Инсулиновая гипогликемия и метаболизм мозга
Диссертация
Таким образом, при многократном воздействии высоких доз инсулина метаболическая реакция на введение гормона обусловлена активацией контринсулярного аппарата, а собственно инсулиновые эффекты не являются доминирующими. В результате увеличиваются возможности энергообеспечения тканей за счет свободных жирных кислот, кетоновых тел и аминокислот. В отношении головного мозга увеличение возможностей… Читать ещё >
Список литературы
- Акмаев И.Г. Нейроиммуноэндокринология: факты и гипотезы // Пробл. эндокринол. 1997. Т.43. № 1. С. 3 9.
- Балаболкин М.И. Сахарный диабет. М.: Медицина. 1994. 383 с.
- Балаболкин М.И. Диабетология. М.: Медицина. 2000. 672 с.
- Баранов В.Г., Соколоверова И. М., Гаспарян Э. Г., Ярошевский Ю. А., Никитин А. И. Экспериментальный сахарный диабет. Роль в клинической диабетологии II Л.: Наука, 1983. 240 с.
- Бархатова В.П. Нейротрансмиттеры и экстрапирамидная патология. М.: Медицина. 1988. 176 с.
- Болдырев А.А. Парадоксы окислительного метаболизма мозга // Биохимия. 1995. Т. 60. № 9. С. 1536 1542.
- Буреш Я., Бурешова О., Хьюстон Д. П. Методики и основные эксперименты по изучению мозга и поведения. М.: Высш. шк., 1991. 399 с.
- ВеревкинаИ.В., АснинаВ.В., Горкин В.3., Машковский М. Д. Избирательное ингибирование пиразидолом моноаминооксидазы типа, А в головном мозгу крысы и человека // Нейрохимия. 1987. Т.6. № 3. С. 332 339.
- Верещагин С.М., Лапицкий В. П., Сытинский И. А. Действие производных гамма-аминомасляной кислоты на биоэлектрическую активность метаторакального ганглия сверчка // Вестник ЛГУ. 1973. № 21. С. 75−81.
- Генес С.Н. Гипогликемия. Гипогликемический симптомокомплекс. М.: Медицина. 1970. 236 с.
- Герасимова И.А., Флеров М. А., Вьюшина А. В. Влияние пренатального стресса на свободнорадикальное окисление липидов головного мозга крыс в постнатальном онтогенезе//Нейрохимия. 2005. Т.22. № 2. С.102−106.
- Герасимова И.А., Флеров М. А., Вьюшина А. В. Влияние пренатального стресса на перекисное окисление липидов в некоторых отделах головного мозга самцов и самок взрослых крыс // Нейрохимия. 2005. Т.22. № 4. С.273−278.
- Глебов Р.Н., Дмитриева Н. М. Свойства №+, К±АТФазы из коры головного мозга крыс // Биохимия. 1974. Т. 39. № 4. С. 822−887.
- Голубев А.Г., Ещенко Н. Д. Активность НАД- и НАДФ-зависимых малатдегидрогеназ и изоцитратдегидрогеназ при гипертиреозе в различных тканях крыс // Вестн. Ленингр. универс., Серия биол. 1977. Вып. 15. С. 66−74.
- Голубев А.Г. Смерть нейрона // Международн. мед. обзор. 1994. Т.2. № 2. С. 134 -140.
- Горкин В.З. Аминооксидазы и их значение в медицине. М., Медицина. 1981.335 с.
- Горошинская И.А., Стоянович Т., Мичич Д. В., Мршуля Б. Б. Свойства моноаминооксидазы в мозге монгольских песчанок при церебральной ишемии//Вопр. мед. химии. 1989. Т. 35. № 5. С. 112−115.
- Горошинская И.А., Нескубина И. В. Содержание моноаминов при гипобарической гипоксии и защитном эффекте пиразидола // Вопр. мед. химии. 1999. Т. 45. № 5. С. 52−56.
- Гублер Е.В. Вычислительные методы анализа и распознавания патологических процессов. Л.: Наука. 296 с.
- Гуревич B.C., Конторщикова К. Н., Шатилина Л. В. Сравнительный анализ двух методов определения активности супероксиддисмутазы // Лаб. дело.1990. № 4. С. 44−47.
