboxlase subunit of Escherichia coli acetyl-CoA carboxylase. //Journal of Biological Chemistry. 1992. V. 267. P. 855−863
126. Tatsumi H., Fukda S., Kikuchi M., Koyama Y. Construction of biotinylated firefly luciferases using biotin acceptor peptides. I I Analytical Biochemistry. 1996. V. 243. P. 176−180.
127. Bayer E.A., Morag E., Lamed R. The cellulosome—a treasure-trove for biotechnology.^ I I Trends Biotechnol. 1994. V. 12. P. 379−386.
128. Ramirez C., Fung J., Miller R.C., Jr., Antony R., Warren J., Kilburn D.G. A bifunctional affinity linker to couple antibodies to cellulose. // Biotechnology (N Y). 1993. V. 11. P. 1570−1573.
129. Le K.D., Gilkes N.R., Kilburn D.G., Miller R.C., Jr., Saddler J.N., Warren R.A. A streptavidin-cellulose-binding domain fusion protein that binds biotinylated proteins to cellulose. II Enzyme Microb Technol. 1994. V. 16. P. 496−500.
130. Greenwood J.M., Gilkes N.R., Kilburn D.G., Miller R.C., Jr., Warren R.A. Fusion to an endoglucanase allows alkaline phosphatase to bind to cellulose. II FEBS Lett. 1989. V. 244. P. 127−131.
131. Gilkes N.R., Warren R.A., Miller R.C., Jr., Kilburn D.G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. IIJ Biol Chem. 1988. V. 263. P. 10 401−10 407.
132. Gilkes N.R., Iienrissat B., Kilburn D.G., Miller R.C., Jr., Warren R.A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. // Microbiol Rev. 1991. V. 55. P. 303−315.
133. Shoseyov O., Doi R.H. Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. // Proc Natl Acad Sci USA. 1990. V. 87. P. 21 922 195.
134. Goldstein M.A., Takagi M., Hashida S., Shoseyov O., Doi R.H., Segel I.H. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A // J Bacteriol. 1993. V. 175. P. 5762−5768.
135. Doi R.H., Goldstein M, Hashida S., Park J.S., Takagi M. The Clostridium cellulovorans cellulosome. // Crit Rev Microbiol. 1994. V. 20. P. 87−93.
136. Shpigel E., Goldlust A., Efroni G., Avraham A., Eshel A., Dekel M., Shoseyov O. Immobilization of recombinant heparinase I fused to cellulose-binding domain. //< Biotechnol Bioeng. 1999. V. 65. P. 17−23.
137. Piervincenzi R.T., Reichert W.M., Hellinga H.W. Genetic engineering of a single-chain antibody fragment for surface immobilization in an optical biosensor. II Biosens Bioelectron. 1998. V. 13. P. 305−312.
138. Georgiou G., Baneyx F. Expression, purification, and immobilization of a protein A-beta-lactamase hybrid protein. II Ann N Y Acad Sci. 1990. V. 589. P. 139−147.
139. Ong E., Gilkes N.R., Miller R.C., Jr., Warren A.J., Kilburn D.G. Enzyme immobilization using a cellulose-binding domain: properties of a beta-glucosidase fusion protein. II Enzyme Microb Technol. 1991. V. 13. P. 59−65.
140. Richins R.D., Mulchandani A., Chen W. Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. II Biotechnol Bioeng. 2000. V. 69. P. 591−596.
141. Katchalski-Katzir E. Immobilized enzymes—learning from past successes and failures. II Trends Biotechnol. 1993. V. 11. P. 471−478.
142. Wang A.A., Mulchandani A., Chen W. Whole-cell immobilization using cell surface-exposed cellulose-binding domain. II Biotechnol Prog. 2001. V. 17. P. 407−411.
143. Lehtio J., Wernerus H., Samuelson P., Teeri T.T., Stahl S. Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain // FEMS Microbiol Lett. 2001. V. 195. P. 197−204.
144. Smith G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. II Science. 1985. V. 228. P. 1315−1317.
145. Smith G.P., Petrenko V.A. Phage Display. // Chem Rev. 1997. V. 97. P. 391−410.
146. Sternberg N., Hoess R.H. Display ofpeptides and proteins on the surface of bacteriophage lambda. II ProcNatl Acad Sci USA. 1995. V. 92. P. 1609−1613.
147. Rodi D.J., Makowski L. Phage-display technology—finding a needle in a vast molecular haystack. II Curr Opin Biotechnol. 1999. V. 10. P. 87−93.
148. Danner S., Belasco J.G. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. // Proc Natl Acad Sci USA. 2001. V. 98. P. 12 954−12 959.
149. Zucconi A., Dente L., Santonico E., Castagnoli L., Cesareni G. Selection of ligands by panning of domain libraries displayed on phage lambda reveals new potential partners of synaptojanin 1. // J Mol Biol. 2001. V. 307. P. 1329−1339.
150. Ren Z.J., Lewis G.K., Wingfield, P.T., Locke E.G., Steven A.C., Black L.W. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. II Protein Sci. 1996. V. 5. P. 1833−1843.
151. Ishii T., Yanagida M. Molecular organization of the shell of the Teven bacteriophage head. IIJ Mol Biol. 1975. V. 97. P. 655−660.
