Экспериментально-теоретическое исследование водно-электролитного обмена клетки транспортного эпителия
Диссертация
Полученные экспериментальные данные нуждаются в средствах обработки и анализа. В этой связи широкое распространение получили методы математического моделирования, которые позволяют проводить анализ экспериментальных данных и рассчитывать физиологические характеристики клетки, недоступные для прямого экспериментального измерения. В частности, математические модели мембранного транспорта необходимы… Читать ещё >
Список литературы
- Григорьев А.И., Ларина И. М., Буравкова Л. Б. и др. Сравнение антидиуретической реакции почек человека при различных способах введения препарата вазопрессина // Физиология человека. 2003. Т. 29(3). С. 89−97.
- Демидович Б. Основные понятия теории устойчивости. Лекции по математической теории устойчивости. 1967. Москва: Наука. С. 472.
- Дзгоев С.Г., Иванова Л. Н. Гиалуронидазная активность плазмы крови крыс вистар: влияние дегидратации и вазопрессина // Российский физиологический журнал им. И. М. Сеченова. 2012. Т.98(6). С. 777−781.
- Зеленина М.Н., Соленов Е. И., Зеленин С. М. и др. Функциональная характеристика СБ-белка в развивающейся почке млекопитающих // Российский физиологический журнал им. И. М. Сеченова. 1994. Т. 80(7). С. 81−87.
- Иванова Л.Н., Горюнова Т. Е., Климова В. П. Активность гиалуронидазы в ткани почках белой крысы вызванная дегидратацией и действием экзогенного антидиуретического гормона // Доклады Академии наук СССР. 1975. Т. 224. С. 12 091 211.
- Иванова Л.Н., Зеленина М. Н., Логвиненко Н. Г. и др. Возрастные изменения молекулярных механизмов гормональной регуляции функции почек // Журнал эволюционной биохимии и физиологии. 1990. Т. 26(4). С. 482−489.
- Иванова Л.Н. Вазопрессин: молекулярные основы антидиуретического эффекта // Российский физиологический журнал им. И. М. Сеченова. 2011. Т. 97(3). С. 235−262.
- Логвиненко Н.С., Свиташева Н. Г., Соленов Е. И. и др. Рецепция альдостерона фракцией мембран и цитозолем почек крыс в постнатальном онтогенезе // Физиологический журнал СССР им. И. М. Сеченова. 1989. Т. 75(2). С. 251−256.
- Логвиненко Н.С., Хлебодарова Т. М., Соленов Е. И. и др. Гормональная регуляция экспрессии мРНК Na, К -АТФазы в почках крыс в постнатальном онтогенезе // Цитология. 1991. Т. 33. С. 18−25.
- Логвиненко Н.С., Соленов Е. И., Иванова Л. Н. Возрастные особенности быстрой негеномной регуляции внутриклеточной концентрации натрия в дистальном сегменте нефрона крысы // Российский физиологический журнал им. И. М. Сеченова. 2006. Т. 92(1). С. 49−56.
- Логвиненко Н.С., Соленов Е. И., Иванова Л. Н. Влияние альдостерона на регуляцию объема главных клеток эпителия собирательных трубок почки крысы в постнатальном онтогенезе // Доклады Академии наук. 2008. Т. 423(5). С. 700−703.
- Наточин Ю.В. Физиология человека: почка // Физиология человека. 2010. Т. 36(5). С. 9−18.
- Соленов Е.И., Логвиненко Н. С., Зеленина М. Н. и др. Изменение рецепторного звена в процессе развития чувствительности почки к альдостерону и антидиуретическому гормону // Физиологический журнал СССР им. И. М. Сеченова. 1986. Т. 72(12). С. 1673−1679.
- Соленов Е.И., Иванова Л. Н. Онтогенетическое изменение рецептора вазопрессина в почке млекопитающих // Российский физиологический журнал им. И. М. Сеченова. 1997. Т. 83(7). С. 120−129.
- Соленов Е.И., Батурина Г. С., Иванова Л. Н. Влияние вазопрессина на водную проницаемость клеток эпителия собирательных трубок почки в постнатальномонтогенезе крыс // Российский физиологический журнал им. И. М. Сеченова. 2001. Т. 87(7). С. 965−972.
- Соленов Е.И., Каткова J1.E., Нестеров В. В. и др. Роль Са2+ и аквапорина-2 в регуляции водной проницаемости базолатеральной мембраны собирательной трубки почки крысы // Российский физиологический журнал им. И. М. Сеченова. 2006. Т. 92(11). С. 1358−1364.
- Соленов Е.И., Батурина Г. С., Каткова JI.E. Роль водных каналов в регуляции объема главных клеток собирательных трубок почки крысы в гипоосмотическом шоке // Биофизика. 2008. Т. 53(4). С. 684−690.
- Ходус Г. Р., Соленов Е. И., Нестеров В. В. и др. Роль кальцийзависимых процессов в регуляции вазопрессином водной проницаемости клеток собирательных трубок почки мыши // Российский физиологический журнал им. И. М. Сеченова. 2006. Т. 92(5). С. 290−297.
- Adachi S., Uchida S., Ito H. et al. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle’s loop and collecting ducts of rat kidney // J. Biol. Chem. 1994. V. 269(26). P. 17 677−17 683.
- Adragna N.C., Di Fulvio M., Lauf P.K. Regulation of K-Cl cotransport: from function to genes //J. Membr. Biol. 2004. V. 201(3). P. 109−137.
- Agre P., King L.S., Yasui M. et al. Aquaporin water channels-from atomic structure to clinical medicine // J. Physiol. 2002. V. 542(Pt 1) P. 3−16.
- Albers R.W. Biochemical aspects of active transport // Annu. Rev. Biochem. 1967. V. 36. P. 727−756.
- Aoki Т., Suzuki Т., Hagiwara H. et al. Close association of aquaporin-2 internalization with caveolin-1 // Acta Histochem. Cytochem. 2012. V. 45(2). P. 139−146.
- Armstrong C.M. The Na/K pump, CI ion, and osmotic stabilization of cells // Proc. Natl. Acad. Sci. USA. 2003. V. 100(10). P. 6257−6262.
- Avner E.D. Clinical disorders of water metabolism: hyponatremia and hypernatremia // Pediatr. Ann. 1995. V. 24(1). P. 23−30.
