ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ ΠΈ биосорбСнты Π½Π° ΠΈΡ… основС для спСцифичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Escherichia coli Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Ρ‹ «Disruptor» ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для получСния биосорбСнтов Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’4 с Ρ†Π΅Π»ΡŒΡŽ задСрТания (Π½Π° 99,9%) ΠΈ"Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ E. coli Π’. ΠŸΡ€Π΅Π΄Π΅Π» обнаруТСния ΠΏΡ€ΠΈ использовании ΠΌΠ΅Ρ‚ΠΎΠ΄Π° с Π½Π΅ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠΌ составил 500 ΠšΠžΠ•/ΠΌΠ», ΠΏΡ€ΠΈ> использовании ΠΌΠ΅Ρ‚ΠΎΠ΄Π° с Π’4-Ρ„Π°Π³ΠΎΠΌ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π½Π° Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Π΅, — 730 ΠšΠžΠ•/ΠΌΠ». Показана высокая ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ ΠΈ биосорбСнты Π½Π° ΠΈΡ… основС для спСцифичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Escherichia coli Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • ΠŸΠ Π˜ΠΠ―Π’Π«Π• ΠžΠ‘ΠžΠ—ΠΠΠ§Π•ΠΠ˜Π―
  • ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • 1. ΠŸΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΡ… Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ
    • 1. 1. ΠŸΠ°Ρ‚ΠΎΠ³Π΅Π½Ρ‹. Π£Ρ‰Π΅Ρ€Π± ΠΎΡ‚ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½ΠΎΠ²
    • 1. 2. Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ
    • 1. 3. БыстрыС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 1. 4. Π’ΠΈΠ΄ Escherichia coli. ДСтСкция ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. col
  • 2. Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ
    • 2. 1. ΠžΠ±Ρ‰ΠΈΠ΅ свСдСния ΠΎ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π°Ρ…
    • 2. 2. ЛитичСскиС ΠΈ Π»ΠΈΠ·ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ
    • 2. 3. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² для Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ
    • 2. 4. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² ΠΊΠ°ΠΊ биосорбСнтов
  • 3. БиосСнсоры
    • 3. 1. ΠžΠ±Ρ‰ΠΈΠ΅ свСдСния
    • 3. 2. БиосСнсоры Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ‚ΠΊΠ°Π½Π΅ΠΉ
  • Π­ΠšΠ‘ΠŸΠ•Π Π˜ΠœΠ•ΠΠ’ΠΠ›Π¬ΠΠΠ― ЧАБВ
  • 1. Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹
  • 2. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ провСдСния экспСримСнтов
    • 2. 1. ВзаимодСйствиС ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coli Π’ Ρ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π°ΠΌΠΈ Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅
    • 2. 2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ биосорбСнтов Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Ρ„Π°Π³ΠΎΠ²
    • 2. 3. ΠžΡ†Π΅Π½ΠΊΠ° способности связывания ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ биосорбСнтами
    • 2. 4. ИсслСдованиС литичСской активности биосорбСнтов Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Ρ„Π°Π³ΠΎΠ²
    • 2. 5. ДСтСкция ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli Π’ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² «Disruptor» ΠΈ Ρ„Π°Π³Π° Π’4 Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅
    • 2. 6. Анализ Π΄Π°Π½Π½Ρ‹Ρ…
    • 2. 7. ВзаимодСйствиС ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΈ Π½Π΅ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² E. coli с ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ IleLa ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ
  • РЕЗУЛЬВАВЫ И ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•.57 '
  • 1. ВзаимодСйствиС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ E. coli Π’ Ρ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠΌ Π’4 ΠΈ Π΅Π³ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΌΠΈ Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ Π’4-Π’Π‘Π‘Π  ΠΈ T4-CBD Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅
    • 1. 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий для прямой Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli Π’ Ρ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’4 ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ АВЀ-ΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
    • 1. 2. Π˜Π½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ роста свСтящихся ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli Π’ ΠΏΡ€ΠΈ взаимодСйствии с Π΄ΠΈΠΊΠΈΠΌ Π’4 Ρ„Π°Π³ΠΎΠΌ, Π±ΠΈΠΎΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π’4-Π’Π‘Π‘Π  ΠΈ Ρ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·ΠΎΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌ T4-CBD Ρ„Π°Π³Π°ΠΌΠΈ
    • 1. 3. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ лизиса ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli Π’ ΠΏΠΎΡΡ€Π΅Π΄ΡΡ‚Π²ΠΎΠΌ Ρ„Π°Π³Π° Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π’4 ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„Π°Π³ΠΎΠ² Π’4-Π’Π‘Π‘Π  ΠΈ T4-CBD ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ АВЀ-ΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
  • 2. БиосорбСнты Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ„Π°Π³ΠΎΠ². Π˜Ρ… ΡΠ²ΠΎΠΉΡΡ‚Π²Π° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния для Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. col
    • 2. 1. Π˜ΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² Π½Π° ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΈ Ρ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·Π½Ρ‹Ρ… частицах
    • 2. 2. ИсслСдованиС свойств ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… биосорбСнтов
  • 3. ИспользованиС Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² «Disruptor» ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’4 для спСцифичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. col
    • 3. 1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ биосорбСнта Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² ΠΈ Ρ„Π°Π³Π° Π’4 ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΅Π³ΠΎ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ
    • 3. 2. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… свойств систСмы «Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ Π’4 + Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Ρ‹» с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ свСтящихся ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli Π’ (lux)
    • 3. 3. ИсслСдованиС возмоТности спСцифичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ биосорбСнта Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² с Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠΌ Π’
    • 3. 4. ИсслСдованиС ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… свойств биосорбСнтов Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΏΡ€ΠΈ использовании свСтящихся ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli Π’ (lux)
  • 4. ВзаимодСйствиС ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΈ Π½Π΅ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² E. coli с ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ HeLa ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ
    • 4. 1. Π‘ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π• coli (lux)
    • 4. 2. Рост Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… срСдах
    • 4. 3. АдгСзия Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coli ΠΊ ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ HeLa Ρ‚ΠΊΠ°Π½ΠΈ
  • Π’Π«Π’ΠžΠ”Π«