- Дамбинова С.А. Нейрорецепторы глутамата. JI.: Наука, 1989. 114 с.
- Джавадов С. А., Эйюбова А. А., Мамедова JI. К., Гельфгат Е. Б., Погача Г. Количественный анализ фосфолипидного состава миокарда при экспериментальном сахарном диабете: влияние тотальной ишемии // Вопр. мед. химии. 1994. Т. 40. № 1. С. 12−18.
- Досон Р., Эллиот Д., Эллиот У., Джонс К. Справочник биохимика. М.: Мир. 1991. 544 с.
- Екимова И.В., Пастухов Ю. Ф. ГАМК-ергическая система среднего мозга участвует в контроле сна и температурного гомеостаза у голубей // Доклады АН. 2002. Т. 387. № 1. С. 121−124.
- Ещенко Н.Д., Прохорова М. И. Механизм регуляции метаболизма лимонной кислоты в головном мозге // Вопросы биохимии мозга. Ереван. 1976. Т. 12. С. 78−88.
- Ещенко Н.Д., Вилкова В. А. Соотношение путей метаболизма пирувата в тканях при экспериментальном гипертиреозе // Регуляция энергентического обмена и физиологическое состояние организма. М., 1978. С. 176−178.
- Ещенко Н.Д. Цикл трикарбоновых кислот и его регуляция в головном мозгу // Нейрохимия. 1982. № 2. С. 200−213.
- Ещенко Н.Д. Биохимия психических и нервных болезней. Избранные разделы: Учебное пособие.- СПб.: Изд-во С.-Петерб. ун-та, 2004.- 200 с.
- Зайчик А.Ш., Чурилов Л. П. Основы общей патологии. Часть 2. Основы патохимии.- СПб., ЭЛБИ, 2000. 688 с.
- Захаров Г. А., Попов А. В., Савватеева-Попова Е.В., Щеголев Б. Ф. Роль стэкинг-взаимодействий в механизмах связывания глицинового сайта NMDA -рецептора с антагонистами и 3-гидроксикинуренином // Биофизика. 2008. Т.53. № 1. С.22−29.
- Инюшин М.Ю., Сибаров Д. А., Вольнова А. Б., Хименес-Ривера К.А., Ноздрачев А. Д. Влияние блокаторов переносчиков моноаминов на динамику захвата дофамина в повышенной концентрации срезами мозга крысы // Доклады АН. 2008. Т.419. № 4. С.565−568.
- Калиман П.А., Мищенко В. П. Регуляция липогенеза в печени крыс путем изменения активности ферментов цитрат-пируватной ситемы транспорта ацетилкоэнзима А//Биохимия. 1981. Т. 46. № 11. С. 1957−1962.
- Каминский JI.C. Статистическая обработка лабораторных и клинических данных. 1964. JL: Наука. 252 с.
- Касаткина Э.П. Сахарный диабет у детей и подростков. М.: Медицина, 1996. 240 с.
- Карасева Т.Л., Цапенко Ж. Н. Головенко Н.Я., Тимофеева С. Э., Лукьяненко Н. Г. Обмен гамма-аминомасляной кислоты в головном мозге крыс в условиях введения им ноотропных средств // Вопр. мед. химии. 1988. Т. 34. № 3. С. 81−84.
- Кондрашова М.Н. Выясненные и наметившиеся вопросы на пути исследования регуляции физиологического состояния янтарной кислотой // Терапевтическое действие янтарной кислоты. Пущино. 1976. С. 8−30.
- КоннГ.О., Либертал М. М. Синдромы печеночной комы и лактулоза: Пер. с англ. -М.: Медицина. 1983. 516 с.
- Коржевский Д.Э., Отеллин В. А., Григорьев И. П., Петрова Е. С., Гилерович Е. Г., Зинькова Н. Н. Иммуноцитохимическое выявление нейрональной NOсинтазы в клетках головного мозга крысы // Морфология. 2007. Т. 132. № 4. С.77−80.
- Кривченкова Р.С. Определение активности сукцинатдегидрогеназы в суспензии митохондрий // Современные методы в биохимии. (Под ред. В.Н. Ореховича) М.: Медицина. 1977. С.44−46.
