Помощь в написании студенческих работ
Антистрессовый сервис

Экспрессия транскрипционных факторов в мозге крыс при формировании тревожно-депрессивных состояний и реализации антидепрессивных эффектов гипоксического прекондиционирования

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Недавно было обнаружено, что ГП повышает устойчивость мозга и организма в целом не только к повреждающим воздействиям гипоксической природы, но и психоэмоциональным стрессам, предотвращая формирование постстрессовых тревожно-депрессивных расстройств (Рыбникова и др., 2006; 2007; 2008; 11уЬшкоуа е1 а1., 2007). Однако, несмотря на описанное мощное антидепрессивное и анксиолитическое действие ГП… Читать ещё >

Экспрессия транскрипционных факторов в мозге крыс при формировании тревожно-депрессивных состояний и реализации антидепрессивных эффектов гипоксического прекондиционирования (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. молекулярно-клеточные основы патологических и адаптивных реакций нейронов, внутриклеточные сигнальные пути
    • 1. 2. транскрипционные факторы (ТФ)
      • 1. 2. 1. Классификация
      • 1. 2. 2. Активационные ТФ, активируемые протеинкиназами
        • 1. 2. 2. 1. Протеинкиназы
        • 1. 2. 2. 2. С11ЕВ
        • 1. 2. 2. 2. Ж-кВ
      • 1. 2. 3. Индуцибелъные ТФ — продукты ранних генов
        • 1. 2. 3. 1. Гены раннего и позднего действия
        • 1. 2. 3. 2. С-Ров
        • 1. 2. 3. 3. ШИ-А
        • 1. 2. 3. 4. НИМ
      • 1. 2. 4. ТФ-рецепторы гормонов
        • 1. 2. 4. 1. Гормон-зависимые механизмы и нейроэндокринная регуляция адаптивных процессов
        • 1. 2. 4. 2. СИ. и МЯ
    • 1. 3. тревожно-депрессивные состояния
      • 1. 3. 1. Биохимические/нейроэндокринные нарушения при тревожно-депрессивных состояниях
      • 1. 3. 2. «Выученная беспомощность» как экспериментальная модель депрессии
      • 1. 3. 3. Экспериментальные модели ПТСР. Модель «стресс -рестресс»
    • 1. 4. гипоксическое прекондиционирование — способ повышения адаптивных возможностей мозга
      • 1. 4. 1. Нейропротективные эффекты гипоксического прекондиционирования и их молекулярные и нейрохимические механизмы
      • 1. 4. 2. Протективные эффекты гипоксического прекондиционирования в моделях «выученная беспомощность» и «стресс — рестресс»
    • 1. 5. экспрессия ТФ в мозге при тревожно-депрессивных состояниях и гипоксическом прекондиционировании
  • 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. Модели психоэмоциональных стрессов
      • 2. 1. 1. «Выученная беспомощность» — экспериментальная модель эндогенной депрессии
      • 2. 1. 2. Парадигма «стресс-рестресс» — модель посттравматического стрессового расстройства
    • 2. 2. гипоксическое прекондиционирова1ше
    • 2. 3. Гистологические методы
      • 2. 3. 1. Гистологическая обработка ткани мозга
      • 2. 3. 2. Окрашивание по методу Ниссля
    • 2. 4. иммуноферментные методы
      • 2. 4. 1. Иммуноцитохимический метод
      • 2. 4. 2. Вестерп-блот анализ
        • 2. 4. 2. 1. Пробоподготовка
        • 2. 4. 2. 2. Электрофорез белков в ПААГ по методу Лэммли
        • 2. 4. 2. 3. Электроблоттинг — перенос белков с ПААГ на нитроцеллюлозную мембрану
        • 2. 4. 2. 4. Иммуноокрашивание белков на мембране
        • 2. 4. 2. 5. Определение концентрации белка по методу Бредфорда
    • 2. 5. Компьютерный анализ изображений
    • 2. 6. Статистическая обработка результатов
  • 3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ
    • 3. 1. Морфологическая оценка повреждающего действия острых психоэмоциональных стрессов на нейроны гиппокампа и неокортекса
    • 3. 2. Изменения активности ТФ С11ЕВ и ОТ-кВ в мозге крыс после стрессорного воздействия. Эффекты ГП
      • 3. 2. 1. ВБ стресс влияет на активность СЯЕВ незначительно, в то время как гипоксическое прекондиционирование способствует активации данного ТФ в ответ на патогенный стресс
      • 3. 2. 2. Динамика экспрессии рСКЕВ в образованиях мозга крыс после стресса-рестресса. Сравнительный анализ прекондиционированных и непрекондиционированных животных
      • 3. 2. 3. Экспрессия МГ-кВ в мозге непрекондиционированных и прекондиционированных крыс после неизбегаемого стресса в модели ВБ
      • 3. 2. 4. Экспрессия АГ-кВ в мозге крыс при формировании экспериментального ПТСР и его коррекции гипоксическим прекондиционированием
    • 3. 3. Экспрессия ранних генов в мозге крыс при развитии тревожно-депрессивных состояний: эффект гипоксического прекондиционирования
      • 3. 3. 1. ГП модифицирует динамику c-Fos-иммунореактивности в мозге крыс в ответ на неизбегаемый стресс в модели «выученной беспомощности»
      • 3. 3. 2. Паттерн экспрессии c-Fos в модели посттравматического стрессового расстройства. Эффект гипоксического прекондиционирования
      • 3. 3. 3. Профиль экспрессии NGFI-A в мозге крыс в парадигме ВБ. Влияние ГП
      • 3. 3. 4. Особенности экспрессии транскрипционного фактора NGFI -А в модели ПТСР у непрекондиционированных и прекондиционированных животных

      3.3.5. Изменения содержания иммунореактивного HIF-la в нейронах мозга при развитии депрессивноподобного состояния в модели «выученной беспомощности» у крыс- влияние гипоксического прекондиционирования.

      3.3. б. Влияние ГП на экспрессию индуцибельной субъединицы HIF-la в парадигме «стресс -рестресс».

      3.4. Нейроэндокринные механизмы анксиолитического эффекта ГП в моделях ПТСР и ВБ: экспрессия кортикостероидных рецепторов.

      3.4.1. Гипоксическое прекондиционирование предотвращает редукцию GR в нейронах мозга после ВБ стресса.

      3.4.2. Экспрессия GR в образованиях мозга крыс при формировании ПТСР патологии и ее предотвращении гипоксическим прекондиционированием.

      3.4.3. Особенности экспрессии MR в мозге крыс при формировании депрессивноподобного состояния и антидепрессивных эффектов ГП.

      3.4.4. MR мозга вовлекаются в формирование протективных эффектов ГП в модели ПТСР.

      4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

      4.1. Вовлечение ТФ в формирование тревожно-депрессивных состояний ВБ и ПТСР.

      4.1.1. Активационные ТФ.

      4.1.2. Индуцибельные ТФ.

      4.1.3. ТФ — кортикостероидные рецепторы.

      4.2. Вовлечение ТФ в антидепрессив! юе и анксиолитическое действие ГП.

      4.2.1. Активационные ТФ после ГПВБ и ГП ПТСР стресса.

      4.2.2. Индуцибельные ТФ после прекондиционированного стресса.

      4.2.3. Стероидные рецепторы после применения ГП.

      ВЫВОДЫ.

АКТУАЛЬНОСТЬ ПРОБЛЕМЫ Одной из фундаментальных проблем нейробиологии и медицины является исследование адаптивных и патологических реакций нейронов мозга на влияния внешней среды, особенно при действии повреждающих факторов. Выяснение молекулярно-клеточных механизмов таких реакций необходимо для разработки новых эффективных способов повышения резистентности мозга к повреждающим воздействиям.

Резко возросшее в последние десятилетия количество жертв чрезвычайных ситуаций, боевых и противоправных действий, серьёзных конфликтов в обществе и микросоциуме привело к увеличению распространённости тревожно-депрессивных расстройств, представляющих собой большую группу заболеваний, включающую различные формы депрессий и другие постстрессовые патологии. Согласно данным ВОЗ, эта группа заболеваний занимает первое место в мире среди психических расстройств. Но, несмотря на широкую распространенность, и высокий интерес исследователей к этой проблеме, механизмы патогенеза постстрессовых тревожно-депрессивных состояний остаются во многом непознанными и, как следствие, относительно неэффективной оказывается современная фармакотерапия таких расстройств. Литературные данные свидетельствуют о том, что развитие тревожно-депрессивных состояний сопровождается нарушениями молекулярно-клеточных и гормон-зависимых механизмов регуляции адаптивных функций организма. Весьма вероятно, что в основе патогенеза данных расстройств лежит диерегуляция активации транскрипционных факторов, приводящая к нарушениям индукции контролируемых ими ранних генов и, далее, продуктов поздних генов, в частности кодирующих медиаторы, нейрогормоны, гормоны и их рецепторы (Уа1с1уа, Бишап, 2001; Соиг1еу е1 а1., 2008). Изучение механизмов патогенеза этих состояний и разработка новых технологий лечения невозможны без преклинических исследований, проводимых в экспериментальных моделях на лабораторных животных.

В настоящее время эффективным способом повышения резистентности мозга к повреждающим воздействиям является применение гипоксического прекондиционирования — предъявление умеренных экстремальных воздействий, направленное на мобилизацию эндогенных эволюционно приобретенных генетически-детерминированных защитных механизмов (Самойлов, 1999; Самойлов и др., 2004; 2012; Самойлов, Рыбникова, 2012). Наиболее распространенный вид прекондиционирования — гипоксическое/ишемическое было впервые использовано на сердце в 1986 году (Миггу е1 а1., 1986). На современном этапе в значительной мере раскрыты механизмы кардиопротективных эффектов ишемического прекондиционирования миокарда, что способствовало внедрению данного способа в медицинскую практику (ЯегкаПа, К1опег, 2007; Ратманова, 2008). Эндогенные механизмы толерантности мозга, индуцируемые ишемическим и, в особенности, гипоксическим прекондиционированием (ГП), исследованы в меньшей степени. Показано вовлечение внутриклеточных сигнальных каскадов, глутаматных рецепторов, антиапоптотических белков и пептидных антиоксидантов в механизмы повышения резистентности нейронов мозга к гипоксии, индуцируемого ишемическим/гипоксическим прекондиционированием (Самойлов и др., 2001;2012; ЯуЬшкоуа с1 а1., 2002;2012; Бешепоу е1 а1., 2002; БЬагр & а1., 2004; Строев, Самойлов, 2004; ОЬгепоуисИ, 2008). Установлено, что ключевая роль в индукции нейропротективных процессов при применении ГП принадлежит кооперативной активации транскрипционных факторов (Самойлов, Рыбникова, 2012).

Недавно было обнаружено, что ГП повышает устойчивость мозга и организма в целом не только к повреждающим воздействиям гипоксической природы, но и психоэмоциональным стрессам, предотвращая формирование постстрессовых тревожно-депрессивных расстройств (Рыбникова и др., 2006; 2007; 2008; 11уЬшкоуа е1 а1., 2007). Однако, несмотря на описанное мощное антидепрессивное и анксиолитическое действие ГП, внедрение этого метода в медицинскую практику в качестве способа профилактики и коррекции постстрессовых патологий невозможно без достаточных сведений о механизмах его действия, среди которых очевидно важнейшую роль играют модификации активности генома (Рыбникова, 2010). Требуется последовательное и комплексное изучение геном-зависимых механизмов антидепрессивных эффектов ГП на различных уровнях, начиная от активности транскрипционных факторов и до экспрессии регулируемых ими генов и их продуктов. В этом отношении ГП представляет собой не только перспективный с практической точки зрения немедикаментозный способ, но и удобную экспериментальную модель для фундаментальных исследований эндогенных нейропротективных процессов и механизмов их индукции.

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Целью настоящего исследования явилось изучение особенностей экспрессии активационных, индуцибельных и лиганд-зависимых транскрипционных факторов в образованиях мозга, вовлекаемых в патогенез постстрессовых расстройств, при формировании экспериментальных тревожно-депрессивных состояний и их коррекции гипоксическим прекондиционированием у крыс. Основные задачи исследования:

1. Изучить экспрессию активационных транскрипционных факторов pCREB и NF-KB (p65) в гиппокампе, неокортексе, гипоталамусе крыс при развитии депрессивноподобного состояния «выученной беспомощности» (модель эндогенной депрессии) и тревожного состояния (модель посттравматического стрессового расстройства (ПТСР) «стресс-рестресс»).

2. Выявить особенности постстрессовой активации CREB и NF-icB (p65) у прекондиционированных умеренной гипобарической гипоксией животных, у которых тревожно-депрессивные состояния не формируются.