Π²Ρ‹Π²ΠΎΠ΄Ρ‹ l

1. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ взаимодСйствиС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ E. coli Π’ Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅ с Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠΌ Π’4 ΠΈ Π΅Π³ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΌΠΈ Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ: Ρ„Π°Π³ΠΎΠΌ Π’4, слитым с Π±ΠΈΠΎΡ‚ΠΈΠ½ ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌ Π±Π΅Π»ΠΊΠΎΠΌ (Π’4-Π’Π‘Π‘Π ) ΠΈ Ρ„Π°Π³ΠΎΠΌ Π’4, слитым с Π΄ΠΎΠΌΠ΅Π½ΠΎΠΌ Ρ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·ΠΎΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π±Π΅Π»ΠΊΠ° (Π’4-CBD). Показано, Ρ‡Ρ‚ΠΎ литичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ гСнСтичСски ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π’4-Ρ„Π°Π³ΠΎΠ² Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ исходного Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’4.

2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ биосорбСнты ΠΏΡƒΡ‚Ρ‘ΠΌ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„Π°Π³Π°. Π’4-Π’Π‘Π‘Π  Π½Π° ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… стрСптавидиновых частицах, ΠΈ Ρ„Π°Π³Π° T4-CBD Π½Π°! Ρ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·Π½Ρ‹Ρ… частицах. Показана высокая ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ связывания Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π’4-Π’Π‘Π‘Π  ΠΈ T4-CBD Ρ„Π°Π³ΠΎΠ² fс Π½ΠΎΡΠΈΡ‚Слями, ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ связывания.

3. Показано Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ высокой литичСской активности биосорбСнтов Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌΠΈ биосорбСнтами ΠΏΠ° ΠΎΡΠ½ΠΎΠ²Π΅ исходного Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’4. Π˜Π½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Π°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ„Π°Π³ΠΎΠ² сниТСна ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ„Π°Π³Π°ΠΌΠΈ Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅.

4. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Ρ‹ «Disruptor» ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для получСния биосорбСнтов Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’4 с Ρ†Π΅Π»ΡŒΡŽ задСрТания (Π½Π° 99,9%) ΠΈ"Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ E. coli Π’. ΠŸΡ€Π΅Π΄Π΅Π» обнаруТСния ΠΏΡ€ΠΈ использовании ΠΌΠ΅Ρ‚ΠΎΠ΄Π° с Π½Π΅ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠΌ составил 500 ΠšΠžΠ•/ΠΌΠ», ΠΏΡ€ΠΈ> использовании ΠΌΠ΅Ρ‚ΠΎΠ΄Π° с Π’4-Ρ„Π°Π³ΠΎΠΌ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π½Π° Π½Π°Π½ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Π΅, — 730 ΠšΠžΠ•/ΠΌΠ». Показана высокая ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli Π² ΡΠΌΠ΅ΡΠΈ с ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ Salmonella Typhimurium.

5. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ взаимодСйствиС ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… HeLa ΠΊΠ»Π΅Ρ‚ΠΎΠΊ со ΡΠ²Π΅Ρ‚ящимися ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π•. coli, содСрТащими ΠΏΠΎΠ»Π½Ρ‹ΠΉ IwcCDABE ΠΎΠΏΠ΅Ρ€ΠΎΠ½ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€Π°Π·Ρ‹ (15 ΡˆΡ‚Π°ΠΌΠΌΠΎΠ², ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… 5 — Π½Π΅ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹ Π•. coli, 10 — энтСрогСморрагичСскиС ΡˆΡ‚Π°ΠΌΠΌΡ‹ (ЕНЕБ), ΠΈΠ· Π½ΠΈΡ… 5 — ΡˆΡ‚Π°ΠΌΠΌΡ‹ Π•. coli 0157: Н7 ΠΈ 5 — ΡˆΡ‚Π°ΠΌΠΌΡ‹ Π•. coli Π΄Ρ€ΡƒΠ³ΠΈΡ… 0: Н ΡΠ΅Ρ€ΠΎΡ‚ΠΈΠΏΠΎΠ²). Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ HeLa ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ росту Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π• coli, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ! Π½Π° Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€Π΅Π³ΡƒΠ»ΡΡ‚ΠΎΡ€Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ HeLa ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ эпитСлия бактСриями.

6. ИсслСдованиС Π°Π΄Π³Π΅Π·ΠΈΠ²Π½ΠΎΠΉ способности ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli ΠΊ ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌ IleLa ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ отсутствиС зависимости Π°Π΄Π³Π΅Π·ΠΈΠ²Π½ΠΎΠΉ способности ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli ΠΎΡ‚ ΠΈΡ… Π²ΠΈΡ€ΡƒΠ»Π΅Π½Ρ‚Π½Ρ‹Ρ… свойств. Π₯Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ повСдСния ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π• coli Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии HeLa ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π±Ρ‹Π» спСцифичСн для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ°.

1. Squirrell D.J., Price R.L., Murphy M.J. Rapid and specific detection of bacterial using bioluminescence. // Analytica Chimica Acta. 2002. V. 457. P. 109−114.

2. Gracias K.S., Mckillip J.L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. II Can J Microbiol. 2004. V. 50. P. 883−890.

3. Fung D.Y.C. Rapid methods and automation and Microbiology II Comprehensive reviews in food scince and food safety. 2002. V. 1. P. 3−22.

4. Favrin S. J-, Jassim S.A., Griffiths M.W. Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enter itidis and Escherichia coli 0157.-H7 in food. И Int J Food Microbiol. 2003. V. 85. P. 63−71.