152. Rao V.B., Black L.W. DNA packaging of bacteriophage T4 proheads in vitro. Evidence that prohead expansion is not coupled to DNA packaging. II J Mol Biol. 1985. V. 185. P. 565−578.
153. Ren Z.J., Baumann R.G., Black L.W. Cloning of linear DNAs in vivo by over expressed T4 DNA ligase: construction of a T4 phage hoc gene display vector. II Gene. 1997. V. 195. P. 303−311.
154. Jiang J., Abu-Shilbayeh L., Rao V.B. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. I I Infect Immun. 1997. V. 65. P. 4770−4777.
155. Lazcka O., Del Campo F.J., Munoz F.X. Pathogen detection: a perspective of traditional methods and biosensors. // Biosens Bioelectron. 2007. V. 22. P. 1205−1217.
156. Pancrazio J.J., Whelan J.P., Borkholder D.A., Ma W., Stenger D.A. Development and application of cell-based biosensors. II Ann Biomed Eng. 1999. V. 27. P. 697−711.
157. PauF J.H., Rose J.B., Jiang S.C., London P., Xhou X., Kellogg C. Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii. II Appl Environ Microbiol. 1997. V. 63. P. 133−138.
158. Goodridge L., Griffiths M.W. Reporter bacteriophage assay as a mean to detectfoodborne pathogenic bacteria // Food Res. Int. 2002. V. 35. P. 863−870.
159. Dubow M.S. ed. Bacterial" identification and use of bacteriophages. Encyclopedia of virology. // Ed. Webster R.G., Granoff A. 1994. Academic Press. San Diego, Galif. P. 7881.
160. Takhistov P. ed. Cell-Based Biosensors. Handbook of foodscience, technology, and engineering. // Ed. Hui Y.H. Vol. 3. 2006. CRC Press. Boca Raton, Fl. 712 P.
161. Dad’o S. Tissue Morphology and Cell Impedance Based Biosensors for Toxicity Testing. II MEASUREMENT SCIENCE REVIEW. 2009. V. 9. P. 105−108.
162. Elwing H., Karlsson J.O., Grundstrom N., Gustafsson A.L., Von Schenck H., Sundgren H., Odman S., Andersson R.G., Lundstrom I. Fish scales as biosensors for catecholamines. II Biosens Bioelectron. 1990. V. 5. P. 449−459.
163. Rider T.H., Petrovick M.S., Nargi F.E., Harper J.D., Schwoebel E.D., Mathews R.H., Blanchard D.J., Bortolin L.T., Young A.M., Chen J., Hollis M.A. A B cell-based sensor for rapid identification of pathogens. II Science. 2003. V. 301. P. 213−215.
164. Meighen E.A., Szittner R.B. Multiple repetitive elements and organization of the lux operons of luminescent terrestrial bacteria. IIJ Bacteriol. 1992. V. 174. P. 5371 -53 81.
165. Tolba M., Minikh Π., Brovko L.Y., Evoy S., Griffiths M.W. Oriented immobilization of bacteriophages for biosensor applications. H Appl Environ Microbiol. 2010. V. 76. P. 528 535.
166. Sambrook J., Russell D.W. Eds. Molecular Cloning: a laboratory manual. Third ed. V. 1. 2001. Cold Spring Harbor Laboratory Press. New York. 5.4−5.13.
167. Harris D.C. ed. Quality Assurance and Calibration. Quantitative Chemical Analysis. // Ed. Harris D.C. 2007. W. H. Freeman and Company. New York. P. 78−92.
168. Pheiffer C., Carroll N.M., Beyers N., Donald P., Duncan K., Uys P., Van Helden P. Time to detection of Mycobacterium tuberculosis in BACTEC systems as a viable alternative to colony counting. H Int J Tuberc Lung Dis. 2008. V. 12. P. 792−798.
169. Botstein D., Maurer R. Genetic approaches to the analysis of microbial development. II AnnuRev Genet. 1982. V. 16. P/61−83.
170. Cademartiri R., Anany H., Gross I., Bhayani R., Griffiths M., Brook M.A. Immobilization of bacteriophages on modified silica particles. II Biomaterials. 2010. V. 31. P. 1904;1910.
171. Kaper J.B. EPEC delivers the goods. // Trends Microbiol. 1998. V. 6. P. 169−172- discussion 172−163 P.
172. Li Z., Elliott E., Payne J., Isaacs J., Gunning P., O’loughlin E V. Shiga toxin-producing Escherichia coli can impair T84 cell structure and function without inducing attaching/effacing lesions. //Infect Immun. 1999. V. 67. P. 5938−5945.
173. ΠΡΠ΅ΠΌΠΈΡΠ½Π°Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ Π·Π΄ΡΠ°Π²ΠΎΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ. ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ Π±ΡΠ»Π»Π΅ΡΠ΅Π½Ρ № 125. ΠΠ½ΡΠ΅ΡΠΎΠ³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠ°Ρ Escherichia coli (ΠΠΠΠ‘). 2005. http://www.who.int/mediacentre/factsheets/fs 125/ru
174. Frankel G., Phillips A.D., Rosenshine I., Dougan G., Kaper J.B., Knutton S. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. II Mol Microbiol. 1998. V. 30. P. 911−921.