3. Оценить динамику экспрессии индуцибельных транскрипционных факторов c-Fos, HIF-la и NGFI-A в гиппокампе, неокортексе, гипоталамусе крыс в ответ на воздействие патогенным стрессом в моделях депрессии и ПТСР. Провести сравнительное исследование паттернов индукции этих факторов у непрекондиционированных и прекондиционированных животных.

4. Охарактеризовать участие лиганд-зависимых транскрипционных факторовглюко- (GR) и минералокортикоидных (MR) рецепторов гиппокампа, неокортекса и гипоталамуса крыс в механизмах развития модельной депрессии и ПТСР, а также их коррекции гипоксическим прекондиционированием.

ПОЛОЖЕНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ:

1. Пространственный паттерн нарушений экспрессии транскрипционных факторов в мозге специфичен для различных форм тревожно-депрессивной патологии у крыс. При формировании депрессивноподобного состояния, наиболее выраженные модификации экспрессии исследуемых транскрипционных факторов наблюдаются в гиппокампе, в то время как при развитии тревожного расстройства-аналога Г1ТСР наибольшие изменения локализуются в неокортексе и паравентрикулярном ядре гипоталамуса.

2. Недостаточная активация факторов CREB и NF-idB (p65), отсроченная сверхэкспрессия c-Fos и HIF-la и снижение уровня GR в исследованных образованиях мозга в условиях патогенного стресса является общим компонентом развития постстрессовых тревожно-депрессивных расстройств.

3. Механизмы антидепрессивного и анксиолитического эффектов гипоксического прекондиционирования в моделях тревожно-депрессивных расстройств включают активацию CREB и NF-kB (р65), повышение уровня GR, нивелирование отсроченной сверхэкспрессии c-Fos и HIF-la и усиление стресс-индуцированной экспрессии NGFI-A в исследованных образованиях мозга.

НАУЧНАЯ НОВИЗНА ИССЛЕДОВАНИЯ. В работе впервые установлено наличие общих и специфических молекулярно-клеточных механизмов эндогенной депрессии и реактивного тревожно-депрессивного состояния (ПТСР). В экспериментальных моделях «выученная беспомощность» и «стресс-рестресс» впервые выявлены как аналогичные, так и индивидуальные для каждой патологии нарушения экспрессии транскрипционных факторов СЯЕВ, №-кВ, с-Роэ, КСР1-А, Н1Р-1а, СЯ и МЯ. Показано, что к общим закономерностям при депрессии и ПТСР относится недостаточная активация СЯЕВ и ЫР-кВ, отсроченная сверхэкспрессия факторов с-Роб и Н1Р-1а и редукция содержания вЯ в ответ на стреесорные воздействия.

Впервые получены данные о различном вкладе гипоталамуса, неокортекса и гипнокампа в генез постстрессовых тревожных и депрессивных состояний. Показано преимущественное вовлечение модификаций активности транскрипционных факторов дорзального гиппокампа в формирование депрессивноподобного состояния у крыс в модели «выученная беспомощность», в то время как в модели ПТСР наиболее выраженные изменения выявлены во II слое неокортекса и паравентрикулярном ядре гипоталамуса.

Впервые проведен сравнительный анализ стероид-рецептор-опосредованных механизмов формирования различных постстрессовых состояний, продемонстрировавший наличие особенностей в нарушениях стероид-рецептирующих функций отделов мозга крыс при индукции модельной депрессии и ПТСР. При развитии депрессивноподобного состояния у животных обнаружено значительное и устойчивое снижение содержания глюкокортикоидных рецепторов во всех исследованных областях мозга. При индукции экспериментального ПТСР у крыс не выявлено существенных изменений рецепторного пула на экстрагипоталамическом уровне, однако в паравентрикулярном ядре гипоталамуса происходило снижение уровня СЯ.

Впервые в значительной мере раскрыты нейрональные молекулярные механизмы, лежащие в основе антидепрессивного и анксиолитического эффектов ГП у крыс. Установлено, что индуцируемые ГП протективные процессы в моделях тревожно-депрессивных расстройств связаны с вовлечением транскрипционных факторов различных семейств. В частности, прекондиционирующее воздействие способствует активации транскрипционных факторов СЯЕВ и №-кВ, и нивелирует патологическую отсроченную экспрессию индуцибельных факторов с-Роэ и Н1Р-1а вслед за патогенным стрессом. Кроме того, прекондиционирование предотвращает нарушения гормон-зависимых механизмов регуляции адаптивных функций организма путем стимуляции экспрессии вИ. в гиппокампе в ответ на тяжелый психоэмоциональный стресс, и в паравентрикулярном ядре гипоталамуса — в ответ на травматический стресс, а также модифицикации соотношения 011 и МЛ.

ТЕОРЕТИЧЕСКАЯ И ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ РАБОТЫ Работа посвящена исследованию фундаментальной проблемы нейробиологии, связанной с расшифровкой молекулярных механизмов адаптивных и патологических реакций нейронов мозга. Полученные результаты расширяют современные представления о роли транскрипционных факторов в патогенезе эндогенного и реактивного постстрессового тревожно-депрессивного расстройства. Важное теоретическое значение для понимания механизмов патогенеза тревожно-депрессивных состояний имеет основной вывод работы, сформулированный на основании полученных экспериментальных сведений и постулирующий наличие как общих, так и специфических для разных форм тревожно-депрессивных расстройств нарушений экспрессии транскрипционных факторов, а следовательно, и механизмов формирования этих патологий.

Большая теоретическая значимость проведенного исследования также заключается в том, что удалось выявить особенности механизмов регуляции активности генома нервных клеток, посредством которых реализуется антидепрессивное и анксиолитическое действие ГП. Эти сведения вносят существенный вклад в понимание нейрональных механизмов повышения адаптивных возможностей организма в условиях интенсивных стрессорных воздействий.

Практическая значимость работы определяется насущной необходимостью разработки эффективных способов профилактики и лечения стресс-индуцируемых патологий. Установленные в проведенном исследовании факты в значительной мере раскрывают механизмы антидепрессивного и анксиолитического действия ГП, что может способствовать внедрению этой новой эффективной немедикаментозной технологии в медицинскую практику с целью профилактики и лечения постстрессовых депрессивных и тревожных расстройств. С учетом выявленных в данной работе особенностей индуцируемых ГП эндогенных механизмов адаптации мозга и организма в целом к патогенным стрессам становится возможным в перспективе создание нового поколения фармакологических препаратов, оказывающих направленное действие не на общие, а на определенные выявленные нейрохимические механизмы патогенеза различных форм тревожно-депрессивных расстройств.

АПРОБАЦИЯ РАБОТЫ Результаты работы были представлены и обсуждены на Межинститутской конференции молодых ученых «Механизмы регуляции и взаимодействия физиологических систем организма человека и животных в процессах приспособления к условиям среды», посвященной 100-летию академика В. Н. Черниговского (Санкт-Петербург, 2007) — Всероссийской конференции с международным участием «Нейрохимические механизмы формирования адаптивных и патологических состояний мозга» (Санкт-Петербург, 2008) — Российско-Польском рабочем симпозиуме «Гипоксическое, ишемическое прекондиционирование мозга», посвященном 50-летнему юбилею сотрудничества Польской и Российской Академии Наук в рамках Дней Польской науки в России (Санкт-Петербург, 2008) — Двенадцатой Всероссийской медико-биологической конференция молодых исследователей «Фундаментальная наука и клиническая медицина» (Санкт-Петербург, 2009) — Конференции молодых ученых «Механизмы адаптации физиологических систем организма к факторам среды», посвященной 85-летию со дня основания Института физиологии им. И. П. Павлова РАН (Санкт-Петербург, 2010) — I и II Всероссийских научных конференциях молодых ученых «Проблемы биомедицинской науки третьего тысячелетия» (Санкт-Петербург, 2010 и 2012) — VII и VIII Международных междисциплинарных конгрессах «Нейронаука для медицины и психологии» (Судак, Крым, Украина, 2011 и 2012) — XIV Международном совещании и VII школе по эволюционной физиологии, посвященным памяти академика J1.A. Орбели (Санкт-Петербург, 2011) — Всероссийской молодежной конференции-школе «Нейробиология интегративных функций мозга», посвященной 120-летию создания Физиологического отдела под руководством И. П. Павлова в Императорском институте экспериментальной медицины (Санкт-Петербург, 2011) — III Конференции молодых ученых Института цитологии РАН (Санкт-Петербург, 2012) — Междисциплинарной конференции «Адаптационные стратегии живых систем» (Новый Свет, Крым, Украина, 2012), а также на заседаниях Лаборатории регуляции функций нейронов мозга и Отдела физиологии и патологии высшей нервной деятельности Института физиологии им. И. П. Павлова РАН (2007;2012).

1. ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. При формировании депрессивноподобного состояния в модели эндогенной депрессии и тревожного состояния в модели посттравматического стрессового расстройства (ПТСР) у крыс обнаружены как схожие, так и специфические для каждого патологического состояния модификации экспрессии транскрипционных факторов CREB, NF-KB (p65), c-Fos, NGFI-A, HIF-la, а также глюкокортикоидных рецепторов (GR) в гиппокампе, неокортексе и гипоталамусе.

2. При развитии депрессивноподобного состояния наблюдается снижение уровня фосфорилированного фактора CREB (pCREB) в зубчатой извилине гиппокампа и неокортексе. При индукции тревожного состояния иммунореактивность к pCREB снижена только в V слое неокортекса. Прекондиционирование умеренной гипобарической гипоксией стимулирует экспрессию pCREB в исследованных образованиях мозга в обеих экспериментальных моделях.

3. В модели эндогенной депрессии, но не ПТСР экспрессия транскрипционного фактора NF-KB (p65) устойчиво повышается в паравентрикулярном ядре гипоталамуса, в то время как в гиппокампе и неокортексе его активация не наблюдается при развитии обоих патологических состояний. Гипоксическое прекондиционирование оказывает стимулирующий эффект на экспрессию белка NF-кВ (р65) в гиппокампе и неокортексе и подавляет его сверхэкспрессию в гипоталамусе.

4. В ответ на стрессорные воздействия в моделях депрессии и ПТСР наблюдается отсроченное возрастание экспрессии индуцибельных факторов c-Fos и HIF-la во всех исследуемых областях мозга крыс. Прекондиционирование предотвращает отсроченное повышение уровней этих транскрипционных факторов, тогда как на ранних сроках после стресса модификации экспрессии c-Fos и HIF-la зависят от модели стрессирования.

5. Умеренная стресс-индуцированная экспрессия NGFI-A в неокортексе и гипоталамусе выявляется при формировании обоих тревожно-депрессивных состояний. У животных с депрессивноподобным расстройством, в отличие от ПТСР, содержание NGFI-A повышается также в гиппокампе. Гипоксическое прекондиционирование в обеих экспериментальных моделях в различной степени усиливает стресс-индуцированную экспрессию NGFI-A в гиппокампе, частично или полностью предотвращает ее в гипоталамусе и не оказывает эффекта в неокортексе.

6. Стресс в модели депрессии вызывает выраженное и устойчивое снижение содержания глюкокортикоидных рецепторов во всех исследованных областях мозга крыс. Индукция экспериментального ПТСР снижает их уровень лишь в гипоталамусе.

Гипоксическое прекондиционирование способствует нормализации уровня ОЯ в неокортексе и гипоталамусе и повышает их экспрессию в гиппокампе в модели депрессии, в то время как в модели ПТСР выявлено усиление экспрессии ОЯ в гиппокампе и в паравентрикулярном ядре гипоталамуса.

ЗАКЛЮЧЕНИЕ

В заключении следует отметить, что в рамках настоящей работы впервые проведено детальное изучение процессов, происходящих на первом регуляторном уровне геном-зависимых механизмов антидепрессивных и анксиолитических эффектов прекондиционирования — уровне, связанном с активностью транскрипционных факторов, контролирующих функционирование генома нервных клеток. В фокусе исследования находились три различных семейства факторов — активационные (убиквитарные) факторы регуляции транскрипции, быстро активирующиеся в ответ на стимул путем фосфорилирования (CREB, NF-kB), индуцибельные факторы, являющиеся результатом индукции ранних генов и de novo синтеза белка в ответ на стимул (c-Fos, HIF-la, NGFI-A), и кортикостероидные рецепторы (GR, MR), осуществляющие длительный контроль активности стероид-зависимых генов, в первую очередь связанных с процессами мобилизации защитных ресурсов организма и адаптации к стрессу. С целью анализа роли данных транскрипционных факторов в механизмах патогенеза и предотвращения разных форм тревожно-депрессивных расстройств в работе применялись две экспериментальных модели на крысах — модель эндогенной депрессии («выученная беспомощность») и посттравматического стрессового расстройства (ПТСР, парадигма «стресс-рестресс»).