5. Wu Y., Brovko L., Griffiths M.W. Influence of phage population on the phage-mediated bioluminescent' adenylate kinase (AK) assay for detection of bacteria. // Lett Appl Microbiol. 200 Π“. V. 33. P. 311−315.

6. Blasco R., Murphy M.J., Sanders M.F., Squirrell D.J. Specific assays for bacteria using phage mediated release of adenylate kinase. IIJ Appl Microbiol. 1998. V. 84. P: 661−666.

7. Goodridge L., Chen J., Griffiths M. The use of a fluorescent bacteriophage assay for detection of Escherichia coli 0157: H7 in inoculated ground beef and raw milk. II Int J Food Microbiol. 1999. V. 47. P. 43−50.

8. Leiman P.G., Kanamaru S., Mesyanzhinov V.V., Arisaka F., Rossmann M.G. Structure and morphogenesis of bacteriophage T4. И Cell Mol Life Sci. 2003. V. 60. P. 2356−2370.

9. Bennett A.R., Davids F.G.C., Vlahodimou S., Banks J.G., Betts R.P. The use of bacteriophage-based systems for the separation and concentration of Salmonella. II Journal of Applied Microbiology. 1997. V. 83. P. 259−265.

10. Sun W., Brovko L., Griffiths M. Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. II J Ind Microbiol Biotechnol. 2001. V. 27. P. 126−128.

11. Karim M.R., Rhodes E.R., Brinkman N., Wymer L., Fout G.S. New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. II Appl Environ Microbiol. 2009. V. 75. P. 2393−2399.

12. Tolba M., Brovko L.Y., Minikh O., Griffiths M.W. Engineering of bacteriophages displaying affinity tags on its head for biosensor applications. II in NSTI Nana tech 2008 conference. 2008. Boston, USA.

13. Finlay B.B., Cossart P. Exploitation of mammalian host cell functions by bacterial pathogens. II Science. 1997. V. 276. P. 718−725.

14. Pace J., Hayman M.J., Galan J.E. Signal transduction and invasion of epithelial cells by S. Typhimurium. II Cell. 1993. V. 72. P. 505−514.

15. Dehio C., Prevost M.C., Sansonetti P.J. Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c-src-mediated signalling pathway. IIEMBO J. 1995. V. 14. P. 2471−2482.

16. Nisan I., Wolff C., Hanski E., Rosenshine I. Interaction of enteropathogenic Escherichia coli with host epithelial cells. II Folia Microbiol (Praha). 1998. V. 43. P. 247−252.

17. Wadsworth S.J., Goldfine H. Listeria monocytogenes phospholipase C-dependent calcium signaling modulates bacterial entry into J774 macrophage-like cells. If Infect Immun. 1999. V. 67. P. 1770−1778.

18. Shin S., Hur G.H., Kim Y.B., Park K.J., Park Y.M., Lee W.S. Intracellular calcium antagonist protects cultured peritoneal macrophages against anthrax lethal toxin-induced cytotoxicity. II Cell Biol Toxicol. 2000. V. 16. P. 137−144.

19. Cdc. Food-related disease information from the CDC 2009. http://www.cdc.gov/ncidod/diseases/food/index.htm.

20. Anon. The European standard 12 824: 1997. Microbiology for food and animal feedings stuff Horizontal method for the detetion of Salmonella. II. 1998. British Standard Institution, London, UK.

21. Robert D., Hooper W., Greenwood M. Methods for examinasion of food for microorganisms pf public health significance. // Practical food microbiology. 1995. Public health laboratory service. London, UK.

22. The Compendium of Analytical Methods of Health Canada. // Health Canada and the Canadian Food Inspection Agency (CFIA) 2005.

23. Haddock S.H.D. Luminous Marine Organisms. II in Photoproteins in Bioanalysis. / Daunert S" Deo S.K., Editors. 2006. Wiley-VCH. Weinheim. P. 25−47.

24. Wilson Π’., Hastings J. W BIOLUMINESCENCE. II Annual Review of Cell and Developmental Biology. 1998. V. 14. P. 197−230.

25. Hastings J. W Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. //Journal of Molecular Evolution. 1983. V. 19. P 309−321.

26. Hastings J.W., Johnson C.H. Bioluminescence and chemiluminescence. И in Methods' in Enzymology. / 2003. Academic Press. P. 75−104.

27. Harvey E.N. Review of Bioluminescence. II Annual Review of Biochemistry. 1941. V. 10. P.531−552.

28. Seliger HH., Mcelroy W.D. Spectral emission and quantum yield of firefly bioluminescence. //Arch Biochem Biophys. 1960. V. 88 P. 136−141.

29. Ando Y., Niwa K., Yamada N., Enomoto Π’., Irie Π’., Kubota H., Ohmiya Y., Akiyama H. Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission //Nat Photon. 2008. V. 2. P. 44−47

30. Π£Π³Π°Ρ€ΠΎΠ²Π° H.H., ЀрундТян Π’. Π“. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ АВЀ-ΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π² Π±ΠΈΠΎΠ°Π½Π°Π»ΠΈΡ‚ичСских цСлях. // Π₯имичСский Π€Π°ΠΊΡƒΠ»ΡŒΡ‚Π΅Ρ‚ ΠœΠ“Π£. 2003. 52 Π‘.

31. Lundin A. Use of firefly luciferase in atp-related assays of biomass, enzymes, and metabolites. II in Methods in Enzymology. / 2000. Academic Press. P. 346−370.

32. Roda A., Pasini P., Mirasoli M., Michelini E., Guardigli M. Biotechnological applications of bioluminescence and chemiluminescence II Trends Biotechnol. 2004. V. 22. P. 295−303.