- Asher C., Wald H., Rossier B.C. et al. Aldosterone-induced increase in the abundance of Na+ channel subunits //Am. J. Physiol. 1996. V. 271(2 Pt 1). P. C605-C611.
- Bagshaw S.M., Townsend D.R., McDermid R.C. Disorders of sodium and water balance in hospitalized patients // Can. J. Anaesth. 2009. V. 56(2). P. 151−167.
- Banderali U., Roy G. Anion channels for amino acids in MDCK cells // Am. J. Physiol. 1992. V. 263(6 Pt 1). P. C1200-C1207.
- Beck F.X., Dorge A., Rick R. et al. The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis // Pflugers Arch. 1988. V. 411(3). P. 259−267.
- Benson J.D., Chicone C.C., Critser J.K. A general model for the dynamics of cell volume, global stability, and optimal control // J. Math. Biol. 2011. V. 63(2). P. 339−359.
- Berger H.A., Anderson M.P., Gregory R.J. et al. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel // J. Clin. Invest. 1991. V. 88(4). P. 1422−1431.
- Boese S.H., Wehner F., Kinne R.K.H. Taurine permeation through swelling-activated anion conductance in rat IMCD cells in primary culture // Am. J. Physiol. 1996a. V. 271. P. F498-F507.
- Boese S.H., Kinne R.K.H., Wehner F. Single-channel properties of swelling-activated anion conductance in rat inner medullary collecting duct cells // Am. J. Physiol. 1996b. V. 271. P. F1224-F1223.
- Boim M.A., Ho K., Shuck M.E. et al. ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms // Am. J. Physiol. 1995. V. 268(6 Pt 2). P. F1132-F1140.
- Booth R.E., Johnson J.P., Stockand J.D. Aldosterone // Adv. Physiol. Educ. 2002. V. 26(1−4). P. 8−20.
- Breyer M.D., Ando Y. Hormonal signaling and regulation of salt and water transport in the collecting duct // Annu. Rev. Physiol. 1994. V. 56. P. 711−739.
- Brown D., Hirsch S., Gluck S. An Hl-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations //Nature. 1988. V. 331. P. 622−624.
- Bugaj V., Pochynyuk O., Stockand J.D. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption // Am. J. Physiol. Ren. Physiol. 2009. V. 297. P. F1411-F1418.
- Burckhardt B.C., Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells // Rev. Physiol. Biochem. Pharmacol. 2003. V. 146. P. 95−158.
- Campean V., Kricke J., Ellison D. et al. Localization of thiazidesensitive Na (+)-ClQ cotransport and associated gene products in mouse DCT // Am. J. Physiol. Renal. Physiol. 2001. V. 281. P. F1028-F1035.
- Canessa C.M., Schafer J.A. AVP stimulates Na+ transport in primary cultures of rabbit cortical collecting duct cells // Am. J. Physiol. 1992. V. 262. P. F454-F461.
- Carattino M.D., Sheng S., Kleyman T.R. Epithelial Na+ channels are activated by laminar shear stress // J. Biol. Chem. 2004. V. 279(6). P. 4120−4126.
- Chang S.S., Grunder S., Hanukoglu A. et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1 //Nat. Genet. 1996. V. 12(3). P. 248−253.
- Chapman J.B., Johnson E.A., Kootsey J.M. Electrical and biochemical properties of an enzyme model of the sodium pump // J. Membr. Biol. 1983. V. 74(2). P. 139−153.
- Chou C.L., Ma T., Yang B. et al. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice // Am. J. Physiol. 1998. V. 274(2 Pt 1). P. C549−554.
- Chou C.L., Yu M.J., Kassai E.M. et al. Roles of basolateral solute uptake via NKCC1 and of myosin II in vasopressin-induced cell swelling in inner medullary collecting duct // Am. J. Physiol. Renal. Physiol. 2008. V. 295(1). P. F192-F201.
- Clarke R.J., Kane D.J. Two gears of pumping by the sodium pump // Biophys. J. 2007. V. 93(12). P. 4187−4196.
- Dani J.A., Levitt D.J. Diffusion and kinetic approaches to describe permeation in ionic channels // J. Theor. Biol. 1990. V. 146(3). P. 289−301.
- De Weer P. Keeping it simple: kinetic models for the sodium pump // J. Gen. Physiol. 1997. V. 109(5). P. 525−526.
- Delpire E., Mount D.B. Human and murine phenotypes associated with defects in cation-chloride cotransport // Annu. Rev. Physiol. 2002. V. 64. P. 803−843.
- Despa S., Vecer J., Steels P. et al. Fluorescence lifetime microscopy of the Na+ indicator Sodium Green in HeLa cells // Anal. Biochem. 2000. V. 281(2). P. 159−175.
- Eaton D., Pooler J. Vander’s Renal Physiology. 7th Edition. 2009. McGraw-Hill Medical: New York. P. 240.
- Duan D., Winter C., Cowley S. et al. Molecular identification of a volume-regulated chloride channel //Nature. 1997. V. 390(6658). P. 417−421.
- Dubach J.M., Das S., Rosenzweig A. et al. Visualizing sodium dynamics in isolated cardiomyocytes using fluorescent nanosensors // Proc. Natl. Acad. Sci. USA. 2009. V. 106(38). P. 16 145−16 150.
- El Mernissi G., Doucet A. Quantitation of 3H. ouabain binding and turnover of Na-K-ATPase along the rabbit nephron // Am. J. Physiol. 1984. V. 247(1 Pt 2). P. F158-F167.
- Elkjaer M.L., Nejsum L.N., Gresz V. Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways // Am. J. Physiol. Renal. Physiol. 2001. V. 281(6). P. F1047-F1057.
- Espelt M.V., Alleva K., Amodeo G. et al. Volumetric response of vertebrate hepatocytes challenged by osmotic gradients: a theoretical approach // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008. V. 150(1). P. 103−111.
- Estevez R., Boettger T., Stein V. et al. Barttin is a CI" channel beta-subunit crucial for renal CI" reabsorption and inner ear K+secretion // Nature. 2001. V. 414(6863). P. 558−561.
- Farinas J., Kneen M., Moore M. et al. Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering // J. Gen. Physiol. 1997. V. 110(3). P. 283−296.
- Farinas J., Simanek V., Verkman A.S. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs // Biophys. J. 1995. V. 68(4). P. 1613−1620.
- Farinas J., Verkman A.S. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry // Biophys. J. 1996. V. 71(6). P. 35 113 522.