Установлено, что при формировании депрессивноподобного состояния у крыс максимальные изменения содержания исследованных транскрипционных факторов происходят в области гиппокампа, особенно в дорзальном. Это характерно как для транскрипционных факторов, экспрессия которых при «выученной беспомощности» снижается ниже контрольных значений (как в случае CREB и GR), так и для факторов, содержание которых возрастает в результате психоэмоционального стрессирования в данной парадигме (как NGFI-A и HIF-la). Для развития тревожного состояния у крыс в модели ПТСР характерен принципиально иной пространственный паттерн экспрессии рассмотренных факторов — наиболее выраженные изменения после травматического стресса отмечаются во II слое неокортекса и PVN гипоталамуса, что свидетельствует о различном вкладе гипоталамуса, неокортекса и гиппокампа в генез постстрессовых тревожных и депрессивных состояний.

При развитии постстрессовых тревожно-депрессивных патологий в обеих рассмотренных моделях наблюдаются в целом базальные или сниженные уровни содержания активационных ТФ pCREB и NF-kB в мозге, следовательно, недостаточная активация этих ТФ может являться неспецифическим компонентом патогенеза как ВБ, так и ПТСР. Исключение составляла лишь сверхиндукция NF-kB в PVN при формирование депрессивной патологии, что возможно связано со специфическим вкладом NF-кВ в поддержание гиперактивации гипоталамического звена ГГАС, характерной для данной патологии. Реализация протективного, антидепрессивного и анксиолитического действия прекондиционирования умеренной гипобарической гипоксией сопровождается умеренной активацией CREB и NF-кВ в обеих парадигмах стрессирования, что позволяет предположить участие этих активационных ТФ в обеспечении неспецифических компенсаторных проадаптивных процессов.

В ответ на стресс в обеих моделях (депрессии и ПТСР) наблюдается отсроченная сверхэкспрессия индуцибельных факторов c-Fos и HIF-la во всех рассматриваемых областях мозга, сохраняющаяся по крайней мере до 10 дней, что свидетельствует о нарушении волновой динамики, характерной для продуктов ранних генов. Гипоксическое прекондиционирование существенно модифицирует паттерн экспрессии c-Fos и HIF-la — нормализует волновую динамику, нивелируя отсроченную сверхэкспрессию этих факторов в чувствительных образованиях мозга универсально вслед за ВБ и ПТСР стрессом. Вместе с тем, на ранних сроках после стресса индуцированные прекондиционированием изменения экспрессии c-Fos и HIF-la специфичны, зависят от парадигмы и интенсивности стрессирования.

В отношении другого фактора из группы ранних генов — NGF1-A регистрировались менее выраженные по амплитуде изменения. Умеренная стресс-индуцированная ап-регуляция экспрессии NGFI-A в неокортексе и mPVN наблюдается при обеих патологиях, в то же время у ВБ животных содержание NGFI-A значительно и устойчиво повышается в CAI, и транзиторно в зубчатой извилине, а при ПТСР — не только в крупно-, но и в мелкоклеточной части паравентрикулярного ядра гипоталамуса. Эффект прекондиционирования в этом случае также оказывается разнонаправленным.

ВБ стресс вызывает значительное и устойчивое снижение содержания GR во всех исследованных областях мозга крыс. Индукция экспериментального ПТСР снижает уровень GR лишь в паравентрикулярном ядре гипоталамуса, практически не влияя на их содержание в экстрагипоталамических структурах. Несмотря на то, что развитие тревожно-депрессивных патологий не сопровождается выраженными изменениями уровня MR, при депрессивной патологии соотношение GR к MR значительно сдвинуто в сторону MR (особенно в DG гиппокампа). Прекондиционирование умеренной гипобарической гипоксией оказывает комплексное действие на рецептор-опосредуемые гормон-зависимые механизмы регуляции адаптивных функций организма, обеспечивающие оптимальный запуск и интеграцию компонентов стреееорного ответа. Это проявляется, прежде всего, в существенном и устойчивом повышении экспрессии GR в гиппокампе (особенно в вентральном) в ответ на тяжелый психоэмоциональный стресс, что, очевидно, создает морфологический базис для функционирования механизмов глюкокортикоидной обратной связи. При этом в чувствительной к повреждениям области CAI наступает GR/MR равновесие, в то время как в зубчатой извилине мы видим значительный перевес в пользу GR. Ап-регуляция GR в экстрагипоталамичсских структурах при прекондиционированном ПТСР намного менее значительна, чем при ГПВБ, и нет различий в содержании GR между дорзальным и вентральным гиппокампом. Некоторое усиление экспрессии GR после применения прекондиционирования выявлено лишь в гипоталамусе, причем как в мелкотак и в крупноклеточной части паравентрикулярного ядра. В области CAI протективный эффект прекондиционирования в обеих моделях сопровождался возрастанием интенсивности экспрессии обоих типов (GR и MR) рецепторов в 1,5−2 раза и поддержанием соотношения GR: MR на уровне 1:1.

Таким образом, проведенные нами обширные исследования доказывают важную роль транскрипционных факторов в реализации антидепрессивного и анксиолитического действия гипоксического прекондиционирования, а полученные сведения вносят существенный вклад в понимание этих процессов. Наличие описанных выше общих и дифференциальных особенностей активации CREB, NF-kB, c-Fos, HIF-1, NGFI-A, GR, и MR при развитии разных форм психопатологий и их коррекции прекондиционированием свидетельствуют о том, что в основе как патогенетических, так и компенсаторных процессов, очевидно, лежит регуляция активности генетического аппарата нейронов мозга, осуществляемая специфическими факторами транскрипции.