33. Viviani V.R., Ohmiya Y. Beetle Luciferases Colorful Lights on Biological Processes and Diseases. // in Photoproteins in Bioanalysis. / Daunert S., Deo S.K., Editors. 2006 Wiley-VCH. Weinheim. P. 49−63.

34. Greer Iii L.F., Szalay A A. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. II Luminescence. 2002. V. 17. P 43−74.

35. Griffiths M.W., Brovko L.Y. ATP bioluminescence in Detecting Pathogens in food. // ed Mcmeekin T.A. 2003. Cambridge, UK. CRC Woodhead Publishing.

36. Rees C.E.D., Loessner M.J. Chapter 9: Phage for the detection of pathogenic bacteria. // in Bacteriophages: biology and applications. / Kutter E., Sulakvelidze A., Editors. 2005. CRC Press. P. 267−284.

37. Sun W., Brovko L., Griffiths M. Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. // J Ind Microbiol Biotechnol. 2001. V. 27. P. 126−128.

38. Lee H.A., Wyatt G.M., Bramham S., Morgan M.R. Enzyme-linked immunosorbent assay Jor Salmonella Typhunurium in food: feasibility of 1-day Salmonella detection. // Appl Enviion Microbiol. 1990. V. 56. P. 1541−1546.

39. Wyatt G.M., Langley M.N., Lee H.A., Morgan M.R. Further studies on the feasibility of one-day Salmonella detection by enzyme-linked immunosorbent assay. II Appl Environ Microbiol. 1993. V. 59. P. 1383−1390.

40. Swaminathan B., Feng P. Rapid detection of food-borne pathogenic bacteria. II Annu Rev Microbiol. 1994. V. 48. P. 401−426.

41. Cloak O.M., Duffy G., Sheridan J.J., Mcdowell D.A., Blair I.S. Development of a surface adhesion immunofluorescent technique for the rapid detection of Salmonella spp. from meat and poultry. IIJ Appl Microbiol. 1999. V. 86. P. 583−590.

42. Yang L., Li Y. Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. // J Microbiol Methods. 2006. V. 64. P. 9−16.

43. Fung D.Y.C. Rapid methods and automation and Microbiology. II Comprehensive reviews in food science and food safety. 2002. V. l.P. 3−22.

44. Kubitscheck H.E. Cell volume increase in Escherichia coli after shifts to richer media. // Journal of Bacteriology. 1990. V. 172. P. 94−101.

45. Conway P.L. ed. Human colonic bacteria: role in nutrition, physiology, and pathology. Microbial ecology of the human large intestine. // Ed. Gibson G.R., Macfarlane G.T. 1995. CRC Press. Boca Raton, FL. 1−24.

46. Ewing W.H. ed. Edwards and Ewing’s Identification of Enterobacteriaceae. 4th ed. 1986. Elsevier. New York.

47. Neill M.A., Tarr P.I., Taylor D.N., Trofa A.F. Eds. Escherichia coli. Foodborne Disease Handbook. // Ed. Hui Y.H., Gorham J.R., Murell K.D., Cliver D.O. 1994. Marcel Decker, Inc. New York. P. 169−213.

48. Donnenberg M.S., Whittam T.S. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. II J Clin Invest. 2001. V. 107. P. 539−548.

49. Ray B., Bhunia A. Eds. Fundamental Food Microbiology. 4th ed. 2007. CRC Press. Boca Raton, FL.

50. Wu S., Ueno D., Inoue K., Someya T. Direct viable count combined with Fluorecence in situ hybridization (DVC-FISH) for Specific Enmeration of viable Esherichia coli in Cow Manure. II Microbs Environment. 2009. V. 24. P. 33−38.

51. Ivanov V., Tay J.H., Tay S.T., Jiang H.L. Removal of micro-particles by microbial granules usedfor aerobic wastewater treatment. II Water Sei Technol. 2004. V. 50. P. 147 154.

52. Upadhyayula V.K.K., Deng S.G., Smith G.B., Mitchell M.C. Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram™. II WATER RESEARCH. 2009. V. 43. P. 148−156

53. Li H., Wu C., Tepper F., Lee J., Lee C.N. Removal and retention of viral aerosols by a novel alumina nanofiber filter. II Aerosol Science. 2009. V. 40. P. 65−71.

54. Kong H., Jang J. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. II Langmuir. 2008. V. 24. P. 2051;2056.

55. Zadik P.M., Chapman P.A., Siddons C.A. Use of tellurite for the selection of verocytotoxigenic Escherichia coli 0157. II J Med Microbiol. 1993. V. 39. P. 155−158.

56. Voitoux E., Lafarge V., Collette C., Lombard B. Applicability of the draft standard method for the detection of Escherichia coli 0157 in dairy products. II Int J Food Microbiol. 2002. V. 77. P. 213−221.

57. Doyle M.P., Schoeni J.L. Isolation of Escherichia coli 0157: H7 from retail fresh meats and poultry. II Appl Environ Microbiol. 1987. V. 53. P. 2394−2396.

58. Padhye N.V., Doyle M.P. Production and characterization of a monoclonal antibody specific for enterohemorrhagic Escherichia coli of serotypes 0157: H7 and 026H11. II J Clin Microbiol. 1991. V. 29. P. 99−103.

59. Sernowski L.P., Ingham S.C. Frequency of false presumptive positive results obtained using a commercial ELISA kit to screen retail ground beef for E coli 0157-H7 II J. of Food Prot. 1992. V. 55. P. 846.

60. Chapman P.A., Malo A.T., Siddons C.A., Harkin M. Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli 0157 in bovine fecal samples. // Appl Environ Microbiol. 1997. V. 63. P. 2549−2553.

61. Chapman P.A., Ashton R. An evaluation of rapid methods for detecting Escherichia coli 0157 on beef carcasses. II Int J Food Microbiol. 2003. V. 87. P. 279−285.