- Fenton R.A., Knepper M.A. Mouse models and the urinary concentrating mechanism in the new millennium // Physiol. Rev. 2007. V. 87(4). P. 1083−1112.
- Feraille E., Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control // Physiol. Rev. 2001. V. 81(1). P. 345−418.
- Feraille E., Mordasini D, Gonin S. et al. Mechanism of control of Na, K-ATPase in principal cells of the mammalian collecting duct // Ann. NY Acad. Sei. 2003. V. 986. P. 570−578.
- Fischbarg J., Li J., Kuang K. et al. Determination of volume and water permeability of plated cells from measurements of light scattering // Am. J. Physiol. 1993. V. 265(5 Pt 1). P. C1412-C1423.
- Flamion B., Spring K., Abramow M. Adaptation of inner medullary collecting duct to dehydration involves a paracellular pathway // Am. J. Physiol. 1995. V. 268. P. F53-F63.
- Folkesson H.G., Matthay M.A., Frigeri A. et al. Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport // J. Clin. Invest. 1996. V. 97(3). P. 664−671.
- Fraser J.A., Huang C.L. A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells // J. Physiol. 2004. V. 559(Pt 2). P. 459−478.
- Fraser J.A., Huang C.L. Quantitative techniques for steady-state calculation and dynamic integrated modelling of membrane potential and intracellular ion concentrations // Progr. Biophys. Mol. Biol. 2007. V. 94(3). P. 336−372.
- Frigeri A., Gropper M.A., Turck C.W. et al. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes //Proc. Natl. Acad. Sei. USA. 1995. V. 92. P. 4328−4331.
- Frindt G., Palmer L.G. Ca-activated K channels in apical membrane of mammalian CCT, and their role in K secretion // Am. J. Physiol. 1987. V. 252(3 Pt 2). P. F458-F467.
- Frindt G., Palmer L.G. Low-conductance K channels in apical membrane of rat cortical collecting tubule // Am. J. Physiol. 1989. V. 256(1 Pt 2). P. F143-F151.
- Furst J., Bazzini C., Jakab M. et al. Functional reconstitution of ICln in lipid bilayers. Pflugers Arch. 2000. V. 440(1). P. 100−115.
- Gagnon K.B., England R., Delpire E. Volume sensitivity of cation-Cl" cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4 // Am. J. Physiol. Cell. Physiol. 2006. V. 290(1). P. C134-C142.
- Galizia L., Flamenco M.P., Rivarola V. et al. Role of AQP2 in activation of calcium entry by hypotonicity: implications in cell volume regulation // Am. J. Physiol. Renal. Physiol. 2008. V. 294(3). P. F582-F590.1.01
- Garay R.P., Garrahan P.J. The interaction of sodium and potassium with the sodium pump in red cells // J. Physiol. 1973. V. 231(2). P. 297−325.
- Garg L. C, Knepper M.A., Burg M.B. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments // Am. J. Physiol. Renal. Fluid. Electrolyte Physiol. 1981. V. 240. P. F536-F544.
- Garty H. Mechanisms of aldosterone action in tight epithelia // J. Membr. Biol. 1986. V. 90. P. 193−205.
- Geek P., Heinz E. Coupling of ion flows in cell suspension systems // Annal. NY Acad. Sci. 1980. V. 341. P. 57−66.
- Gifford J.D., Galla J.H., Luke R.G. et al. Ion concentrations in the rat CCD: differences between cell types and effect of alkalosis 11 Am. J. Physiol. 1990. V. 259(5 Pt 2). P. F778-F782.
- Gill D.R., Hyde S.C., Higgins C.F. et al. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein // Cell. 1992. V. 71(1). P. 2332.
- Ginetzinsky A.G. Role of hyaluronidase in the re-absorption of water in renal tubules: the mechanism of action of the antidiuretic hormone //Nature. 1958. V. 182. P. 1218−1220.
- Ginns S.M., Knepper M.A., Ecelbarger C.A. et al. Immunolocalization of the secretory isoform of Na-K-Cl cotransporter in rat renal intercalated cells // J. Am. Soc. Nephrol. 1996. V. 7(12). P. 2533−2542.
- Goldman D.E. Potential, impedance, and rectification in membranes // J. Gen. Physiol. 1943. V. 27(1). P. 37−60.
- Graf J., Haddad P., Haeussinger D. et al. Cell volume regulation in liver // Ren. Physiol. Biochem. 1988. V. 11(3−5). P. 202−220.
- Grinstein S., Clarke C.A., Dupre A. et al. Volume-induced increase of anion permeability in human lymphocytes // J. Gen. Physiol. 1982. V. 80(6). P. 801−823.
- Grander S., Thiemann A., Pusch M. et al. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume // Nature. 1992. V. 360(6406). P. 759−762.
- Grunewald R.W., Kinne R.K.H. Osmo-regulation in the mammalian kidney: The role of organic osmolytes // J. Exp. Zool. 1999. V. 283. P. 708−724.
- Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle // J. Physiol. 1984. V. 352. P. 685−701.
- Guizouarn H., Motais R. Swelling activation of transport pathways in erythrocytes: effects of CI", ionic strength, and volume changes // Am. J. Physiol. 1999. V. 276(1 Pt 1). P. C210-C220.
- Haas M., Forbush B. The Na-K-Cl cotransporter of secretory epithelia // Ann. Rev. Physiol. 2000. V. 62. P. 515−534.
- Hall J.A., Kirk J., Potts J.R. et al. Anion channel blockers inhibit swelling-activated anion, cation, and nonelectrolyte transport in HeLa cells // Am. J. Physiol. 1996. V. 271(2 Pt 1). P. C579-C588.
- Hamann S., Kiilgaard J.F., Litman T. et al. Measurement of cell volume changes by fluorescence self-quenching // J. Fluoresc. 2002. V. 12(2). P. 139−145.
- Hamill O.P., Martinac B. Molecular basis of mechanotransduction in living cells // Physiol. Rev. 2001. V. 81(2). P. 685−740.
- Hansen U.P., Gradmann D., Sanders D. et al. Interpretation of current-voltage relationships for «active» ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms //J. Membr. Biol. 1981. V. 63(3). P. 165−190.
- Happel J., Sellers P.H. Systemization for the King-Altman-Hill diagram method in chemical kinetics // J. Phys. Chem. 1992. V. 96. P. 2593−2597.