Показать весь текст

Список литературы

  1. Ф.Т. Материалы к изысканию возможных путей повышения тепловой устойчивости организма. / Материалы конференции по проблеме адаптации, тренировки и другим способам повышения устойчивости организма. Донецк. i960. -С.7−9.
  2. З.И., Гинецинский А. Г. Влияние акклиматизации на прижизненную окрашиваемость тканей. / В кн.: Материалы по эволюционной физиологии. Под ред. Л. А. Орбели. М.-Л. 1956. — Т.1. — С.36−40.
  3. З.И., Гинецинский А. Г. Выносливость к отравлению цианидами акклиматизированных к высоте животных // Труды Физиологического института им. И. П. Павлова АН СССР. М.-Л. 1945. — Т.1. — С. 103−114.
  4. Г. А. Влияние акклиматизации к гипоксии на радиорезистентность собак. / Материалы конференции по проблеме адаптации, тренировки и другим способам повышения устойчивости организма. Донецк. 1960. — С.23−24.
  5. Л.А., Тюлькова Е. И., Самойлов М. О. Влияние тяжелой гипоксии на эмоциональное поведение крыс: корректирующий эффект прекондиционирования // Доклады РАН. 2004(2). — Т.395. — С. 109−111.
  6. Л. X. Реакция активации — общая неспецифическая адаптационная реакция на раздражители «средней» силы. В кн.: «Адаптационные реакции и резистентность организма». Ростов. 1990. — С.36−63.
  7. Л. X., Квакина Е. Б. О критериях оценки неспецифической резистентности организма при действии различных биологически активных факторов с позиции теории адаптационных реакций // «М. М, — волны в биологии и медицине». 1995. — № 6. — С.11−21.
  8. Н.Д. Биохимия психических и нервных болезней. СПб., Изд-во С.-Петерб. унта. 2004. 200 с.
  9. А.Ф. Нейрональная пластичность и терапия аффективных расстройств // Психиатрия и психофармакотерапия. 2003. — Т.05, № 5. — С.43−51.
  10. Л.Д., Кирова Ю. И., Сукоян Г. В. Сигнальные механизмы адаптации к гипоксии и их роль в системной регуляции // Биологические мембраны. 2012. -Т.29(4). — С.238−252.
  11. Ф.З. Общий механизм адаптации и профилактики. М.: Медицина. 1973.- 366 с.
  12. В.И., Рыбникова Е. А. Устойчивые модификации экспрессии нейрогормонов в гипоталамусе крыс в модели «выученная беспомощность» // Бюл. эксперим. биологии и медицины. 2008(1). — Т.145(10). — С.371−376.
  13. В.И., Рыбникова Е. А. Устойчивые модификации экспрессии нейрогормонов в гипоталамусе крыс в модели посттравматического стрессового расстройства // Рос. Физиол. журнал им. И. М. Сеченова. 2008(2). — Т.94(11). — С. 1277−1284.
  14. В.И., Рыбникова Е. А. Участие экстрагипоталамического звена регуляции гипофизарно-адренокортикальной системы в развитии разных форм депрессивноподобного состояния у крыс // Рос. физиол. журн. им. И. М. Сеченова. -2006. Т.92(9). -С.1111−1121.
  15. В.И., Рыбникова Е. А., Ракицкая В. В., Шаляпина В. Г. Содержание кортиколиберина в гипоталамусе крыс с различной стратегией поведения при постстрессорной депрессии // Рос. физиол. журн. им. И. М. Сеченова. 2004. — Т.90(9). — С.1161−1169.
  16. МКБ-10 Международная статистическая классификация болезней и связанных со здоровьем проблем 10-го пересмотра. / Классификация психических и поведенческих расстройств. СПб: Оверлайд. — 1994.
  17. А.И. Влияние акклиматизации к гипоксии на течение экспериментальных эпилептиформных судорог у крыс // Бюл.эксперим.биологии и медицины. 1962. — Т.53, № 1. — С.48−50.
  18. Л.А. Экспрессия генов. Москва, Издательство «Мир». 2000.
  19. А.Л., Константинова М. С., Гарлов П. Е. Гипоталамо-гипофизарный нейроэндокринный комплекс / В кн.: Нейроэндокринология (часть первая, кн. первая) // Под ред. А. Л. Поленова. СПб. — 1993. — С. 139−187.
  20. А. Прекондиционирование миокарда: естественные механизмы кардиопротекции в норме и патологии // Medicine Rev. 2008. — Т. З, № 3. — С.27−37.
  21. Е.А. Нейропротективные эффекты и механизмы гипоксического прекондиционирования. Автореферат диссертации на соискание ученой степени доктора биологических наук. СПб. 2010.
  22. Е.А., Миронова В. И., Пивина С. Г. Тест для выявления нарушений саморегуляции гипофизарно-адренокортикальной системы // Журн. ВНД. 2010. -Т.60(4). — С.500−506.
  23. Е.А., Миронова В. И., Пивина С. Г., Ордян Н. Э., Тюлькова Е.И, Самойлов М. О. Гипоксическое прекондиционирование предотвращает развитие постстрессорных депрессивных состояний у крыс // Докл. РАН. 2006. — Т.411, № 1. — С. 122−124.
  24. Е.А., Миронова В. И., Тюлькова Е. И., Самойлов М. О. Анксиолитический эффект умеренной гипобарической гипоксии у крыс в модели посттравматического стрессового расстройства // Журн. ВНД. 2008. — Т.58(4). — С.475−482.
  25. М.О. Мозг и адаптация. Молекулярно-клеточные механизмы. Санкт-Петербург: ИНФ РАН. 1999. 272 с.
  26. М.О., Лазаревич Е. В., Семенов Д. Г., Мокрушин A.A., Тюлькова Е. И., Романовский Д. Ю., Милякова Е. А., Дудкин К. Н. Адаптивные эффекты прекондиционирования нейронов мозга // Физиол. журн. им. Сеченова. 2001. — Т.87. -№ 6. — С.714−729.
  27. М.О., Рыбникова Е. А. Молекулярно-клеточные и гормональные механизмы индуцированной толерантности мозга к экстремальным факторам среды // Физиол. журн. им. Сеченова. 2012. — Т. 98, № 1. — С. 108−126.
  28. М.О., Рыбникова Е. А., Чурилова A.B. Сигнальные молекулярные и гормональные механизмы протективных эффектов гипоксического прекондиционирования // Пат. я физиол. и эксп. терапия. 2012. — № 3. — С. 3−10.
  29. М.О., Семенов Д. Г., Тюлькова E.H., Болехан Е. А. Молекулярно-клеточные механизмы протектирующего эффекта краткосрочной аноксии // Физиол. журн. им. И. М. Сеченова. 1994. — Т.80, № 12. — С.71−75.
  30. H.H. Сиротинш М. М. Життя на висотах та хвороба висоти. Киев. — 1939.
  31. H.H. Влияние адаптации к гипоксии и акклиматизации к высокогорному климату на устойчивость животных к некоторым экстремальным воздействиям // Патол. физиология и эксперим. терапия. 1964. — Т.5. — С. 12−15.
  32. П.Г. Психиатрия. Санкт-Петербург, Изд-во СПбМАПО. 1998.
  33. А.Б. Депрессии в общесоматической практике. М, 2000. — 160 с.
  34. С.А., Самойлов М. О. Эндогенные антиоксиданты. Санкт-Петербург: ИНФ РАН. 2006. 145 с.
  35. С.А., Тюлькова Е. И., Ватаева Л. А., Самойлов М. О., Пельто-Хыокко М.Т. Влияние пренатальной гипоксии на экспрессию тиоредоксина-1 в гиппокампе крыс на разных сроках постнатального онтогенеза // Нейрохимия. 2011. — Т.28, № 3. — С.226−231.
  36. A.A. Пути регуляции протоонкогена c-fos // Биохимия. 1995. — Т.60(12). -С.1931−1952.
  37. Л.А., Васильев Г. А., Остапенко О. Ф. Действие окиси углерода на тренированных к гипоксии крыс. / В сб.: Материалы конференции по проблеме адаптации, тренировки и другим способам повышения устойчивости организма. Донецк. 1960.-С. 140.
  38. A.A. Принципы и механизмы регуляции гипофизарно-адренокортикальной системы. Ленинград: Наука. 1987. — 165 с.
  39. A.A., Подвигина Т. Т., Филаретова Л. П. Адаптация как функция гипофизарно-адренокортикальной системы. Санкт-Петербург: Наука. 1994. — 131 с.
  40. Н.В., Савостьянов К. В. Гипоталамо-гипофизарно-надпочечниковая ось и генетические варианты, влияющие на ее активность // Генетика. 2011. — Т.47, № 8. -С.1013−1025.
  41. В.Н., Аникеева Н. В., Максисова Н. А. Практическая иммуногистоцитохимия (методические рекомендации). СПб., ВЦЭРМ МЧС России. 2002. 35 с.
  42. Abel K-B., Majzoub J.A. Molecular biology of the HPA axis // Handbook of Stress and the Brain: Part 1. The neurobiology of stress. V.15. / Eds: Steckler Т., Kalin N.H., Reul J.M.H.M. Amsterdam etc.: Elsevier, 2005. P. 79−95.
  43. Abel Т., Maniatis T. Gene regulation. Action of leucine zippers // Nature. 1989. -V.341 (6237). — P.24−25.
  44. Ahima R.S., Harlan R.E. Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system // Neurosci. 1990. — V.39. — P.579−604.
  45. Altarejos J.Y., Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals // Nat Rev Mol Cell Biol. 2011. — V.12(3). — P. 141−151.
  46. An W.G., Kanekal M., Simon M.C., Maltepe E., Blagosklonny M.V., Neckers L.M. Stabilization of wild-type p53 by hypoxia-inducible factor 1 alpha // Nature. 1998. -V.392(6674). — P.405−408.
  47. Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation//Biochim Biophys Acta. 1991. — Y. 1072(2−3). P. 129−157.
  48. Aronsson M., Fuxe K., Dong Y., Agnati L.F., Okret S., Gustafsson J.-A. Localization of glucocorticoid reccptor mRNA in the male rat brain by in situ hybridization // Proc. Natl. Acad. Sci. USA. 1988,-V.85.-P.9331−9335.
  49. Bakalkin G. Y., Yakovleva Т., Terenius L. NF-кВ-Нке factors in the murine brain. Developmentally-regulated and tissuespecific expression // Mol. Brain Res. 1993. — V.20. -P.137−146.
  50. Barka Т., Gubits R.M., van der Noen H.M. Beta-adrenergic stimulation of c-fos gene expression in the mouse submandibular gland // Mol Cell Biol. 1986. — V.6(8). — P.2984−2989.
  51. Baxter J.D., Tyrrell J.B. Evaluation of the hypothalamic-pituitary-adrenal axis: importance in steroid therapy, AIDS, and other stress syndromes // Adv. Intern. Med. 1994. — V.39. -P.667−696.
  52. Beckmann A.M., Wilce P.A. ERG transcription factor in the nervous system // Neurochem. Int. 1997.-V.31.-P.477−510.
  53. Beg A.A., Sha W.C., Bronson R.T., Baltimore D. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice // Genes Dev. 1995. — V.9(22). — P.2736−2746.
  54. Belaidi E., Beguin P.C., Ribuot C., Godin-Ribuot D. Hypoxic preconditioning: role of transcription factor HIF-lalpha// Ann Cardiol Angeiol. 2006. — V.55(2). — P.70−73.
  55. Bell E.L., Chandel N.S. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species // Essays Biochem. 2007. — V.43. — P.17−27.
  56. Berridge M.J., Irvine R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction // Nature. 1984. — Y.312(5992). — P.315−321.
  57. Blondeau N., Widmann C., Lazdunski M., Heurteaux C. Activation of the nuclear factor-kappaB is a key event in brain tolerance // J. Neurosci. -2001. -V.21, N13. P.4668−4677.
  58. Botchkina G.I., Geimonen E., Bilof M.L., Villarreal O., Tracey K.J. Loss of NF-kappaB activity during cerebral ischemia and TNF cytotoxicity // Mol. Med. 1999. — V.5. — P.372−381.
  59. Bozon B., Davis S., Laroche S. Regulated transcription of the immediate-early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation // Hippocampus. 2002. — V. 12(5). — P.570−577.
  60. Bozon B., Kelly A., Josselyn S.A., Silva A.J., Davis S., Laroche S. MAPK, CREB and zif268 are all required for the consolidation of recognition memory // Philos Trans R Soc Lond B Biol Sci. 2003. — V 358(1432). — P.805−814.
  61. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal Biochem. 1976. — V.72. -P.248−254.
  62. Brami-Cherrier K., Roze E., Girault J.A., Betuing S., Caboche J. Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse // J Neurochem. 2009. -V. 108(6). — P.1323−1335.
  63. Bravo R., Burckhardt J., Curran T., Mtiller R. Stimulation and inhibition of growth by EGF in different A431 cell clones is accompanied by the rapid induction of c-fos and c-myc proto-oncogenes // EMBO J. 1985. — V.4(5). — P. 1193−1197.
  64. Bresnick E.H., Dalman F.C., Sanchez E.R., Pratt W.B. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor //J Biol Chem. 1989. — V.264(9). — P.4992−4997.
  65. Brown R.H. Jr., Robberecht W. Amyotrophic lateral sclerosis: Pathogenesis // Semin. Neurol. -2001.-V.21. -P.131−139.
  66. Bruick R.K., McKnight S.L. A conserved family of prolyl-4hydroxylases that modify HIF // Science. 2001. — V.294. — P. 1337−1340.
  67. Cadet J.K., Krasnova N. Cellular and molecular neurobiology of brain preconditioning // Mol. Neurobiol. 2009. — V.39. — P.50−61.
  68. Callahan M., Cochran B.H., Stiles C.D. The PDGF-inducible 'competence genes': intracellular mediators of the mitogenic response // Ciba Found Symp. 1985. — V. l 16. — P.87−97.
  69. Cannon W. The Wisdom of the Body // 2nd ed., NY: Norton Pubs. 1939.
  70. Cantley L.C. The phosphoinositide 3-kinase pathway // Science. 2002. — V.296(5573). -P.1655−1657.
  71. Cao X., Mahendran R., Guy G.R., Tan Y. I-I. Detection and characterization of cellular EGR-1 binding to its recognition site // J. Biol. Chem. 1993. — V.268(23). — P. 16 949−16 957.
  72. Ceradini D.J., Gurtner G.C. Homing to Hypoxia: HIF-1 as a Mediator of Progenitor Cell Recruitment to Injured Tissue // Trends Cardiovasc Med. 2005. — V.15. — P.57−63.
  73. Chaudhuri A., Matsubara J.A., Cynader M.S. Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif 268 // Visual Neurosci. 1995. -V.12. — P.5−35.