62. Dauglas J. Bacteriophages. // 1975. London. Chapman and Hall Ltd. 1−3, 105−107.

63. Ackermann H.W. Bacteriophage observations and evolution. II Res Microbiol. 2003. V. 154. P. 245−251.

64. Birge E.A. ed. Bacterial and bacteriophage genetics. 3rd ed. 1994. Spring Verlag. New York. 16−51.

65. Maloy S.R., Cronan J.E., Freifelder D. Eds. Microbial Genetics. 2nd ed. 1994. Jones and Bartlett publishers. London. 81−86.

66. Leiman P.G., Kostyuchenko V.A., Shneider M.M., Kurochkina L.P., Mesyanzhinov V.V., Rossmann M.G. Structure of bacteriophage T4 gene product 11, the interface between the baseplate and short tail fibers. II J Mol Biol. 2000. V. 301. P. 975−985.

67. Aksyuk A.A., Leiman P.G., Kurochkina L.P., Shneider M.M., Kostyuchenko" V.A., Mesyanzhinov V.V., Rossmann M.G. The tail sheath structure of bacteriophage T4~ a molecular machine for infecting bacteria II EMBO J. 2009. V. 28. P. 821−829.

68. Campbell A. ed. Molecular Genetics. // Ed. Taylor J.H. Vol. 2. 1967. Academic Press Inc. New York. 323.

69. Duckworth D.H. ed. History and basic properties of bacterial viruses. Phage Ecology. // Ed. Goyal S.M., Gerba C.P., Bitton G. 1987. Raven Press. New York. P. 1 43.

70. Gottesman M., Oppenheim.A. Eds. Lysogeny and prophage. Encyclopedia of virology. // Ed. Webster R.G., Graof A. 1994. Academic Press. New York. P. 814−824.

71. Suttle C.A. Viruses in the sea II Nature. 2005. V. 437. P. 356−361.

72. Ward L.R., De Sa J.D., Rowe B. A phage-typing scheme for Salmonella enteritidis. II Epidemiol Infect. 1987. V. 99. P. 291−294.

73. Platte R., Reynolds D.L., Phillips G.J. Development of novel method of lytic phage delivery by use of a bacteriophage P22 site-specific recombination system: II FEMS Microbiol. Letters. 2003. V. 223. P. 259−265.

74. Alisky J., Iczkowski K., Rapoport A., Troitsky N. Bacteriophages show promise as antimicrobial agents. IIJ Infect. 1998. V, 36. P. 5−15.

75. Wagner P.L., Waldor M.K. Bacteriophage control of bacterial virulence. II Infect immun. 2002. V. 70. P. 3985−3993.

76. Goodridge L., Abedon A.T. Bacteriophage biocontrol and bioprocessing: application phage therapy to industry. Feature article. II SIM News. 2003. V. 53. P. 254−262.

77. Hennes K.P., Suttle C.A., Chan A.M. Fluorescently Labeled Virus Probes Show that Natural Virus Populations Can Control the Structure of Marine Microbial Communities. I I Appl Environ Microbiol. 1995. V. 61. P. 3623−3627.

78. Goodridge L., Chen J., Griffiths M. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli 0157: H7. // Appl Environ Microbiol. 1999. V. 65. P. 1397−1404.

79. Mosier-Boss P.A., Lieberman S.H., Andrews J.M., Rohwer F.L., Wegley L.E., Breitbart M. Use of fluorescently labeled phage in the detection and identification of bacterial species. II Appl Spectrosc. 2003. V. 57. P. 1138−1144.

80. Stewart G.S. In vivo bioluminescence: new potentials for microbiology. II Lett Appl Microbiol. 1990. V. 10. P. 1−8.

81. Duzhii D.E., Zavirgel’skii G.B. Bacteriophage lambda: lux: design and expression of bioluminescence in E. coli cells. II Mol Gen Mikrobiol Virusol. 1994. P. 36−38!

82. Kodikara C.P., Crew H.H., Stewart G.S. Near on-line detection of enteric bacteria usingilux recombinant bacteriophage. //FEMS Microbiol Lett. 1991. V. 67. P. 261−265.

83. Chen J., Griffiths M.W. Salmonella detection in egg using Lux+ bacteriophages. II J. Food Prot. 1996. V. 59. P. 908−914.

84. Loessner M.J., Rees G.E., Stewart G.S., Scherer S. Construction of luciferase reporter bacteriophage A511: luxAB for rapid and sensitive detection of viable Listeria cells. II Appl Environ Microbiol: 1996. V. 62. P. 1133−1140.

85. Loessner M.J., Rudolf M., Scherer S. Evaluation of luciferase reporter bacteriophage A511: luxAB for detection of Listeria monocytogenes in contaminated foods II Appl Environ Microbiol. 1997. V. 63. P. 2961−2965.

86. Sarkis G.J., Jacobs W.R., Jr., Hatfull G.F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay oj live mycobacteria. II Mol Microbiol. 1995. V. 15. P. 1055−1067.

87. Wolber P.K., Green R.L. Detection of bacteria by transduction of ice nucleation genes. II Trends Biotechnol. 1990. V. 8. P. 276−279.

88. Wolber P.K. Bacterial ice nucleation. II Adv Microb Physiol. 1993. V. 34. P. 203−237.

89. Irwin P., Gehring A., Tu S.I., Brewster J., Fanelli J., Ehrenfeld E. Minimum detectable level of Salmonellae using a binomial-based bacterial ice nucleation detection assay (BIND). IIJ AO AC Int. 2000. V. 83. P. 1087−1095.

90. Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C. Green fluorescent protein as a marker for gene expression. II Science. 1994. V. 263. P. 802−805.