- Hazama A., Okada Y. Ca2+ sensitivity of volume-regulatory K+ and CI" channels in cultured human epithelial cells // J. Physiol. 1988. V. 402. P. 687−702.
- Hazama A., Okada Y. Biphasic rises in cytosolic free Ca2+ in association with activation of K+ and CI" conductance during the regulatory volume decrease in cultured human epithelial cells //Pflugers Arch. 1990. V. 416(6). P. 710−714.
- Hebert S.C., Desir G., Giebisch G. et al. Molecular diversity and regulation of renal potassium channels //Physiol. Rev. 2005. V. 85(1). P. 319−371.
- Hernandez J., Fischbarg J., Liebovitch L.S. Kinetic model of the effects of electrogenic enzymes on the membrane potential // J. Theor. Biol. 1989. V. 137(1). P. 113−125.
- Hernandez J. A. Stability properties of elementary dynamic models of membrane transport //Bull. Math. Biol. 2003. V. 65(1). P. 175−197.
- Hernandez J. A. A general model for the dynamics of the cell volume // Bull. Math. Biol. 2007. V. 69(5). P. 1631−1648.
- Hernandez J.A., Chifflet S. Electrogenic properties of the sodium pump in a dynamic model of membrane transport // J. Membr. Biol. 2000. V. 176(1). P. 41−52.
- Hernandez J.A., Cristina E. Modeling cell volume regulation in nonexcitable cells: the roles of the Na+ pump and of cotransport systems // Am. J. Physiol. 1998. V. 275(4 Pt 1). P. C1067-C1080.
- Hill T.L. Free energy transduction and biochemical cycle kinetics. 1988. New York: Springer-Verlag. P. 119.
- Hirsch J., Schlatter E. K+ channels in the basolateral membrane of rat cortical collecting duct // Pflugers Arch. 1993. V. 424(5−6). P. 470−477.
- Ho K., Nichols C.G., Lederer W.J. et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel //Nature. 1993. V. 362(6415). P. 31−38.
- Hodgkin A.L., Katz B. The effect of sodium ions on the electrical activity of giant axon of the squid // J. Physiol. 1949. V. 108(1). P. 37−77.
- Hoffman P.G., Tosteson D.C. Active sodium and potassium transport in high potassium and low potassium sheep red cells // J. Gen. Physiol. 1971. V. 58(4). P. 438−466
- Hoffmann E.K., Lambert I.H., Pedersen S.F. Physiology of cell volume regulation in vertebrates // Physiol. Rev. 2009. V. 89(1). P. 193−277.
- Hoffmann E.K., Lambert I.H., Simonsen L.O. Separate, Ca2±activated K+ and CI" transport pathways in Ehrlich ascites tumor cells // J. Membr. Biol. 1986. V. 91(3). P. 227−244.
- Hoorn E.J., Zietse R. Hyponatremia and Mortality: Moving Beyond Associations // Am. J. Kidney Dis. 2013. pii: S0272−6386(12)01473−4. doi: 10.1053/j.ajkd.2012.09.019.
- Hoppensteadt F.C., Peskin C.S. Mathematics in medicine and the life sciences. 1991. New York: Springer-Verlag. P. 365.
- Huflejt M.E., Blum R.A., Miller S.G. et al. Regulated Cl transport, K and CI permeability, and exocytosis in T84 cells // J. Clin. Invest. 1994. V. 93(5). P. 1900−1910.
- Hunter M., Lopes A.G., Boulpaep E. et al. Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule // Am. J. Physiol. 1986. V. 251(4 Pt 2). P. F725-F733.
- Hunter M., Lopes A.G., Boulpaep E.L. et al. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules // Proc. Natl. Acad. Sci. USA. 1984. V. 81(13). P. 4237−4239.
- Inoue J., Iwaoka T., Tokunaga H. et al. A family with Liddle’s syndrome caused by a new missense mutation in the beta subunit of the epithelial sodium channel // J. Clin. Endocrinol. Metab. 1998. V. 83(6). P. 2210−2213.
- Ishibashi K. Aquaporin subfamily with unusual NPA boxes // Biochim. Biophys. Acta. 2006. V. 1758(8). P. 989−993.
- Ishibashi K., Imai M., Sasaki S. Cellular localization of aquaporin 7 in the rat kidney // Exp. Nephrol. 2000. V. 8(4−5). P. 252−257.
- Ivanova L.N., Solyenov E.I., Zelenina M.N. et al. Decrease in the response to ADH of the rat kidney as a result of early postnatal treatment with cortisone // Pflugers Arch. 1987. V. 408. P. 328−322.
- Ivanova L.N., Melidi N.N. Effects of vasopressin on hyaluronate hydrolase activities and water permeability in the frog urinary bladder // Pflugers Arch. 2001. V. 443(1). P. 72−77.
- Jacob R., Piwnica-Worms D., Horres C.R. et al. Theoretical effects of transmembrane electroneutral exchange on membrane potential // J. Gen. Physiol. 1984. V. 83(1). P.47−56.
- Jakobsson E. Interactions of cell volume, membrane potential, and membrane transport parameters // Am. J. Physiol. 1980. V. 238(5). P. C196-C206.
- Jayaraman S., Teitler L., Skalski B. et al. Long-wavelength iodide-sensitive fluorescent indicators for measurement of functional CFTR expression in cells // Am. J. Physiol. 1999. V. 277(5 Pt 1). P. C1008-C1018.
- Jayaraman S., Verkman A.S. Quenching mechanism of quinolinium-type chloridesensitive fluorescent indicators //Biophys. Chem. 2000. V. 85(1). P. 49−57.
- Jentsch T.J. Chloride transport in the kidney: lessons from human disease and knockout mice//J. Am. Soc. Nephrol. 2005. V. 16(6). P. 1549−1561.
- Jentsch T.J., Stein V., Weinreich F. et al. Molecular structure and physiological function of chloride channels // Physiol. Rev. 2002. V. 82(2). P.503−568.
- Jiang J., Song Y., Bai C. et al. Pleural surface fluorescence measurement of Na+ and CI" transport across the air space-capillary barrier // J. Appl. Physiol. 2003. V. 94(1). P. 343 352.
- Jordan I.K., Kota K.C., Cui G. et al. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters // Proc. Natl. Acad. Sci. USA. 2008. V. 105(48). P. 18 865−18 870.