  74. Chavez J.C., Agani F., Pichiule P., LaManna J.C. Expression of hypoxia-inducible factor-1 in the brain of rats during chronic hypoxia // J. Appl. Physiol. 2000. — V.89. — P. 1937−1942.
  75. Chen L.F., Greene W.C. Shaping the nuclear action of NF-kB // Nat Rev Mol Cell Biol. -2004. V.5. -P.392101.
  76. Chen L.F., Mu Y., Greene W.C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kB // EMBO J. 2002. — V.21. — P.6539−6548.
  77. Chikuma M., Masuda S., Kobayashi T., Nagao M., Sasaki R. Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus // Am. J. Physiol. 2000. -V.279. — P. E1242-E1248.
  78. Chiueh C.C., Andoh T., Chock P.B. Induction of thioredoxin and mitochondrial survival proteins mediates preconditioning-induced cardioprotection and neuroprotection // Ann. N Y Acad. Sei. 2005. — V.1042. — P.403−418.
  79. Cho S., Park E.M., Kim Y., Liu N. Gal J., Volpe B.T., Joh T.H. Early c-Fos induction after cerebral ischemia: a possible neuroprotective role // J. Cereb. Blood Flow Metab. 2001. -V.21. — P.550−556.
  80. Choi D.W. Calcium and excitotoxic neuronal injury // Proc. Natl. Acad. Sei. USA. 1994. -V.747.-P. 162−171.
  81. Chourbaji S., Vogt M.A., Gass P. Mice that under- or overexpress glucocorticoid receptors as models for depression and posttraumatic stress disorder // Prog. Brain. Res. 2007. — V.167. — P.65−77.
  82. Christy B.A., Lau L.F., Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with zinc finger sequences // Proc. Natl. Acad. Sei. USA. 1988. -V.85. — P.7857−7861.
  83. Christy B.A., Nathans D. DNA binding site of the growth factor-inducible protein Zif268 // Proc. Natl. Acad. Sei. USA. 1989. — Y.86. — P.8737−8741.
  84. Chrousos G.P. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture//Ann. NY Acad. Sei. 1998. -V. 851. — P.31 1−335.
  85. Cochran B.H., Zullo J., Verma I.M., Stiles C.D. Expression of the c-fos gene and of a fos-related gene is stimulated by platelet-derived growth factor // Science. 1984. — V.226. -P.1080−1082.
  86. Colombo P.J. Learning-induced activation of transcription factors among multiple memory systems // Neurobiol Learn Mem. 2004. — V.82(3). — P.268−277.
  87. Countryman R.A., Gold P.E. Rapid forgetting of social transmission of food preferences in aged rats: relationship to hippocampal CREB activation // Learn Mem. 2007. — V.14(5). -P.350−358.
  88. Cullinan W.E. GABA (A) receptor subunit expression within hypophysiotropic CRH neurons: a dual hybridization histochemical study // J. Comp. Neurol. 2000. — Y.419. — P.344−351.
  89. Curran T., Bravo R., Mtiller R. Transient induction of c-fos and c-myc in an immediate consequence of growth factor stimulation // Cancer Surv. 1985. — V.4(4). — P.655−681.
  90. Curran T., Peters G., Van Bevercn C., Teich N.M., Verma I.M. FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA \ J Virol. -1982. V.44(2). — P.674−682.
  91. D’Acquisto F., Ghosh S. PACT and PKR: Turning on NF-KappaB in the Absence of Virus // • Sci STKE. 2001. http://stke.scicncemag.org/cgi/content/full/OCsigtrans-2001/89/rel.
  92. Dai Y., Xu M" Wang Y" Pasha Z., Li T., Ashraf M. HIF-lalpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia // J Mol. Cell. Cardiol. 2007. — V.42(6). — P.1036−1644.
  93. Davis S., Bozon B., Laroche S. How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? // Behav. Brain Res. 2003. — V. 142(1). — P. 17−30.
  94. De Kloet E.R. Brain corticosteroid receptor balance and homeostatic control // Front. Neuroendocrinol. 1991. — V. 12. — P.95−164.
  95. De Kloet E.R. Hormones and the stressed brain // Ann. N.Y. Acad. Sci. 2004. — V.1018. -P.1−15.
  96. Derijk R.H., de Kloet E.R. Corticosteroid receptor polymorphisms: determinants of vulnerability and resilience // Eur. J. Pharmacol. 2008. — V.583, N2−3. — P.303−311.
  97. Di S., Malcher-Lopes R., Halmos K.C., Tasker J.G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism // J. Neurosci. -2003. V.23(12). — P.4850−4857.
  98. Digicaylioglu M., Lipton S.A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kB signalling cascades //Nature. 2001. — V.412. — P.641−647.
  99. Dinan T.G. Glucocorticoids and the genesis of depressive illness: a psychological model // British Journal of Psychiatry. 1994. — V.164. — P.365−371.
  100. Diorio D., Viau V., Mcaney M.J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamo-pituitary-adrenal responses to stress // J. Neurosci. 1993. -V.13. — P.3839−3847.
  101. DSM-IV Diagnostic and Statistical Manual of Mental Disorders (4th ed.). American Psychiatric Association. Washington, DC: APA. — 1994.
  102. Encio I.J., Detera-Wadleigh S.D. The genomic structure of the human glucocorticoid receptor // J Biol Chem. 1991. — V.266(l 1). — P.7182−7188.
  103. Erdtmann-Vourliotis M., Riechert U., Mayer P., Grecksch G., Hollt V. Pentylenetetrazole (PTZ)-induced c-fos expression in the hippocampus of kindled rats is suppressed by concomitant treatment with naloxone // Brain Res. 1998. — V.792(2). — P.299−308.
  104. Flexner J.B., Flexner L.B., Stellar E. Memory in mice as affected by intracerebral puromycin // Science. 1963. — V.141(3575). — P.57−59.
  105. Foulkes N.S., Laoide B.M., Schlotter F., Sassone-Corsi P. Transcriptional antagonist cAMP-responsive element modulator (CREM) down-regulates c-fos cAMP-induced expression // Proc Natl Acad Sci USA. 1991. — V.88(12). — P.5448−5452.
  106. Francke U., Foellmer B.E. The glucocorticoid receptor gene is in 5q31-q32 // Genomics. -1989. V.4(4). — P.610−612.
  107. Fridmacher V., Kaltschmidt B., Goudeau B. et.al. Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection // J. Neurosci. 2003. — V.23. — P.9403−9408.
  108. Fulford A.J., Harbuz M.S. An introduction to the HPA axis // Handbook of Stress and the Brain / Eds Stechler T., Kalin N.M., Reul J.M.- 2005. V. 15. — P.43−65.
  109. Gilmore T.D. Introduction to NF-kappaB: players, pathways, perspectives // Oncogene. -2006. V.25. — P.6680.
  110. Gonzalez G.A., Montminy M.R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133 // Cell. 1989. — V.59. — P.675−680.
  111. Gourley S.L., Wu F.J., Kiraly D.D., Ploski J.E., Kedves A.T., Duman R.S., Taylor J.R. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression // Biol. Psychiatry. 2008. — V.63, N4. — P.353−359.
  112. Gratton A., Sullivan R.M. Role of prefrontal cortex in stress responsivity // Handbook of Stress and the Brain: Part 1. The neurobiology of stress. Vol.15 / Eds: Steckler T., Kalin N.H., Reul J.M.H.M. Amsterdam etc.: Elsevier. 2005. — P.807−815.
  113. Grewal S.S., York R.D., Stork P.J. Extracellular-signal-regulated kinase signalling in neurons // Curr Opin Neurobiol. 1999 — V.9(5). — P.544−53.
  114. Grilli M., Memo M. Nuclear factor-kB/Rel proteins: a point of convergence of signalling pathways relevant in neuronal function and dysfunction // Biochem. Pharmacol. 1998. -V.57. — P. 1−7.
  115. Grocott M., Montgomery H., Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine // Crit. Care. 2007. — V. l 1, N1. -P.203−208.
  116. Guerrini L., Blasi F., Denis-Donini S. Synaptic activation of NF-kB by glutamate in cerebellar granule neurons in vitro // Proc. Natl. Acad. Sci. USA. 1995. — V. 92. — P.9077−9081.
  117. Haas T.L., Stitclman D., Davis S.J., Apte S.S., Madri J.A. Egr-1 mediates extracellular matrix-driven transcription of membrane type 1 matrix metalloproteinase in endothelium // J. Biol. Chem. 1999. — V.27. — P.22 679−22 685.
  118. Haller J., Millar S., van dc Schraaf J., de Kloet R.E., Kruk M.R. The active phase-related increase in corticosterone and aggression are linked // J Neuroendocrinol. 2000. — V. l2(5). -P.431−436.
  119. Hara T., Hamada J., Yano S., Morioka M., Kai Y., Ushio Y. CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA1 region // J. Neurochem. 2003. — V.86. -P.805−814.
  120. Hata R., Gass P., Mies G., Wiessner C., Hossmann K.A. Attenuated c-fos mRNA induction after middle cerebral artery occlusion in CREB knockout mice does not modulate focal ischemic injury//J. Cereb. Blood FlowMetab. 1998. — V. 18. — P. 1325−1335.
  121. Hatzinger M. Neuropeptides and the hypothalamic-pituitary-adrenocortical (HPA) system: review of recent research strategies in depression // World J Biol Psychiatry.- 2000. V. l (2). -P.105−111.
  122. Hayden M.S., Ghosh S. Signaling to NF- kB // Genes Dev. 2004. — V.18. — P.2195−2224.
  123. Heck S., Kullmann M., Gast A., Ponta H., Rahmsdorf H.J., Herrlich P., Cato A.C. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1 // EMBO J. 1994. — V.13. — P.4087−4095.
  124. Heck S., Lezoualc’h F., Engert S., Behl C. Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor-kappaB //J. Biol.Chem. 1999. — V.274. — P.9828−9835.
  125. Heitzer M.D., Wolf I.M., Sanchez E.R., Witchel S.F., DeFranco D.B. Glucocorticoid receptor physiology // Rev Endocr Metab Disord. 2007. — V.8(4). — P.321−330.
  126. Henkel V., Bussfeld P., Moller H.J., Hegerl U. Cognitive-behavioral theories of helplessness/hopelessness: valid models of depression // Eur. Arch. Psychiatry Clin. Neuroscience. 2002. — V.252. — P. 240−249.
  127. Herdegen T. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins // Brain Research Reviews. 1998. — V.28, N3. — P.370−490.
  128. Herdegen T., Kovary K., Buhl A., Bravo R., Zimmermann M., Gass P. Basal expression of the inducible transcription factors c-Jun, JunB, JunD, c-fos, FosB and Krox-24 in the adult rat brain// J.Comp. Neurol. 1995. — V.354. — P.39−56.
  129. Hcrdegen T., Waetzig V. AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration // Oncogene. 2001. — V.20. — P.2424−2437.
  130. Herman J.P., Mueller N.K., Figueiredo H. Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration // Ann. NY Acad. Sci. 2004. -V.1018. — P.35−45.
  131. Herman J.P., Schafer M., Young E.A., Thompson R., Douglass J., Akil H., Watson S.J. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis // J. Neurosci. 1989. — V.9. — P.3072−3082.
  132. Herrera D.G., Robertson H.A. Activation of c-fos in the brain // Prog Neurobiol. 1996. -V.50(2−3). — P.83−107.
  133. Hill C.S., Treisman R. Differential activation of c-fos promoter elements by serum, lysophosphatidic acid, G proteins and polypeptide growth factors // EMBO J. 1995. -V. 14(20).-P.5037−5047.
  134. Hillhouse E.W., Milton N.G.N. Effect of noradrenaline and y-aminobutyric acid on the secretion of corticotropin-releasing factor-41 and arginine vasopressin from the rat hypothalamus in vitro // J. Endocrinol. 1989. — V.122. — P.719−723.
  135. Hipskind R.A., Baccarini M., Nordheim A. Transient activation of RAF-1, MEK, and ERK2 coincides kinetically with ternary complex factor phosphorylation and immediate-early gene promoter activity in vivo // Mol Cell Biol. 1994. — V.14(9). -P.6219−6231.
  136. Hironishi M., Ueyama E., Senba, E. Systematic expression of immediate early genes and intensive astrocyte activation induced by intrastriatal ferrous iron injection // Brain Res. -1999. V.828(1−2). — P.145−153.
  137. Holtzman D.M., Sheldon R.A., Jaffe W., Cheng Y., Ferriero D.M. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury // Ann Neurol. 1996. — V.39(l). -P.l 14−122.
  138. Hong S.J., Li H., Becker K.G., Dawson V.L., Dawson T.M. Identification and analysis of plasticity-induced late-response genes // Proc. Natl. Acad. Sci. USA. 2004. — V.101, N.7. -P.2145−2150.
  139. Honkaniemi J., Sharp F.R. Prolonged expression of zinc finger immediate-early gene mRNAs and decreased protein synthesis following kainic acid induced seizures // Eur J Neurosci. -1999. V. l 1(1). — P. 10−17.
  140. Honkaniemi J., States B.A., Weinstein P.R., Espinoza J., Sharp F.R. Expression of zinc finger immediate early genes in rat brain after permanent middle cerebral artery occlusion // J Cereb Blood Flow Metab. 1997. — V.17(6). — P.636−646.
  141. Huang L.E., Bunn H.F. Hypoxia-inducible factor and its biomedical relevance // J. Biol. Chem. 2003. — V.278.- P. 19 575−19 578.
  142. Hunt S.P., Pini A., Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature // 1987. — V.328(6131). — P.632−634.
  143. Hurd T.W., Culbert A.A., Webster K.J., Tavare' J.M. Dual role for mitogen-activated protein kinase (Erk) in insulin-dependent regulation of Fra-1 (fos-related antigen-1) transcription and phosphorylation // Biochem. J. 2002. — V.368(2). — P.573−580.