91. Funatsu T., Taniyama T., Tajima T., Tadakuma H., Namiki H. Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. // Microbiol Immunol. 2002. V. 46. P. 365−369.

92. Roth A. Purification and protease susceptibility of the green fluorescent protein of Aequorea Victoria with a note on Halistra ura. // 1985. Rutgers University. New Brunswick, NJ.

93. Ward W.W., Cody C., Hart R.C., Cormier M.J. Spectrophotometric identity of the energy transfer chromophores in renilla and aequorea green-fluorescent proteins. II Photochemistry and photobiology. 1980. V. 31. P. 611−615.

94. Okabe M., Ikawa M., Kominami K., Nakanishi T., Nishimune Y. 'Green mice' as a source of ubiquitous green cells. IIFEBS Lett. 1997. V. 407. P. 313−319.

95. Cubitt A.B., Heim R., Adams S.R., Boyd A.E., Gross L.A., Tsien R.Y. Understanding, improving and using green fluorescent proteins. II Trends Biochem Sci. 1995. V. 20. P. 448−455.

96. Prasher D.C. Using GFP to see the light. // Trends Genet. 1995. V. 11. P. 320−323.

97. Heim R., Prasher D.C., Tsien R.Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. II Proc Natl Acad Sci USA. 1994. V. 91. P. 12 501−12 504.

98. Stewart G.S., Smith T., Denyer S. Genetic engineering for biolumescent bacteria. // Food Science and Technology Today. 1989. V. 3. P. 19−22.

99. Burlage R.S., Yang Z.K., Mehlhorn T. A transposon for green fluorescent protein transcriptional fusions: application for bacterial transport experiments. 11 Gene. 1996. V. 173. P. 53−58.

100. Brovko L.Y., Griffiths M.W. Detection limits for bacteria with fluorescent and luminescent phenotypes using different instruments. II in the 10th International Symposium on Bioluinescent and Chemiluimencence. 1998. Bologna.

101. Oda M., Morita M., Unno H., Tanji Y. Rapid detection of Escherichia coli 0157: H7 by using green fluorescent protein-labeled PP01 bacteriophage. II Appl Environ Microbiol. 2004. V. 70. P. 527−534.

102. Tanji Y., Furukawa C., Na S.H., Hijikata T., Miyanaga K., Unno H. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage IIJ Biotechnol. 2004. V. 114. P. 11−20.

103. Srewart G.S.A.B., Jassim S.A.A., Denyer S. PNewby P., Linley K, Dhir V.K. The specific and sensitive detection of pathogens within 4 h bactriophage amplification. II Journal of Applied Microbiology. 2002. V. 84.

104. Favrin S.J., Jassim S.A., Griffiths M.W. Development and optimization oj a novel immunomagnetic separationbacteriophage assay for detection* of Salmonella enterica serovar enteritidis in broth. II Appl Enviion Microbiol. 2001. V. 67. P 217−224.

105. Stanley P.E. A review of bioluminescent ATP techniques in rapid microbiology. II J Biolumin Chemilumin. 1989. V. 4. P. 375−380.

106. Gregg C.T. ed. Bioluminescence in clinical microbiology. Physical Methods for Microorganisms Detection. // Ed. Nelson W.H. 1991. CRC Press Inc. London, pp. 3−4.

107. Schuch R., Nelson D., Fischetti V.A. A bacteriolytic agent that detects and kills Bacillus anthracis. //Nature. 2002. V. 418. P. 884−889.

108. Chang T.C., Ding H.C., Chen S. A conductance method for the identification of Escherichia coli 0157: H7 using bacteriophage AR1. IIJ Food Prot. 2002. V. 65. P. 12−17.

109. Mcintyre L. Application and evaluation of bacterial viruses in rapid methodologies for the detection of food-borne pathogens. // 1998. University of Guelph. Guelph.

110. Mcintyre L., Griffiths M.W. A bacteriophage-based impedimetric method for the detection of pathogens in dairy products. II J. of Dairy Science. 1997. V. 80 (Suppl. 1). P. 107 (Abstract No. D142G).

111. Neufeld T., Schwartz-Mittelmann A., Biran D., Ron E.Z., Rishpon J. Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. II Anal Chem. 2003. V. 75. P. 580−585.

112. Balasubramanian S., Sorokulova I.B., Vodyanoy V.J., Simonian A.L. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—A surface plasmon resonance spectroscopic study. II Biosens Bioelectron. 2007. V. 22. P. 948−955.

113. Gervais L., Gel M., B. A., Tolba M., Brovko L.Y., Zourob M., Mandeville R., Griffiths M.W., Evoy S. Immobilization of biotinylated bacteriophage on biosensor surfaces. II Sensors and actuators B-Chemicals. 2007. V. 125. P. 615−621.

114. Nissim A., Hoogenboom H.R., Tomlinson I.M., Flynn G., Midgley C., Lane D., Winter G. Antibody fragments from a 'single pot' phage display library as immunochemical reagents. IIEMBO J. 1994. V. 13. P. 692−698.

115. Wilson D.S., Nock S. Functional protein microarrays. II Curr Opin Chem Biol. 2002. V. 6. P. 81−85.

116. Hoogenboom H.R., De Bruine A.P., Hufton S.E., Hoet R.M., Arends J.W., Roovers R.C. Antibody phage display technology and its applications. If Immunotechnology. 1998. V. 4. P. 1−20.

117. Heitzmann H., Richards F.M. Use of the avidin-biotin complex for specific staining of biological membranes in electron microscopy. II Proc Natl Acad Sci USA. 1974. V. 71. P. 3537−3541.

118. Bayer E.A., Wilchek M., Skutelsky E. Affinity cytochemistry: the localization of lectin and antibody receptors on erythrocytes via the avidin-biotin complex. II FEBS Lett. 1976. V. 68. P. 240−244.