- Kaldenhoff R., Bertl A., Otto B. et al. Characterization of plant aquaporins // Methods Enzymol. 2007. V. 428. P. 505−531.
- Kao H.P., Verkman A.S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position // Biophys. J. 1994. V. 67(3). P. 12 911 300.
- Kaplan J.H. Ion movements through the sodium pump // Annu. Rev. Physiol. 1985. V. 47. P. 535−544.
- Katsura T., Verbavatz J.M., Farinas J. et al. Constitutive and regulated membrane expression of aquaporin 1 and aquaporin 2 water channels in stably transfected LLC-PK1 epithelial cells //Proc. Natl. Acad. Sci. USA. 1995. V. 92(16). P. 7212−7216.
- Katz A. I, Doucet A., Morel F. Na, K-ATPase activity along the rabbit, rat and mouse nephron // Am. J. Physiol. Renal Fluid. Electrolyte Physiol. 1979. V. 237. P. F114-F120.
- Kaunas R., Nguyen P., Usami P. et al. Cooperative effects of Rho and mechanical stretch on stress fiber organization // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 15 895−15 900.
- Keener J.P., Sneyd J. Mathematical physiology. 1998. New York, London: Springer. P. 766.
- Kellenberger S., Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure // Physiol. Rev. 2002. V. 82(3). P.735−767.
- Kida H, Miyoshi T, Manabe K. et al. Roles of aquaporin-3 water channels in volume-regulatory water flow in a human epithelial cell line // J. Membr. Biol. 2005. V. 208(1). P. 55−64.
- Kimelberg H.K., O’Connor E. Swelling of astrocytes causes membrane potential depolarization // Glia. 1988. V. 1(3). P. 219−224.
- King E.L., Altman C.J. A schematic method of deriving the rate laws for enzyme-catalyzed reactions //Phys. Chem. 1956. V. 60. P. 1375−1378.
- Kinne R.K. Mechanisms of osmolyte release // Contrib. Nephrol. 1998. V. 123. P. 34−49.
- Kinne R.K., Boese S.H., Kinne-Saffran E. et al. Osmoregulation in the renal papilla: membranes, messengers and molecules // Kidney Int. 1996. V. 49(6). P.1686−1689.
- Koefoed-Johnsen V., Ussing H.H. The nature of the frog skin potential // Acta Physiol. Scand. 1958. V. 42(3−4). P. 298−308.
- Koepsell H., Endou H. The SLC22 drug transporter family // Pflugers Arch. 2004. V. 447(5). P. 666−676.
- Kojima R., Sekine T., Kawachi M. et al. Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney // J. Am. Soc. Nephrol. 2002. V. 13(4). P. 848−857.
- Kovbasnjuk O., Chatton J.Y., Friauf W.S. et al. Determination of the Na permeability of the tight junctions of MDCK cells by fluorescence microscopy // J. Membr. Biol. 1995. V. 148(3). P. 223−232.
- Kramheft B., Lambert I.H., Hoffmann E.K. et al. Activation of Cl-dependent K transport in Ehrlich ascites tumor cells // Am. J. Physiol. 1986. V. 251(3 Pt 1). P. C369-C379.
- Krane C.M., Goldstein D.L. Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans // Mamm. Genome. 2007. V. 18(6−7). P. 452−462.
- Kriz W., Bankir L. A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS) // Kidney Int. 1988. V. 33(1). P. 1−7.
- Kiihlbrandt W. Biology, structure and mechanism of P-type ATPases // Nature Rev. Mol. Cell Biol. 2004. V. 5. P. 282−295.
- Lambert I.H. Regulation of the cellular content of the organic osmolyte taurine in mammalian cells //Neurochem. Res. 2004. V. 29(1). P. 27−63.
- Lang F., Busch G.L., Ritter M. et al. Functional significance of cell volume regulatory mechanisms // Physiol. Rev. 1998. V. 78(1). P. 247−306.
- Lauf P.K., Adragna N.C. K-Cl cotransport: properties and molecular mechanism // Cell Physiol. Biochem. 2000. V. 10(5−6). P. 341−354.
- Lauger P. Ion transport through pores: a rate-theory analysis // Biochim. Biophysic. Acta. 1973. V. 311(3). P. 423−441.
- Lee W.S., Hebert S.C. ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments // Am. J. Physiol. 1995. V. 268(6 Pt 2). P. F1124−1131.
- Legato J., Knepper M.A., Star R.A. et al. Database for renal collecting duct regulatory and transporter proteins //Physiol. Genomics. 2003. V. 13(2). P. 179−181.
- Loffing J., Loffmg-Cueni D., Macher A. et al. Localization of epithelial sodium channel and aquaporin-2 in rabbit kidney cortex // Am. J. Physiol. Renal Physiol. 2000. V. 278(4). P. F530-F539.
- Loffing J., Pietri L., Aregger F. et al. Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets // Am. J. Physiol. Ren. Physiol. 2000. V. 279. P. F252-F258.
- Lytle C., Forbush B. 3rd. The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation // J. Biol. Chem. 1992. V. 267(35). P. 25 438−25 443.
- Mamenko M., Zaika O., Ilatovskaya D.V. et al. Angiotensin II increases activity of the epithelial Na+ channel (ENaC) in distal nephron additively to aldosterone // J. Biol. Chem. 2012. V. 287(1). P. 660−671
- Marcano M., Yang H.M., Nieves-Gonzalez A. et al. Parameter estimation for mathematical models of NKCC2 cotransporter isoforms // Am. J. Physiol. Renal Physiol. 2009. V. 296(2). P. F369-F381.
- Martin del Rio R., Solis J.M. The anion-exchanger AE1 is a diffusion pathway for taurine transport in rat erythrocytes // Adv. Exp. Med. Biol. 1998. V. 442. P. 255−260.
- Mathai J., Zeidel M. Measurement of Water and Solute Permeability by Stopped-Flow Fluorimetry // In: Dopico A.M. Methods in molecular biology: Methods in membrane lipids. 2007. Totowa. N.J.: Humana Press. P. 323−332.
- McDonough A.A., Magyar C.E., Komatsu Y. Expression of Na-K-ATPase a- and b-subunits along rat nephron: isoform specificity and response to hypokalemia // Am. J. Physiol. Cell Physiol. 1994. V. 267. P. C901-C908.