  144. Ito T., Morita N., Nishi M. In vitro and in vivo immunocytochemistry for the distribution of mineralocorticoid receptor with the use of specific antibody // Neurosci. Res. 2000. — V.37. — P.173−182.
  145. Ivan M., Kondo K" Yang H.F., Kim W., Valiando J., Ohh M" Salic A., Asara J.M., Lane W.S. and Kaelin W.G. HIF-1 targeted for VHL-mediated destruction by proline hydroxylation: Implications for 02 sensing // Science. 2001. — V.292. — P.464 -468.
  146. Iwasaki Y., Oiso Y., Saito H., Majzoub J.A. Positive and negative regulation of the rat vasopressin gene promoter // Endocrinology. 1997. — V. 138(12). — P.5266−5274.
  147. Jacobson L., Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis // Endocrine Reviews. 1991. — V.12(2). — P. 118 134.
  148. Jain N., Mahendran R., Philp R., Guy G.R., Tan Y.H., Cao X. Casein kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3T3 cells // J. Biol. Chem. 1996. — V.271(23). — P. 13 530−13 536.
  149. Jelkmann W. Molecular biology of erythropoietin// Intern Med. 2004. — V.43. — P.649−659.
  150. Jenkins R., Tetzlaff W., Hunt S.P. Differential expression of immediate early genes in rubrospinal neurons following axotomy in rat // Eur J Neurosci. 1993. — V.5(3). — P.203−209.
  151. Joels M., Sarabdjitsingh R.A., Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes // Pharmacol Rev. -2012. V.64(4). — P.901−938.
  152. Johansson I.M., Wester P., Hakova M., Gu W., Seckl J.R., Olsson T. Early and delayed induction of immediate early gene expression in a novel focal cerebral ischemia model in the rat // Eur. J. Neurosci. 2000. — V.12. — P. 3615−3625.
  153. Johnson L.N., O’Reilly M. Control by phosphorylation // Curr. Opin. Struct. Bio. 1996. -V.6. — P.762−769.
  154. Kallio P.J., Wilson W.J., O’Brien S., Makino Y., Poellinger L. Regulation of the hypoxia-inducible transcription factor 1 by the ubiquitin-proteasome pathway // J. Biol. Chem. 1999.- V.274.-P.6519−6525.
  155. Kaltschmidt B., Uherek M., Wellmann H., Volk B., Kaltschmidt C. Inhibition of NF-kB potentiates amyloid p-mediated neuronal apoptosis // Proc. Natl. Acad. Sci. USA. 1999. -V.96, N16. — P.9409−9414.
  156. Kaltschmidt C., Kaltschmidt B., Baeuerle P.A. Brain synapses contain inducible forms of the transcription factor NF-kappa B // Mcch Dev. 1993. — V.43(2−3). — P.135−147.
  157. Kaltschmidt C., Kaltschmidt B., Baeuerle P.A. Stimulation of ionotrophic glutamate receptors activates transcription factor NF-kB in primary neurons // Proc. Natl. Acad. Sci. USA. 1995.- V.92. -P.9618−9622.
  158. Kamphuis W., Dijk F., Bergen A.A. Ischemic preconditioning alters the pattern of gene expression changes in response to full retinal ischemia // Mol Vis. 2007. — V.13. — P. 18 921 901.
  159. Kandel E.R. The molecular biology of memory storage: a dialogue between genes and synapses // Science. 2001. — V.294(5544). — P. 1030−1038.
  160. Kang D., Hur C.G., Park J.Y., Han J., Hong S.G. Acetylcholine increases Ca2+ influx by activation of CaMKII in mouse oocytes // Biochem Biophys Res Commun. 2007. — V.360(2) — P.476−82.
  161. Kapoor A., Leen J., Matthews S.G. Molecular regulation of the hypothalamic-pituitary-adrenal axis in adult male guinea pigs after prenatal stress at different stages of gestation // J. Physiol. 2008. — V.586. — P.4317−4326.
  162. Karagianni N., Tsawdaroglou N. The c-fos serum response element (SRE) confers negative response to glucocorticoids // Oncogene. 1994. — V.9(8). — P.2327−2334.
  163. Karin M. Too many transcription factors: positive and negative interactions // New Biol. -1990.-V.2,N2.-P.126−131.
  164. Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-kappaB activity // Annu Rev Immunol. 2000. — V. l8. — P.621−663.
  165. Karst PI., Joels M. Effect of chronic stress on synaptic currents in rat hippocampal dentate gyrus neurons // J Neurophysiol. 2003. — V.89(l). — P.625−633.
  166. Kaskow J.W., Baker D., Geracioti T.D. Corticotropin-releasing hormone in depression and post-traumatic stress disorder//Peptides. 2001. — V.22. — P.845−851.
  167. Katche C., Goldin A., Gonzalez C., Bekinschtein P., Medina J.H. Maintenance of long-term memory storage is dependent on late posttraining Egr-1 expression // Neurobiol Learn Mem. -2012. V.98, № 3. — P.220−227.
  168. N., Kawata M., Pitman R.K. (Eds.). PTSD: Brain Mechanisms and Clinical Implications. XI. Springer. 2006. 304 p.
  169. Keller-Wood M., Dallman M.F. Corticosteroid inhibition of ACTH secretion // Enocr. Rev. -1984. V.5(l). — P.1−24.
  170. Kelz M.B., Nestler E.J. DeltaFosB: a molecular switch underlying long-term neural plasticity // Curr Opin Neurol. 2000. — V. 13(6). — P.715−720.
  171. Khachigian L.M., Lindner V., Williams A.J., Collins T. Egr-1-induced endothelial gene expression: a common theme in vascular injury // Science. 1996. — V. 271. — P. 1427−1431.
  172. Kim J.K., Summer S.N., Wood W.M., Schrier R.W. Role of glucocorticoid hormones in arginine vasopressin gene regulation // Biochem. Biophys. Res. Commun. 2001. — V.289, N5. — P.1252−1256.
  173. Kimura H., Ogura T., Kurashima Y., Weisz A., Esumi H. Effects of nitric oxide donors on vascular endothelial growth factor gene induction // Biochem. Biophys. Res. Commun. -2002. V.296(4). — P 976−982.
  174. Kino T., Chrousos G.P. Glucocorticoid effects on gene expression / In: Handbook of Stress and the Brain: Part 1. The neurobiology of stress. Vol.15// Eds: T. Steckler, N.H. Kalin, J.M.H.M. Reul Amsterdam etc.: Elsevier. 2005. — P. 295−310.
  175. Kitagawa K. CREB and cAMP response element-mediated gene expression in the ischemic brain // FEBS J. 2007. — V.274. — P.3210−3217.
  176. Knapska E., Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-l/NGFI-A/Krox-24/TIS8/ZENK? // Prog.Neurobiol. 2004. — V.74, N4. — P.183−211.
  177. Ko S.W., Ao H.S., Mendel A.G., Qiu C.S., Wei F., Milbrandt J., Zhuo M. Transcription factor Egr-1 is required for long-term fear memory and anxiety // Sheng Li Xue Bao. 2005. -V.57(4). — P.421−432.
  178. Koenigs M., Huey E.D., Raymont V. Cheon B, Solomon J, Wassermann EM, Grafman J. Focal brain damage protects against post-traumatic stress disorder in combet veterans // Net Neurosci. 2008. — V. l 1, № 2. — P.232−237.
  179. Krick S., Eul B.G., Hanze J., Savai R" Grimminger F" Seeger W., Rose F. Role of HIF-1 {alpha} in hypoxia-indueed apoptosis of primary alveolar epithelial type II cells // Am. J. Respir. Cell. Mol. Biol. 2005. — V.32(5). — P.395−403.
  180. Kumar R., Thompson E.B. Gene regulation by the glucocorticoid receptor: structure function relationship // J. Steroid Biochem. Mol. Biol. 2005. — V.94(5). — P.383−394.
  181. Kumar R., Thompson E.B. The structure of the nuclear hormone receptors // Steroids. 1999. — V.64(5). — P.310−319.
  182. Kwok R.P., Lundblad J.R., Chrivia J.C., Richards J.P., Bachinger H.P., Brennan R.G., Roberts S.G., Green M.R., Goodman R.H. Nuclear protein CBP is a coactivator for the transcription factor CREB //Nature. 1994. — V.370(6486). — P.223−226.
  183. Laemmly O. Maturation of head of bacteriophage T4 //Nature. 1970. — V.227. — P.680−685.
  184. Lando D., Peet D.J., Gorman J.J., Whelan D.A., Whitelaw M.L., Bruick R.K. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor// Genes Dev. 2002(2). — V.16. — P. 1466−1471.
  185. Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch // Science. 2002(1). — V.295. — P.858−861.
  186. Latchman D.S. Eukaryotic Transcription Factors. Elsevier, Academic Press. 2010. 488 p.
  187. Latchman D.S. Transcription factors: an overview // Int. J. Biochem. Cell Biol. -1997. V.29, N12. -P.1305−1312.
  188. LeClerc S., Palaniswami R., Xie B.X., Govindan M.V. Molecular cloning and characterization of a factor that binds the human glucocorticoid receptor gene and represses its expression // J Biol Chem. 1991. — V.266(26). — P. 17 333−17 340.
  189. Lee H.T., Chang Y.C., Wang L.Y., Wang S.T., Huang C.C., Ho C.J. cAMP response element-binding protein activation in ligation preconditioning in neonatal brain // Ann. Neurol. 2004. -V.56, N5. — P.611−623.
  190. Legradi G., Hannibal J., Lechan R.M. Association between pituitary adenylate cyclase-activating polypeptide and thyrotropin-releasing hormone in the rat hypothalamus // J Chem Neuroanat. 1997. — V. 13(4). — P.265−279.
  191. Lemaire P., Revelant O., Bravo R., Charnay P. Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells // Proc. Natl. Acad. Sci. USA. 1988. — V. 85. — P.4691^1695.
  192. Lemaire P., Vesque C., Schmitt J., Stunnenberg H., Frank R., Charnay P. The serum-inducible mouse gene Krox-24 encodes a sequence-specific transcriptional activator // Mol. Cell. Biol. 1990. — V.10. — P.3456−3467.
  193. Leonard M.O., Godson C., Brady H.R., Taylor C.T. Potentiation of glucocorticoid activity in hypoxia through induction of the glucocorticoid receptor // J. Immunol. 2005. — V.174, N4. -P. 2250−2257.
  194. Liberzon I., Krstov M., Young E.A. Stress-restress: effects on ACTH and fast feedback // Psychoneuroendocrinology. 1997. — V.22, N6. — P.443−453.
  195. Liberzon I., Lopez J.F., Flagcl S.B., Vazquez D.M., Young E.A. Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder // J Neuroendocrinol. 1999. — V. l 1(1). — P. l 1−17.
  196. Lightman S.L., Young W.S. Corticotrophin-releasing factor, vasopressin and proopiomelanocortin mRNA responses to stress and opiates in the rat // J. Physiol. 1988. -V.403.-P.511−523.
  197. Liu J., Narasimhan P., Yu F., Chan P.H. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin // Stroke. 2005. — V.36(6). — P. 1264−1269.
  198. Lonze B.E., Ginty D.D. Function and regulation of CREB family transcription factors in the nervous system // Neuron. 2002. — V.35(4). — P.605−623.
  199. Mack K., Day M., Milbrandt J., Gottlieb D.I. Localization of the NGFI-A protein in the rat brain // Mol. Brain Res. 1990. — V.8. — P. 177−180.
  200. Mack K.J., Cortner J., Mack P., Farnham P.J. Krox 20 messenger RNA and protein expression in the adult central nervous system // Brain Res. Mol. Brain Res. 1992. — V.14(l-2). -P.117−123.
  201. Makara G.B., Stark E. Effect of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release // Neuroendocrinol. 1974. — V. 16. — P. 178−190.
  202. Malkoski S.P., Handanos C.M., Dorin R.I. Localization of a negative glucocorticoid response element of the human corticotropin-releasing hormone gene // Mol. Cell Endocrinol. 1997. -V.127(2). — P.189−199.
  203. Marti H.H. Erythropoietin and the hypoxic brain // J. Exp. Biol. 2004. — V.207(18). -P.3233−3242.
  204. Masson N., Ratcliffe P. J. HIF prolyl and asparaginyl hyroxylases in the biological response to intracellular 02 levels // J. Cell Sci. 2003. — Y. l 16. — P.3041−3049.
  205. Masson N., Willam C., Maxwell P.H., Pugh C.W., Ratcliffe P.J. Independent function of two destruction domains in hypoxia-inducible factor-chains activated by prolyl hydroxylation // EMBO J. 2001. — V.20. — P.5197−5206.
  206. Mattson M.P., Culmsee C., Yu Z., Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity // J Neurochem. 2000. — V.74(2). — P.443−456.
  207. Maxwell P. H, Pugh C. W, Ratcliffe P.J. Activation of the HIF pathway in cancer // Curr. Opin. Genet. Dev. 2001. — Y. l 1(3). — P.293−299.
  208. Mayr B., Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB // Nat Rev Mol Cell Biol. 2001. — V.2(8). — P.599−609.
  209. Meaney M.J., Aitken D.H. The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: temporal parameters // Brain Res. 1985. — V.354, N2. — P.301−304.
  210. Meberg P.J., Kinney W.R., Valcourt E.G., Routtenberg A. Gene expression of the transcription factor NF-kB in hippocampus: regulation by synaptic activity. Mol. Brain Res. -1996. V.38. — P.179−190.
  211. Meijer O.C. Understanding stress through the genome // Stress. 2006. — V.9(2). — P.61−67.
  212. Meijer O.C., Topic B., Steenbergen P.J., Jocham G., Huston J.P., Oitzl M.S. Correlations between Hypothalamus-Pituitary-Adrenal Axis Parameters Depend on Age and Learning Capacity // Endocrinology. 2005. — V. 146, N 3. — P. 1372−1381.