119. Bayer E.A., Wilchek M. Biotin-binding proteins: overview and prospects. II Methods Enzymol. 1990. V. 184. P. 49−51.

120. Duffy S., Tsao K.L., Waugh D.S. Site-specific, enzymatic biotinylation of recombinant proteins in Spodoptera frugiperda cells using biotin acceptor peptides. II Anal Biochem. 1998. V. 262. P. 122−128.

121. Fall R.R. Analysis of microbial biotin proteins. II Methods Enzymol. 1979. V. 62. P. 390 398.

122. Cronan J.E., Jr., Waldrop G.L. Midti-subunit acetyl-CoA carboxylases. II Prog Lipid Res. 2002. V.41.P. 407−435.

123. Choi-Rhee E., Cronan J.E. The Biotin Carboxylase-Biotin Carboxyl Carrier Protein Complex of Escherichia coli Acetyl-Co-A Carboxylase. II Journal of Biological Chemistry. 2003. V. 278. P. 30 806−30 812.

124. Cronan J.E. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. II Journal of Biological Chemistry. 1990. V. 265. P. 1 032 710 333.

125. Li S., Cronan J.E. The gene encoding the biotin carboxlase subunit of Escherichia coli acetyl-CoA carboxylase. //Journal of Biological Chemistry. 1992. V. 267. P. 855−863

126. Tatsumi H., Fukda S., Kikuchi M., Koyama Y. Construction of biotinylated firefly luciferases using biotin acceptor peptides. I I Analytical Biochemistry. 1996. V. 243. P. 176−180.

127. Bayer E.A., Morag E., Lamed R. The cellulosome—a treasure-trove for biotechnology.^ I I Trends Biotechnol. 1994. V. 12. P. 379−386.

128. Ramirez C., Fung J., Miller R.C., Jr., Antony R., Warren J., Kilburn D.G. A bifunctional affinity linker to couple antibodies to cellulose. // Biotechnology (N Y). 1993. V. 11. P. 1570−1573.

129. Le K.D., Gilkes N.R., Kilburn D.G., Miller R.C., Jr., Saddler J.N., Warren R.A. A streptavidin-cellulose-binding domain fusion protein that binds biotinylated proteins to cellulose. II Enzyme Microb Technol. 1994. V. 16. P. 496−500.

130. Greenwood J.M., Gilkes N.R., Kilburn D.G., Miller R.C., Jr., Warren R.A. Fusion to an endoglucanase allows alkaline phosphatase to bind to cellulose. II FEBS Lett. 1989. V. 244. P. 127−131.

131. Gilkes N.R., Warren R.A., Miller R.C., Jr., Kilburn D.G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. IIJ Biol Chem. 1988. V. 263. P. 10 401−10 407.

132. Gilkes N.R., Iienrissat B., Kilburn D.G., Miller R.C., Jr., Warren R.A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. // Microbiol Rev. 1991. V. 55. P. 303−315.

133. Shoseyov O., Doi R.H. Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. // Proc Natl Acad Sci USA. 1990. V. 87. P. 21 922 195.

134. Goldstein M.A., Takagi M., Hashida S., Shoseyov O., Doi R.H., Segel I.H. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A // J Bacteriol. 1993. V. 175. P. 5762−5768.

135. Doi R.H., Goldstein M, Hashida S., Park J.S., Takagi M. The Clostridium cellulovorans cellulosome. // Crit Rev Microbiol. 1994. V. 20. P. 87−93.

136. Shpigel E., Goldlust A., Efroni G., Avraham A., Eshel A., Dekel M., Shoseyov O. Immobilization of recombinant heparinase I fused to cellulose-binding domain. //< Biotechnol Bioeng. 1999. V. 65. P. 17−23.

137. Piervincenzi R.T., Reichert W.M., Hellinga H.W. Genetic engineering of a single-chain antibody fragment for surface immobilization in an optical biosensor. II Biosens Bioelectron. 1998. V. 13. P. 305−312.

138. Georgiou G., Baneyx F. Expression, purification, and immobilization of a protein A-beta-lactamase hybrid protein. II Ann N Y Acad Sci. 1990. V. 589. P. 139−147.

139. Ong E., Gilkes N.R., Miller R.C., Jr., Warren A.J., Kilburn D.G. Enzyme immobilization using a cellulose-binding domain: properties of a beta-glucosidase fusion protein. II Enzyme Microb Technol. 1991. V. 13. P. 59−65.

140. Richins R.D., Mulchandani A., Chen W. Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. II Biotechnol Bioeng. 2000. V. 69. P. 591−596.

141. Katchalski-Katzir E. Immobilized enzymes—learning from past successes and failures. II Trends Biotechnol. 1993. V. 11. P. 471−478.

142. Wang A.A., Mulchandani A., Chen W. Whole-cell immobilization using cell surface-exposed cellulose-binding domain. II Biotechnol Prog. 2001. V. 17. P. 407−411.

143. Lehtio J., Wernerus H., Samuelson P., Teeri T.T., Stahl S. Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain // FEMS Microbiol Lett. 2001. V. 195. P. 197−204.

144. Smith G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. II Science. 1985. V. 228. P. 1315−1317.

145. Smith G.P., Petrenko V.A. Phage Display. // Chem Rev. 1997. V. 97. P. 391−410.

146. Sternberg N., Hoess R.H. Display ofpeptides and proteins on the surface of bacteriophage lambda. II ProcNatl Acad Sci USA. 1995. V. 92. P. 1609−1613.

147. Rodi D.J., Makowski L. Phage-display technology—finding a needle in a vast molecular haystack. II Curr Opin Biotechnol. 1999. V. 10. P. 87−93.

148. Danner S., Belasco J.G. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. // Proc Natl Acad Sci USA. 2001. V. 98. P. 12 954−12 959.