- Mercado A., Song L., Vazquez N. et al. Functional comparison of the K±C1″ cotransporters KCC1 and KCC4 // J. Biol. Chem. 2000. V. 275(39). P. 30 326−30 334.
- Meuwis K., Boens N., De Schryver F.C. et al. Photophysics of the fluorescent K+ indicator PBFI // Biophys. J. 1995. V. 68(6). P. 2469−2473.
- Minta A., Tsien R.Y. Fluorescent indicators for cytosolic sodium // J. Biol. Chem. 1989. V. 264(32). P. 19 449−19 457.
- Molleman A. Patch clamping: an introductory guide to patch clamp electrophysiology. 2002. New York: J. Wiley. P. 188.
- Morales-Mulia M., Pasantes-Morales H., Moran J. Volume sensitive efflux of taurine in HEK293 cells overexpressing phospholemman // Biochim. Biophys. Acta. 2000. V. 1496(2−3). P. 252−260.
- Morel F., Doucet A. Hormonal control of kidney functions at the cell level // Physiol. Rev. 1986. V. 66. P. 377−468.
- Moreton R.B. An investigation of the electrogenic sodium pump in snail neurones, using the constant-field theory//J. Exp. Biol. 1969. V. 51(1). P. 181−201.
- Mori Y. Mathematical properties of pump-leak models of cell volume control and electrolyte balance // J. Math. Biol. 2012. V. 65(5). P. 875−918.
- Morishita Y., Matsuzaki T., Hara-chikuma M. et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule // Mol. Cell. Biol. 2005. V. 25(17). P. 7770−7779.
- Motohashi H., Sakurai Y., Saito H. et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney // J. Am. Soc. Nephrol. 2002. V. 13(4). P. 866−874.
- Mount D.B., Mercado A., Song L. et al Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family // J. Biol. Chem. 1999. V. 274(23). P. 16 355−16 362.
- Mullins L. J., Noda K. The influence of sodium-free solutions on the membrane potential of frog muscle fibers // J. Gen. Physiol. 1963. V. 47. P. 117−132.
- Muto S. Potassium transport in the mammalian collecting duct // Physiol. Rev. 2001. V. 81(1). P. 85−116.
- Muto S., Asano Y., Seldin D. et al. Basolateral Na+ pump modulates apical Na+ and K+ conductances in rabbit cortical collecting ducts // Am. J. Physiol. 1999. V. 276(1 Pt 2). P. F143-F158.
- Najjar F., Zhou H., Morimoto T. et al. Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct // Am. J. Physiol. Renal. Physiol. 2005. V. 289(4). P. F922-F932.
- Navar L.G. Counterpoint: Activation of the intrarenal renin-angiotensin system is the dominant contributor to systemic hypertension // J. Appl. Physiol. 2010. V. 109(6). P. 1998−2000.
- Nejsum L.N., Elkjaer M., Hager H. et al Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry // Biochem. Biophys. Res. Commun. 2000. V. 277(1). P.164−170.
- Nielsen S., Frokiaer J., Marples D. et al Aquaporins in the kidney: from molecules to medicine // Physiol. Rev. 2002. V. 82(1). P. 205−244.
- Ogden D., Stanfield P. Patch clamp techniques for single channel and whole-cell recording // In: Ogden D. Microelectrode techniques: the Plymouth Workshop handbook. 1994. Cambridge: Company of Biologists. P. 448.
- Okada Y. Volume expansion-sensing outward-rectifier CI" channel: fresh start to the molecular identity and volume sensor // Am. J. Physiol. 1997. V. 273(3 Pt 1). P. C755-C789.
- Pacha J., Frindt G., Sackin H. et al. Apical maxi K channels in intercalated cells of CCT // Am. J. Physiol. 1991. V. 261(4 Pt 2). P. F696-F705.
- Palmer L.G. Ion selectivity of the apical membrane Na channel in the toad urinary bladder // J. Membr. Biol. 1982. V. 67(2). P. 91−98.
- Park E.Y., Kim W.Y., Kim Y.M. et al. Proposed mechanism in the change of cellular composition in the outer medullary collecting duct during potassium homeostasis // Histol. Histopathol. 2012. V. 27(12). P. 1559−1577.
- Pasantes-Morales H., Moran J., Sanchez-Olea R. Volume regulatory fluxes in glial and renal cells // Adv. Exp. Med. Biol. 1992. V. 315. P. 361−368.
- Paulmichl M., Friedrich F., Maly K. et al. The effect of hypoosmolarity on the electrical properties of Madin Darby canine kidney cells // Pflugers Arch. 1989. V. 413(5). P. 456 462.
- Pedersen S.F., Beisner K.H., Hougaard C. et al. Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts // J. Physiol. 2002. V. 541(Pt 3). P. 779−796.
- Pedersen S.F., Poulsen K.A., Lambert I.H. Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts // Am. J. Physiol. Cell Physiol. 2006. V. 291(6). P. C1286−1296.
- Pfennig C.L., Slovis C.M. Sodium disorders in the emergency department: a review of hyponatremia and hypernatremia // Emerg. Med. Pract. 2012. V. 14(10). P. 1−26.
- Pisitkun T., Bieniek J., Tchapyjnikov D. et al. High-throughput identification of IMCD proteins using LC-MS/MS // Physiol. Genomics. 2006. V. 25(2). P. 263−276.
- Post R.L., Jolly P.C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane // Biochim. Biophys. Acta 1957. V. 25(1). P. 118 128.
- Post R.L., Klodos I. Interpretation of extraordinary kinetics of Na±K±ATPase by phase change // Am. J. Physiol. 1996. V. 271. P. C1415-C1434.
- Rakowski R.F., Bezanilla F., De Weer P. et al. Charge translocation by the Na/K pump // Ann. NY Acad. Sci. 1997. V. 834. P. 231−243.
- Reif M.C., Troutman S.L., Schafer J.A. Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone // J. Clin. Invest. 1986. V. 77(4). P. 1291 -1298.
- Rinehart J., Maksimova Y.D., Tanis J.E. et al. Sites of regulated phosphorylation that control K-Cl cotransporter activity // Cell. 2009. V. 138(3). P. 525−536.
- Ritter M., Ravasio A., Jakab M. et al. Cell swelling stimulates cytosol to membrane transposition of ICln // J. Biol. Chem. 2003. V. 278(50). P. 50 163−50 174.
- Rizwan A.N., Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles // Pharm. Res. 2007. V. 24(3). P.450−470.