  213. Meijer O.C., van der Laan S., Lachize S., Steenbergen P.J., de Kloet E.R. Steroid receptor coregulator diversity: what can it mean for the stressed brain? // Neuroscience. 2006. -V.138(3). -P.891−899.
  214. Meller R., Minami M., Cameron J.A., Impey S., Chen D., Lan J.Q., Henshall D.C., Simon R.P. CREB-mediated Bcl-2 protein expression after ischemic preconditioning // J. Cereb. Blood Flow Metab. 2005 — V.25, N2. — P.234−246.
  215. Mielke K., Herdegen T. JNK and p38 stresskinases-degenerative effectors of signal-transduction-cascades in the nervous system // Progress in Neurobiology. 2000. — V.61. -P.45−60.
  216. Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor// Science. 1987. — V.238. -P.797−799.
  217. Miyamoto E. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus // J Pharmacol Sci. 2006. — V. 100(5). — P.433−442.
  218. Miyashita Y., Kameyama M., Hasegawa I., Fukushima T. Consolidation of visual associative long-term memory in the temporal cortex of primates // Neurobiol. Learn. Mem. 1998. -V.70. — P. 197−211.
  219. Mohammadi S., Pavlik A., Krajci D., Al-Sarraf H. NMDA preconditioning and neuroprotection in vivo: delayed onset of kainic acid-induced neurodegeneration and c-Fos attenuation in CA3a neurons // Brain Res. 2009. — V.1256. — P. 162−172.
  220. Montminy M.R., Bilezikjian L.M. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene // Nature. 1987. — V.328(6126). — P.175−178.
  221. Montminy M.R., Sevarino K.A., Wagner J.A., Mandel G., Goodman R.H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene // Proc. Natl Acad. Sci USA. 1986. — V.83.- P.6682−6686.
  222. Morgan J.I., Curran T. Role of ion flux in the control of c-fos expression //Nature. 1986. -V.322.-P. 552−555.
  223. Morgan J.I., Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun // Annu. Rev. Neurosci. 1991.- V. 14. — P.421−451.
  224. Morinobu S., Strausbaugh H., Tervvilliger R., Duman R.S. Regulation of c-Fos and NGFI-A by antidepressant treatments // Synapse. 1997. — V.25(4). — V.313−320.
  225. Morrison N., Harrap S.B., Arriza J.L., Boyd E., Connor J.M. Regional chromosomal assignment of the human mineralocorticoid receptor gene to 4q31.1 // Hum Genet. 1990. -V.85(l). — P.130−132.
  226. Munck A., Guyre P.M., Holbrook N.J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions // Endocrine Rev. 1984. — V.5(l). — P.25−44.
  227. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischcmic myocardium// Circulation. 1986. — V.74. — P.1124−1136.
  228. Nagakura A., Takagi N., Takeo S. Impairment of cerebral cAMP-mediated signal transduction system and of spatial memory function after microsphere embolism in rats // Neuroscience. 2002. — V. l 13. — P.519−528.
  229. Naumann M., Scheidereit C. Activation of NF-k B in vivo is regulated by multiple phosphorylations // Embo J. 1994. — V.13. — P.4597^1607.
  230. Ness J.M., Harvey C.R., Washington J.D., Roth K.A., Carrol S.L., Zhang J. Differential activation of c-fos and caspase-3 in hippocampal neuron subpopulations following neonatal hypoxia-ischemia // J. Neurosci. Res. 2008. — V.86. — P. l 115−1124.
  231. Nestler E.J. Molecular neurobiology of addiction // Am J Addict. 2001. — V.10(3). — P.201−217.
  232. Nicolaides N.C., Galata Z., Kino T., Chrousos G.P., Charmandari E. The Human Glucocorticoid Receptor: Molecular Basis of Biologic // Steroids. 2010. — V.75(l). — P. l-12.
  233. Nozaki K., Nishimura M., Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia // Mol. Neurobiol. 2001. — V.23, N1. — P. 1 -19.
  234. Obrenovitch T.P. Molecular physiology of preconditioning-induced brain tolerance to ischemia // Physiol Rev. 2008. V.88, N1. — P.211 -47.
  235. Oitzl M.S., de Kloet E.R. Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning // Behav Neurosci. 1992. — V. 106(1). — P.62−71.
  236. Oitzl M.S., Reichardt H.M., Joels M., de Kloet E.R. Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory // Proc Natl Acad Sci USA. -2001. V.98(22). — P. 12 790−12 795.
  237. Olsson T., Hakansson A., Seckl J.R. Ketanserin selectively blocks acute stress-induced changes in NGFI-A and mineralocorticoid receptor gene expression in hippocampal neurons // Neuroscience. 1997. — V.76(2). — P.441−448.
  238. Oosthuyse B., Moons L., Storkebaum E. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration // Nat. Genet. -2001.-V.28. -P.131−138.
  239. Orchinik M., Murray T.F., Moore F.L. A corticosteroid receptor in neuronal membranes // Science. 1991. -V.252. -V. 1848−1850.
  240. Ordyan N.E., Pivina S.G., Rakitskaya V.V., Shalyapina V.G. The neonatal glucocorticoid treatment produced long-term changes of the pituitary-adrenal function and brain corticosteroid receptors in rats // Steroids. 2001. — V.66. — P.883−888.
  241. Pabo C.O., Peisach E., Grant R.A. Design and selection of novel Cys2His2 zinc finger proteins // Annu. Rev. Biochem. 2001. — V.70. — P.313−340.
  242. Pacak K., Palkovits M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders // Endocr Rev. 2001. — V.22(4). — P.502−548.
  243. Paschos N., Lykissas M.G., Beris A.E. The role of erythropoietin as an inhibitor of tissue ischemia // Int. J. Biol. Sci. 2008. — V. 10, N4(3). — P. 161 -168.
  244. Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates, 2nd ed. Academic Press, San Diego. 1986.
  245. Perkins N.D. Integrating cell-signalling pathways with NF-kB and IKK function // Nat Rev Mol Cell Biol. 2007. — V.8. — P.49−62.
  246. Peters T. Calcium in physiological and pathological cell function // Eur. Neurol. 1986. -V.25, N4. — P.747−760.
  247. Petersohn D., Thiel G. Role of zinc-finger proteins Spl and zif268/egr-l in transcriptional regulation of the human synaptobrevin II gene // Eur. J. Biochem. 1996. — V.239, N3. -P.827−834.
  248. Peyssonnaux C., Datta V., Cramer T., Doedens A., Theodorakis E.A., Gallo R.L., Hurtado-Ziola N., Nizet V., Johnson R.S. IIIF-1 alpha expression regulates the bactericidal capacity of phagocytes // J. Clin. Invest. 2005. — V. l 15(7). — P. 1806−1815.
  249. Pfahl M. Nuclear receptor/AP-1 interaction//Endocr. Rev. 1993. — V. l4. — P.651−658.
  250. Pinna L. A., Ruzzene M. How do protein kinases recognize there substrates? // Biochemica et Biophysica Acta. 1996. — V.1314. — P.191−255.
  251. Pipaon C., Santos A., Perez-Castillo A. Thyroid hormone up-regulates NGFI-A gene expression in rat brain during development// J Biol Chem. 1992. — V.267(1). — P.21−23.
  252. Pospelov V.A., Pospelova T.V., Julien J.P. AP-1 and Krox-24 transcription factors activate the neurofilament light gene promoter in PI9 embryonal carcinoma cells // Cell Growth Differ. 1994. — V.5(2). — P. 187−196.
  253. Pratt W.B. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor // J Biol Chem. 1993. — V.268(29). — P.21 455−21 458.
  254. Pratt W.B. Transformation of glucocorticoid and progesterone receptors to the DNA-binding state // J Cell Biochem. 1987. — V.35(l). — P.51−68.
  255. ProteinLounge Pathway Database. SABiosciences. http://proteinlounge.com
  256. Pugh C.W., Ratcliffe P.J. Regulation of angiogenesis by hypoxia: role of the HIF system // Nat. Med. 2003. — V.9. — P.677−684.
  257. Purba J.S., Hoogendijk W.J.G., Hofman M.A., Swaab D.F. Increased number of vasopressin-and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression//Arch. Gen. Psychiatry. 1996. -V.53. — P.137−143.
  258. Putnam F.W. Traumatic stress and pathological dissociation // Ann N Y Acad Sci. 1995. -V.771. — P.708−715.
  259. Raingeaud J., Whitmarsh A.J., Barrett T" Derijard B., Davis R.J. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway // Mol Cell Biol. 1996. — V. 16(3). — P. 1247−1255.
  260. Raivich G. c-Jun expression, activation and function in neural cell death, inflammation and repair // J. Neurochem. 2008. — V. 107, N 4. — P. 898−906.
  261. Ratka A., Sutanto W., Bloemers M., de Kloet E.R. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation // Neuroendocrinology. 1989. — V.50(2). — P. l 17−123.
  262. Ravati A., Ahlemeyer B., Becker A., Klumpp S., Krieglstein J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappaB // J. Neurochem. 2001. — V.78. — P. 909−919.
  263. Reichardt H.M., Kaestner K.H., Tuckermann J., Kretz O., Wessely O., Bock R., Gass P., Schmid W., Herrlich P., Angel P., Schutz G. DNA binding of the glucocorticoid receptor is not essential for survival // Cell. 1998. — V.93(4). — P.531−541.
  264. Reichlin S. Neuroendocrine-immune interactions //N. Engl. J. Med. 1993. -V. 329. — V.17. -P.1246−53.
  265. Reul J.M., De Kloct E.R. Anatomical resolution of two types of corticosterone receptor sites in the rat brain with in vitro autoradiography and computerized image analysis // J. Steroid Biochem. 1986. — V.24. — P.269−272.
  266. Reul J.M., De Kloet E.R., Van Sluijs F.J., Rijnberk A., Rothuizen J. Binding characteristics of mineralocorticoid and glucocorticoid receptors in dog brain and pituitary // Endocrinology. -1990. -V. 127(2). P.907−915.
  267. Reul J.M., Rothuizen J., de Kloet E.R. Age-related changes in the dog hypothalamic-pituitary-adrenocortical system: neuroendocrine activity and corticosteroid receptors // J Steroid Biochem Mol Biol. 1991. — V.40. — P.63−69.
  268. Rezkalla S.H., Kloncr R.A. Preconditioning in humans // Heart Fail Rev. 2007. — V.12, N 34. — P.201−206.
  269. Riccio A., Ahn S., Davenport C.M., Blendy J.A., Ginty D.D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons // Science. 1999. -V.286. — P. 2358−2361.
  270. Richard D.E., Berra E., Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor-1 alpha (HIF-la) in vascular smooth muscle cells // J. Biol. Chem. -2000. V.275. — P.26 765−26 771.
  271. Risau W. Mechanisms of angiogenesis //Nature. 1997. — V 386. — P.671−674.
  272. Robertson H.A. Immediate-early genes, neuronal plasticity, and memory // Biochem Cell Biol. 1992. — V.70(9). — P.729−737.
  273. Rose C.R., Blum R., Kafitz K.W., Kovalchuk Y., Konnerth A. From modulator to mediator: rapid effects of BDNF on ion channels // Bioessays. 2004. — V.26(l 1). — P. l 185−1194.
  274. Rosen J.B., Fanselow M.S., Young S.L., Sitcoske M., Maren S. Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning // Brain Res. 1998. — V.796(l-2). -P.132−142.
  275. Rossi E.L. Psyche, Soma and Gene Expression // Ann. Thorac. Surg. 1997. — V.64. -P.1082−1088.
  276. Roth C., Schuierer M., Gunther K., Buettner R. Gcnomic structure and DNA binding properties of the human zinc finger transcriptional repressor AP-2rep (KLF12) // 'Genomics. -2000. V.63(3). — P.384−390.
  277. Russo M.W., Matheny C., Milbrandt J. Transcriptional activity of the zinc finger protein NGFI-A is influenced by its interaction with a cellular factor // Mol. Cell. Biol. 1993. -V. 13(11). — P.6858−6865.
  278. Sagar S.M., Sharp F.R., Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level // Science. 1988. — V.240. — P. 1328−1331.
  279. Sakamoto K., Karelina K., Obrietan K. CREB: a multifaceted regulator of neuronal plasticity and protection // J. Neurochem. 2011. — V. l 16(1). — P. l—9.
  280. K.M., Bardeleben C., Yates K.E., Raines M.A., Golde D.W., Gasson J.C. 5X upstream sequence and genomic structure of the human primary response gene, EGR-lrTIS8 // Oncogene. -1991.- V.6. P.867−871.
  281. Sapolsky R.M. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death // Biol Psychiatry. 2000. — V.48. — P.755−765.
  282. Schmidt-Kastner R., van Os J., Steinbusch W., Schmitz C. Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia // Schizophr. Res. 2006. — V.84(2−3). -P.253−271.
  283. Schneider A., Martin-Villalba A., Weih F., Vogel J., Wirth T., Schwaninger M. NF-kappaB is activated and promotes cell death in focal cerebral ischemia // Nat. Med. 1999. — V.5, N5.-P.554−559.
  284. Seligman M.E., Beagley G. Learned helplessness in the rat // J. Comp. Physiol. Psychol. -1975. V.88. — P.534−541.
  285. Seligman M.E., Maier S.F. Failure to escape to traumatic shock // J. Exp. Psychol. 1967. -V.74.-P.1−9.
  286. Selye H. Stress without Distress. New York: Lippencott. 1974.
  287. Semenov D.G., Samoilov M.O., Lazarewicz J.W. Calcium transients in the model of rapidly induced anoxic tolerance in rat cortical slices: involvement of NMDA receptors // Neurosignals. 2002. — V. l 1, N6. — P.329−335.
  288. G.L. 02-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1 // J. Appl. Physiol. 2004. — V.96(3). — P. 1173−1177.