149. Zucconi A., Dente L., Santonico E., Castagnoli L., Cesareni G. Selection of ligands by panning of domain libraries displayed on phage lambda reveals new potential partners of synaptojanin 1. // J Mol Biol. 2001. V. 307. P. 1329−1339.

150. Ren Z.J., Lewis G.K., Wingfield, P.T., Locke E.G., Steven A.C., Black L.W. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. II Protein Sci. 1996. V. 5. P. 1833−1843.

151. Ishii T., Yanagida M. Molecular organization of the shell of the Teven bacteriophage head. IIJ Mol Biol. 1975. V. 97. P. 655−660.

152. Rao V.B., Black L.W. DNA packaging of bacteriophage T4 proheads in vitro. Evidence that prohead expansion is not coupled to DNA packaging. II J Mol Biol. 1985. V. 185. P. 565−578.

153. Ren Z.J., Baumann R.G., Black L.W. Cloning of linear DNAs in vivo by over expressed T4 DNA ligase: construction of a T4 phage hoc gene display vector. II Gene. 1997. V. 195. P. 303−311.

154. Jiang J., Abu-Shilbayeh L., Rao V.B. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. I I Infect Immun. 1997. V. 65. P. 4770−4777.

155. Lazcka O., Del Campo F.J., Munoz F.X. Pathogen detection: a perspective of traditional methods and biosensors. // Biosens Bioelectron. 2007. V. 22. P. 1205−1217.

156. Pancrazio J.J., Whelan J.P., Borkholder D.A., Ma W., Stenger D.A. Development and application of cell-based biosensors. II Ann Biomed Eng. 1999. V. 27. P. 697−711.

157. PauF J.H., Rose J.B., Jiang S.C., London P., Xhou X., Kellogg C. Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii. II Appl Environ Microbiol. 1997. V. 63. P. 133−138.

158. Goodridge L., Griffiths M.W. Reporter bacteriophage assay as a mean to detectfoodborne pathogenic bacteria // Food Res. Int. 2002. V. 35. P. 863−870.

159. Dubow M.S. ed. Bacterial" identification and use of bacteriophages. Encyclopedia of virology. // Ed. Webster R.G., Granoff A. 1994. Academic Press. San Diego, Galif. P. 7881.

160. Takhistov P. ed. Cell-Based Biosensors. Handbook of foodscience, technology, and engineering. // Ed. Hui Y.H. Vol. 3. 2006. CRC Press. Boca Raton, Fl. 712 P.

161. Dad’o S. Tissue Morphology and Cell Impedance Based Biosensors for Toxicity Testing. II MEASUREMENT SCIENCE REVIEW. 2009. V. 9. P. 105−108.

162. Elwing H., Karlsson J.O., Grundstrom N., Gustafsson A.L., Von Schenck H., Sundgren H., Odman S., Andersson R.G., Lundstrom I. Fish scales as biosensors for catecholamines. II Biosens Bioelectron. 1990. V. 5. P. 449−459.

163. Rider T.H., Petrovick M.S., Nargi F.E., Harper J.D., Schwoebel E.D., Mathews R.H., Blanchard D.J., Bortolin L.T., Young A.M., Chen J., Hollis M.A. A B cell-based sensor for rapid identification of pathogens. II Science. 2003. V. 301. P. 213−215.

164. Meighen E.A., Szittner R.B. Multiple repetitive elements and organization of the lux operons of luminescent terrestrial bacteria. IIJ Bacteriol. 1992. V. 174. P. 5371 -53 81.

165. Tolba M., Minikh О., Brovko L.Y., Evoy S., Griffiths M.W. Oriented immobilization of bacteriophages for biosensor applications. H Appl Environ Microbiol. 2010. V. 76. P. 528 535.

166. Sambrook J., Russell D.W. Eds. Molecular Cloning: a laboratory manual. Third ed. V. 1. 2001. Cold Spring Harbor Laboratory Press. New York. 5.4−5.13.

167. Harris D.C. ed. Quality Assurance and Calibration. Quantitative Chemical Analysis. // Ed. Harris D.C. 2007. W. H. Freeman and Company. New York. P. 78−92.

168. Pheiffer C., Carroll N.M., Beyers N., Donald P., Duncan K., Uys P., Van Helden P. Time to detection of Mycobacterium tuberculosis in BACTEC systems as a viable alternative to colony counting. H Int J Tuberc Lung Dis. 2008. V. 12. P. 792−798.

169. Botstein D., Maurer R. Genetic approaches to the analysis of microbial development. II AnnuRev Genet. 1982. V. 16. P/61−83.

170. Cademartiri R., Anany H., Gross I., Bhayani R., Griffiths M., Brook M.A. Immobilization of bacteriophages on modified silica particles. II Biomaterials. 2010. V. 31. P. 1904;1910.

171. Kaper J.B. EPEC delivers the goods. // Trends Microbiol. 1998. V. 6. P. 169−172- discussion 172−163 P.

172. Li Z., Elliott E., Payne J., Isaacs J., Gunning P., O’loughlin E V. Shiga toxin-producing Escherichia coli can impair T84 cell structure and function without inducing attaching/effacing lesions. //Infect Immun. 1999. V. 67. P. 5938−5945.

173. ВсСмирная организация здравоохранСния. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π±ΡŽΠ»Π»Π΅Ρ‚Π΅Π½ΡŒ № 125. ЭнтСрогСморрагичСская Escherichia coli (ЕНЕБ). 2005. http://www.who.int/mediacentre/factsheets/fs 125/ru

174. Frankel G., Phillips A.D., Rosenshine I., Dougan G., Kaper J.B., Knutton S. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. II Mol Microbiol. 1998. V. 30. P. 911−921.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