- Rojek A., Praetorius J., Frekiaer J. et al. A current view of the mammalian aquaglyceroporins //Annu. Rev. Physiol. 2008. V. 70. P. 301−327.
- Ruhfus B., Bauernschmitt G., Kinne R.K.H. Properties of a polarized primary culture from rat renal inner medullary collecting duct (IMCD) cells // In Vitro Cell. Dev. Biol. 1998. V. 34. P. 227−231.
- Ruhfus B., Kinne R.K. Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway // Kidney Blood Press Res. 1996. V. 19(6). P. 317−324.
- Satlin L.M., Palmer L.G. Apical K+ conductance in maturing rabbit principal cell // Am. J. Physiol. 1997. V. 272(3 Pt 2). P. F397-F404.
- Sauer H., Kinne R.K.H., Wehner F. Activation of a Cl -conductive pathway in primary cultures of rat inner medullary collecting duct (IMCD) cells under hypotonic stress // Biochim. Biophys. Acta 1995. V. 1239. P. 99−102.
- Schafer J.A. Robert F. Pitts Memorial Lecture. Mechanisms coupling the absorption of solutes and water in the proximalnephron // Kidney Int. 1984. V. 25(4). P. 708−716.
- Schild L. The epithelial sodium channel and the control of sodium balance // Biochim. Biophys. Acta 2010. V. 1802(12). P. 1159−1165.
- Schmidt R.F., Thews G. Human physiology. 1989. Berlin, New-York: Springer-Verlag. P. 825.
- Schultz S.G. Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by «flush-through» // Am. J. Physiol. 1981. V. 241(6). P. F579-F590.
- Schwartz G.J., Burg M.B. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro // Am. J. Physiol. 1978. V. 235(6). P. F576-F585.
- Schwartz I.L., Schlatz L.J., Kinne-Saffran E. et al. Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone // Proc. Natl. Acad. Sci. USA. 1974. V. 71. P. 2595−2599.
- Schwiebert E.M., Mills J.W., Stanton B.A. Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line // J. Biol. Chem. 1994. V. 269(10). P. 7081−7089.
- Seabrooke S., O’Donnell M.J. Determining rates of epithelial solute transport by optical measurement of fluorochrome concentration gradients in the unstirred layer // J. Experim. Biol. 2012. V. 215(Pt 17). P. 2945−2949.
- Sekine T., Miyazaki H., Endou H. Molecular physiology of renal organic anion transporters // Am. J. Physiol. Renal Physiol. 2006. V. 290(2). P. F251-F261.
- Solenov E.I., Nesterov V.V., Baturina G.S. et al. Effect of dDAVP on basolateral cell surface water permeability in the outer medullary collecting duct // Eur. Biophys. J. 2003. V. 32(7). P.614−619.
- Soltoff S.P., Mandel L.J. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump // J. Gen. Physiol. 1984. V. 84(4). P. 623−642.
- Sperelakis N. Cell physiology sourcebook: a molecular approach. 2001. San Diego, London: Academic Press. P. 1235.
- Sterns R.H., Silver S.M. Brain volume regulation in response to hypo-osmolality and its correction // Am. J. Med. 2006. V. 119 (7 Suppl 1). P. S12-S16.
- Stokes J.B., Grupp C., Kinne R.K.H. Purification of rat papillary collecting duct cells: Functional and metabolic assessment // Am. J. Physiol. 1987. V. 253. P. F251-F262.
- Stoner L.C., Morley G.E. Effect of basolateral or apical hyposmolarity on apical maxi K channels of everted rat collecting tubule // Am. J. Physiol. 1995. V. 268(4 Pt 2). P. F569-F580.
- Strange K. Cellular volume homeostasis // Adv. Physiol. Educ. 2004. V. 28(1−4). P. 155 159.
- Strange K., Jackson P. S. Swelling-activated organic osmolyte efflux: a new role for anion channels // Kidney Int. 1995. V. 48(4). P. 994−1003.
- Strange K., Emma F., Jackson P. S. Cellular and molecular physiology of volume-sensitive anion channels // Am. J. Physiol. 1996. V. 270(3 Pt 1). P. C711-C730.
- Strickholm A. Ionic permeability of K, Na, and CI in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin // Biophys. J. 1981. V. 35(3). P. 677−697.
- Strickholm A., Clark H.R. Ionic permeability of K, Na, and CI in crayfish nerve. Regulation by membrane fixed charges and pH // Biophys. J. 1977. V. 19(1). P. 29−48.
- Strieter J., Stephenson J.L., Palmer L.G. et al. Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium // J. Gen. Physiol. 1990. V. 96(2). P. 319−344.
- Suhail M. Na, K-ATPase: Ubiquitous Multifunctional Transmembrane Protein and its Relevance to Various Pathophysiological Conditions. // J. Clin. Med. Res. 2010. V. 2(1). P. 1−17.
- Sun P., Yue P., Wang W.H. Angiotensin II stimulates epithelial sodium channels in the cortical collecting duct of the rat kidney // Am. J. Physiol. Renal. Physiol. 2012. V. 302(6). P. F679-F687.
- Sun T., Van Hoek A., Huang Y. et al. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin // Am. J. Physiol. Renal Physiol. 2002. V. 282(6). P. F998-F1011.
- Tajika Y., Matsuzaki T., Suzuki T. et al. Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway // Endocrinology. 2004. V. 145(9). P. 4375−4383.
- Tajika Y., Matsuzaki T., Suzuki T. et al. Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney // Anat. Sci. Int. 2002. V. 77(3). P. 189−195.
- Takata K., Matsuzaki T., Tajika Y. et al. Localization and trafficking of aquaporin 2 in the kidney// Histochem. Cell Biol. 2008. V. 130(2). P. 197−209.
- Tamma G., Procino G., Strafino A. et al. Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells // Endocrinology. 2007. V. 148(3). P. l 118−1130.
- Terris J., Ecelbarger C.A., Marples D. Distribution of aquaporin-4 water channel expression within rat kidney // Am. J. Physiol. 1995. V. 269. P. F775-F785.
- Thiemann A., Griinder S., Pusch M. et al. A chloride channel widely expressed in epithelial and non-epithelial cells //Nature. 1992. V. 356(6364). P.57−60.
- Tosteson D.C., Hoffman J.F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells // J. Gen. Physiol. 1960. V. 44. P. 169−194.