  289. Semenza G.L. Oxygen-regulated transcription factors and their role in pulmonary disease // Respir. Res.- 2000. V. l (3). — P.159−162.
  290. Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation // Mol. Cell. Biol. 1992. — V.12. — P.5447−5454.
  291. Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences//Cell.- 1986, — V.46,N5.- P.705−716.
  292. Senba E., Ueyama T. Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat//Neurosci. Res. 1997. — V. 29(3). — P. 183−207.
  293. Sharp F.R., Ran R., Lu A., Tang Y., Strauss K.I., Glass T., Ardizzone T., Bernaudin M. Hypoxic preconditioning protects against ischemic brain injury // NeuroRx. 2004, — V. 1, N 1. — P.26−35.
  294. Sheng M., Greenberg M.E. The regulation and function of c-fos and other immediate early genes in the nervous system // Neuron. 1990. — V.4. — P.477−485.
  295. Shi J., Yang S. H., Stubley L., Day A. L. and Simpkins J.W. Hypoperfusion induces overexpression of beta-amyloid precursor protein mRNA in a focal ischemic rodent model // Brain Res. 2000. — V.853. — P. 11.
  296. Shpargel K.B., Jalabi W., Jin Y., Dadabayev A., Penn M.S., Trapp B.D. Preconditioning paradigms and pathways in the brain // Cleve Clin. J. Med. 2008. — V.75. — P.77−82.
  297. Sng J.C., Taniura H., Yoneda Y. A tale of early response genes // Bio Pharm. Bull. 2004. -V.27.-P. 606−612.
  298. Sompol P., Ittarat W., Daosukho C., St Clair D. NF-kappaB-associated MnSOD induction protects against beta-amyloid-induced neuronal apoptosis // J. Mol. Neurosci. 2006. — V.29. — P.279−288.
  299. Stahn C., Buttgereit F. Genomic and nongenomic effects of glucocorticoids // Nat. Clin. Pract. Rheumatol. 2008. — V.4(10). — P.525−533.
  300. Stanciu M., Radulovic J., Spiess J. Phosphorylated cAMP response element binding protein in the mouse brain after fear conditioning: relationship to Fos production // Brain Res Mol Brain Res. 2001. — V.94(1 -2). — P. 15−24.
  301. Steiger H.J., Hangii D. Ischaemic preconditioning of the brain, mechanisms and applications // Acta Neurochir. (Wien). 2007. — V. 149. — P. 1−10.
  302. Steng M., Greenberg M.E. The regulation and function of c-fos and other immediate early genes in the nervous system //Neuron. 1990. — V.4. — P.477485.
  303. Stenzel-Poore M.P., Stevens S.L., Simon R.P. Genomics of preconditioning// Stroke. 2004. -V.35.-P. 2683−2686.
  304. Stetler R.A., Zhang F., Liu C., Chen J. Ischemic tolerance as an active and intrinsic neuroprotective mechanism // Handb. Clin. Neurol. 2008. — V.92. — P. 171−195.
  305. Syljuasen R.G., Hong J.H., McBride W.H. Apoptosis and delayed expression of c-jun and c-fos after gamma irradiation of Jurkat T cells // Radiat. Res. 1996. — V. 146(3). — P.276−282.
  306. Taie S., Ono J., Iwanaga Y. Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning // J. Clin. Neurosci. 2009. — V.16, № 8. — P. 1056−1060.
  307. Takemoto O., Tomimoto H., Yanagihara T. Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils // Stroke. 1995. -V.26, N9. — P.1639−1648.
  308. Tanaka K., Nogawa S., Nagata E., Suzuki S., Dembo T., Kosakai A., Fukuuchi Y. A temporal profile of CREB phosphorylation after focal ischemia in rat brain // Neuroreport. 1999. -V.10. — P.2245−2250,
  309. Thiriet N., Aunis D., Zwiller J. C-fos and egr-1 immediate-early gene induction by cocaine and cocaethylene in rat brain: a comparative study // Ann. N.Y. Acad. Sci. 2000. — V.914. -P.46−57.
  310. Thomassin H., Flavin M., Espinas M.L., Grange T. Glucocorticoid-induced DNA demethylation and gene memory during development // EMBO J. 2001. — V.20(8). -P.1974−1983.
  311. Tichomirowa M.A., Keck M. E., Schneider H. J., Paez-Pereda M., Renner U., Holsboer F., Stalla G. K. Endocrine disturbances in depression // J. Endocrinol. Invest. 2005. — V.28(l). -P.89 — 99.
  312. Traystman R.J. Animal models of focal and global cerebral ischemia // liar. J. 2003. — V.44.- P.85−95.
  313. Tringali G., Pozzoli G., Lisi L., Navarra P. Erythropoietin inhibits basal and stimulated corticotropin-releasing hormone release from the rat hypothalamus via a nontranscriptional mechanism // Endocrinology. 2007. — V. l48(10). — P.4711−4715.
  314. Tsou A.P., Kosaka A., Bach C., Zuppan P., Yee C., Tom L., Alvarez R., Ramsey S., Bonhaus D.W., Stefanich E. Cloning and expression of a 5-hydroxytryptamine7 rcccptor positively coupled to adenylyl cyclase // J Neurochem. 1994. — V.63(2). — P.456−464.
  315. Tupler R., Perini G., Green M.R. Expressing the human genome // Nature. 2001. — V.409. -P.832−833.
  316. Turner J., Crossley M. Mammalian Kruppel-like transcription factors: more than just a pretty finger // TIBS. 1999. — V.24. — P.236−241.
  317. Turpaev K. T, Litvinov DIu. Redox-dependent regulation of gene expression induced by nitric oxide // Mol. Biol. (Mosk). 2004. — V.38(l). — P.56−68.
  318. Ueyama T., Ohya H., Yoshimura R., Senba E. Effects of ethanol on the stress-induced expression of NGFI-A mRNA in the rat brain//Alcohol. 1999. — V. l 8(2−3). — P. 171−176.
  319. Umemoto S., Kawai Y., Senba E. Differential regulation of IEGs in the rat PVH in single and repeated stress models//Neuroreport. 1994. -V.6(l). — P.201−204.
  320. Urbach A., Bruehl C., Witte O.W. Microarray-based long-term detection of genes differentially expressed after cortical spreading depression // Eur. J. Neurosci. 2006. — V.24. -P. 841−856.
  321. Uys J.D., Stein D.J., Daniels W.M., Harvey B.H. Animal models of anxiety disorders // Curr Psychiatry Rep. 2003. — V.5(4). — P.274−281.
  322. Vaidya V., Duman R.S. Depression emerging insights from neurobiology // British Medical Bulletin. — 2001. — V.57. — P.61−79.
  323. Vale W., Speiss J., Rivier C., Rivier J. Characterization of 41-amino acid residue ovine hypothalamic peptide that stimulates the secretion of corticotropin and P-endorphin // Science.- 1981. V.213. — P.1394−1397.
  324. Van der Laan S., Mcijer O.C. Pharmacology of glucocorticoids: beyond receptors // Eur J Pharmacol. 2008. — V.585(2−3). — P.483−491.
  325. Van Dijken H.H., Mos J., van der Heyden J.A., Tilders F.J. Characterization of stress-induced long-term behavioural changes in rats: evidence in favor of anxiety // Physiol Behav. 1992.- V.52(5). P.945−951.
  326. Vermeulen L., DeWilde G., Van Damme P. Vanden Berghe W., Haegeman G. // Transcriptional activation of the NF-kB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1)//EMBO J. 2003. — V.22. — P.1313−1324.
  327. Viengchareun S., Le Menuet D., Martinerie L., Munier M., Pascual-Le Tallec L., Lombes M. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology // Nucl Rccept Signal. 2007. — V.30. — P.5:e012.
  328. Walaas S.I., Greengard P. Protein phosphorylation and neuronal function // Pharmacol Rev. -1991. V.43(3). — P.299−349.
  329. Walton M., Sirimanne E., Williams C., Gluckman P., Dragunow M. The role of the cyclic AMP-responsive element binding protein (CREB) in hypoxic-ischemic brain damage and repair// Mol. Brain Res. 1996. — V.43. — P.21−29.
  330. Walton M.R., Dragunow M. Is CREB a key to neuronal survival? // Trends Neurosci. 2000.- V.23. P.48−53.
  331. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension // Proc. Natl. Acad. Sci. U.S.A. -1995.- V. 92, N12. P.5510−5514.
  332. Wang G.L., Semenza G.L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction // Blood. 1993. — V.82. — P.3610−3615.
  333. Wang J.Q. Regulation of immediate early gene c-fos and zif/268 mRNA expression in rat striatum by metabotropic glutamate rcceptor // Mol Brain Res. 1998. — V.57(l). -P.46−53.
  334. Wang Y., Prywes R. Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites // Oncogene. 2000. -V. 19(11). — P.1379−1385.
  335. Wei F., Xu Z.C., Qu Z., Milbrandt J., Zhuo M. Role of EGR1 in hippocampal synaptic enhancement induced by tetanic stimulation and amputation // J Cell Biol. 2000. — V. 149(7). -P.1325−1334.
  336. Weisaeth L. The stressors and the post-traumatic stress syndrome after an industrial disaster // Acta Psychiatr. Scand. Suppl. 1989. — V.355. — P. 25−37.
  337. Wenger R.H. Cellular adaptation to hypoxia: 02-sensing protein hydroxylases, hypoxia-inducible transcription factors, and 02-regulated gene expression // FASEB J. 2002. — V.16.- P. l 151−1162.
  338. Wessel T.C., Joh T.H., Volpe B.T. In situ hybridization analysis of c-fos and c-jun expression in the rat brain following transient forebrain ischemia // Brain Res. 1991. — V.567(2). -P.231−240.
  339. West A.E., Chen W.G., Dalva M.B. Dolmetsch R.E., Kornhauser J.M., Shaywitz A.J., Takasu M.A., Tao X., Greenberg M.E. Calcium regulation of neuronal gene expression // Proc. Natl Acad. Sei USA. 2001. — V.98. — P. l 1024−11 031.
  340. Wick A., Wick W., Waltenberger J., Weller M., Dichgans J., Schulz J.B. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt // J. Neurosci. 2002. — V.22. — P.6401−6407.
  341. Wingender E. Classification of eukaryotic transcription factors // Mol Biol (Mosk).- 1997. -V.31, N4. P.584−600.
  342. Wingender E., Dietze P., Karas H., Knuppel R. TRANSFAC: a database on transcription factors and their DNA binding sites //Nucleic Acids Res. -1996. V.24, N1. — P.238−241.
  343. Wittner M., Sivenius J., Koistinaho J. Alpha2-adrenoreceptor agonist, dexmedetomidine, alters acute gene expression after global ischemia in gerbils // Neurosci Lett. 1997. -V.232(2). — P.75−78.
  344. Woodburn V.L., Hayward N.J., Poat J.A., Woodruff G.N., Hughes J. The effect of dizocilpine and enadoline on immediate early gene expression in the gerbil global ischaemia model // Neuropharmacology. 1993. V.32(10). -P. 1047−1059.
  345. Worley P.F., Christy B.A., Nakabeppu Y., Bhat R.V., Cole A.J., Baraban J.M. Constitutive expression of zif 268 in neocortex is regulated by synaptic activity // Proc. Natl. Acad. Sei. USA. 1991. — V.88. — P.5106−5110.
  346. Yan S.F., Pinsky D.J., Mackman N., Stern D.M. Egr-1: is it always immediate and early? // J. Clin. Invest. 2000. — V. 105, N5. — P.553−554.
  347. Yehuda R. Advances in understanding neuroendocrine alterations in PTSD and their therapeutic implications // Ann. N.Y. Acad. Sei. 2006. — V. 1071. — P. 137−166.
  348. Yehuda R. Hypothalamic-pituitary-adrenal alterations in PTSD: are they relevant to understanding Cortisol alterations in cancer? // Brain Behav Immun. -2003. V.l. — P.73−83.
  349. Yehuda R. Post-traumatic stress disorder //N Engl J Med. -2002. V.346(2). — P. 108−114.
  350. Yehuda R. Status of Glucocorticoid Alterations in Post-traumatic Stress Disorder // Glucocorticoids and Mood: Ann. N.Y. Acad. Sei. 2009. — V. 1179. — P.56−69.
  351. Yehuda R., Antelman S.M. Criteria for evaluating animal models of post traumatic stress disorder // Biol. Psychiatry. 1993. — V.33. — P. 479−486.
  352. Yehuda R., Giller E.L., Southwick S.M. Hypothalamic pituitary adrenal axis dysfunction in PTSD // Biol. Psychiatry. 1991. — V. 30. — P. 1031 -1048.
  353. Yehuda R., Southwick S. M., Krystal J. H., Bremner D., Charney D. S. and Mason J. W. Enhanced suppression of Cortisol following dexamethasone administration in posttraumatic stress disorder // Am. J. Psychiatry. 1993. — V. 150(1). — P.83 — 86.
  354. Yun S.P., Lee M.Y., Ryu J.M., Song C.H., Han H.J. Role of HIF-lalpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol: involvement of PKC, PI3K/Akt, and MAPKs // Am J Physiol Cell Physiol. 2009. — V.296(2). — P.317−326.
  355. Yune T.Y., Park H.G., Lee J.Y., Oh T.H. Estrogen-induced Bcl-2 expression after spinal cord injury is mediated through phosphoinositide-3-kinase/Akt-dependent CREB activation // J Neurotrauma. 2008. — V.25(9). — P. 1121 -1131.
  356. Zhang X., Zhou K., Wang R" Cui J., Lipton S. A., Liao F. F" Xu H" Zhang Y. W. Hypoxia-inducible factor 1 alpha (HIF-lalpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation // J. Biol. Chem. 2007. — V.282. — P. 10 873−10 880.
  357. Zhe D., Fang H., Yuxiu S. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats // Acta Histochem Cytochem. 2008. — V. 41(4). — P.89−95.
  358. Zilliacus J., Wright A.P., Carlstedt-Duke J., Gustafsson J.A. Structural determinants of DNA-binding specificity by steroid receptors // Mol. Endocrinol. 1995. — V.9(4). — P.389−400.
Заполнить форму текущей работой