- Uawithya P., Pisitkun T., Ruttenberg B.E. et al. Transcriptional profiling of native inner medullary collecting duct cells from rat kidney // Physiol. Genomics. 2008. V. 32(2). P. 229−253.
- Verkman A.S. Water channels in cell membranes // Annu. Rev. Physiol. 1992. V. 54. P. 97−108.
- Verkman A.S. Water permeability measurement in living cells and complex tissues // J. Membr. Biol. 2000. V.173(2). P. 73−87.
- Voss J.W., Pedersen S.F., Christensen S.T. et al. Regulation of the expression and subcellular localization of the taurine transporter TauT in mouse NIH3T3 fibroblasts // Eur. J. Biochem. 2004. V. 271(23−24). P. 4646−4658.
- Wang W., Giebisch G. Dual effect of adenosine triphosphate on the apical small conductance K+ channel of the rat cortical collecting duct // J. Gen. Physiol. 1991. V. 98(1). P. 35−61.
- Wang L., Ding G., Gu Q. et al. Single-channel properties of a stretch-sensitive chloride channel in the human mast cell line HMC-1 // Eur. Biophys. J. 2010. V. 39. P. 757−767.
- Wang W., Hebert S.C., Giebisch G. Renal K+ channels: structure and function // Annu. Rev. Physiol. 1997. V. 59. P. 413−436.
- Wang W.H., McNicholas C.M., Segal A.S. et al. A novel approach allows identification of K channels in the lateral membrane of rat CCD // Am. J. Physiol. 1994. V. 266(5 Pt 2). P. F813-F822.
- Wang W.H., Schwab A., Giebisch G. Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule // Am. J. Physiol. 1990. V. 259(3 Pt 2). P. F494-F502.
- Wehner F. Cell volume-regulated cation channels // Contrib. Nephrol. 2006. V. 152. P. 2553.
- Weinreich F., Jentsch T.J. Pores formed by single subunits in mixed dimers of different CLC chloride channels // J. Biol. Chem. 2001. V. 276(4). P. 2347−2353.
- Weinstein A.M. Analysis of volume regulation in an epithelial cell model // Bull. Math. Biol. 1992. V. 54(4). P. 537−561.
- Weinstein A.M. Dynamics of cellular homeostasis: recovery time for a perturbation from equilibrium // Bull. Math. Biol. 1997. V. 59(3). P. 451−481.
- Weinstein A.M. A mathematical model of the inner medullary collecting duct of the rat: acid/base transport // Am. J. Physiol. 1998a. V. 274(5 Pt 2). P. F856-F867.
- Weinstein A.M. A mathematical model of the inner medullary collecting duct of the rat: pathways for Na and K transport // Am. J. Physiol. 1998b. V. 274(5 Pt 2). P. F841-F855.
- Weinstein A.M. Modeling epithelial cell homeostasis: steady-state analysis // Bull. Math. Biol. 1999. V. 61(6). P. 1065−1091.
- Weinstein A.M. A mathematical model of the outer medullary collecting duct of the rat // Am. J. Physiol. Renal Physiol. 2000. V. 279(1). P. F24-F45.
- Weinstein A.M. A mathematical model of rat cortical collecting duct: determinants of the transtubular potassium gradient // Am. J. Physiol. Renal Physiol. 2001. V. 280(6). P. F1072-F1092.
- Weinstein A.M. A mathematical model of rat collecting duct. I. Flow effects on transport and urinary acidification // Am. J. Physiol. Renal Physiol. 2002a. V. 283(6). P. F1237-F1251.
- Weinstein A.M. A mathematical model of rat collecting duct. II. Effect of buffer delivery on urinary acidification // Am. J. Physiol. Renal Physiol. 2002b. V. 283(6). P. F1252-F1266.
- Weinstein A.M. A mathematical model of rat collecting duct. III. Paradigms for distal acidification defects // Am. J. Physiol. Renal Physiol. 2002c. V. 283(6). P. F1267-F1280.
- Weinstein A.M. Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty // Am. J. Physiol. Renal Physiol. 2003. V. 284(5). P. F871-F884.
- Weinstein A.M. A mathematical model of rat ascending Henle limb. I. Cotransporter function // Am. J. Physiol. Renal Physiol. 2010. V. 298(3). P. F512-F524.
- Wehner F., Olsen H., Tinel H. et al. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction // Rev. Physiol. Biochem. Pharmacol. 2003. V. 148. P. l-80.
- Welling D.J., Welling L.W. Model of renal cell volume regulation without active transport: role of a heteroporous membrane // Am. J. Physiol. 1988. V. 255(3 Pt 2). P. F529-F538.
- Wistow G.J., Pisano M.M., Chepelinsky A.B. Tandem sequence repeats in transmembrane channel proteins // Trends Biochem. Sci. 1991. V. 16(5). P. 170−171.
- Wright S.H. Generation of resting membrane potential // Adv. Physiol. Edu. V. 28(1−4). P. 139−142.
- Wuddel I., Apell H.J. Electrogenicity of the sodium transport pathway in the Na, K-ATPase probed by charge-pulse experiments // Biophys. J. 1995. V. 69(3). P. 909−921.
- Xia S.L., Noh S.H., Verlander J.W. et al. Apical membrane of native OMCD (i) cells has nonselective cation channels // Am. J. Physiol. Renal. Physiol. 2001. V. 281(1). P. F48-F55.
- Yasui M., Kwon T.H., Knepper M.A. et al. Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia // Proc. Natl. Acad. Sci. USA. 1999. V. 96(10). P. 58 085 813.
- Yip K.P., Kurtz I. NH3 permeability of principal cells and intercalated cells measured by confocal fluorescence imaging // Am. J. Physiol. 1995. V. 269(4 Pt 2). P. F545-F550.
- Yokoyama H., Anzai N., Ljubojevic M. et al. Functional and immunochemical characterization of a novel organic anion transporter Oat8 (Slc22a9) in rat renal collecting duct// Cell Physiol. Biochem. 2008. V. 21(4). P. 269−278.
- Zelenina M., Brismar H. Osmotic water permeability measurements using confocal laser scanning microscopy // Eur. Biophys. J. 2000. V. 29(3). P. 165−171.
- Zhou F., You G. Molecular insights into the structure-function relationship of organic anion transporters OATs // Pharmac. Res. 2007. V. 24(1). P. 28−36.