- Кричевская А.А. Нейрохимия. Ростов. Изд-во Ростовского ун-та. 1977. 224 с.
- Кузин Н.М., Егоров А. В., Лакреева М. Г., Гуревич Л. Е. Органический гиперинсулинизм // Клиническая медицина. 1998. № 4. С. 7- 11.
- Лебедева З.И., Березов Т. Т., Орехович В. Н. Глутамин(аспарагин)аза из Pseudomonas aurantiaca ВКМВ-548 // Биохимия. 1981. Т. 46. №. 1. С. 85−91.
- Личко А.Е. Инсулиновые комы. М-Л.: Медицина. 1962. 260 с.
- Личко А.Е. Новое в инсулиношоковом лечении психозов. Л.: Медицина. 1970. 119 с.
- Лопатина Н.Г., Рыжова И. В., Зачепило Т. Г., Смирнов В. Б., Чеснокова Е.Г. L -глутамат в формировании долговременой памяти медоносной пчелы Apis melliefera//Журн. эволюц. биохим. физиол. 2004. Т.40. № 6. С. 539−545.
- Лощагин О.В. Возможные перспективы исследований физиологической роли антиоксидантных ферментов// Физиол. о-во им. И. П. Павлова. Съезд, XIX. Тез. докл. Ч.2.- СП6.-2004.-С.46−47.- (Рос. физиол. журн. им. И. М. Сеченова. 2004.Т. 90. № 8. Прил.).
- Лукьянчиков B.C., Балаболкин М. И. Гипогликемический синдром: (Этиология, патогенез, диагностика, лечение). М.: Медицина, 1987. 82 с.
- Любашина О.А., Ицев Д.Е. NO-зависимые механизмы амигдалофугаль-ной модуляции вегетативных нейронов гипоталамуса // Рос. физиол. журн. им. И. М. Сеченова. 2006. Т.92. № 8. С.957−966.
- Любашина О.А., Ноздрачев А.Д. NO-зависимые механизмы амигдало-кортикальных влияний // Доклады АН. 2008. Т.421. № 2. С.282−285.
- Меерсон Ф.З., Лифшиц Р. И., Павлова В. И. Динамика и физиологическое значение активизации ГАМК-системы в головном мозге и сердечной мышце при эмоционально-болевом стрессе // Вопр. мед. химии. 1981. № 1. С. 35−39.
- Меерсон Ф.З. Патогенез и предупреждение стрессорных и ишемических повреждений сердца. М.: Медицина. 1984. 272 с.
- Меньшиков В.В. Лабораторные методы исследования в клинике. М.: Медицина. 1987. 368 с.
- Митюшов М.И., Емельянов Н. А., Мокрушин А. А. и др. Переживающий срез мозга как объект нейрофизиологического и нейрохимического исследования. Л.: Наука. 1986. 127 с.
- Мокрушин А.А., Павлинова Л. И., Гужова И. В., Маргулис Б. А. Эффекты экзогенного белка теплового шока (Hsp 70) на глутаматергическую синаптическую передачу в обонятельной коре мозга крыс in vitro //Доклады АН. 2004. Т.395. № 4. С.551−553.
- Мокрушин А.А., Павлинова Л. И., Плеханов А. Ю. Белок теплового шока (HSP 70) повышает толерантность кортикальных клеток к глутаматной эксайтотоксичности //Бюл. экспер. биол. мед. 2005. Т. 140. № 7. С.4−8.
- Мурти В., Пракаш Г. С., Субраманям К. Активность кислых и нейтральных протеаз в различных отделах головного мозга крыс- распределение в глии и нейронах // Нейрохимия. 1985. № 1. С. 52−55.
- Неополитанский В.Ю., Телушкин П. К., Панченко К. И. Темные нейроны головного мозга крыс, неоднократно перенесших гипогликемию // Актуальные вопросы общей и военной патологической анатомии. С.Петербург. 1999. С. 109.
- Никифоров О. Н., Сазонова О. В., Суханова JI. Я., Князькова JI. Г., Галенок В. А. Перекисное окисление липидов и состояние системы антиоксидантной защиты у больных инсулинозависимым сахарным диабетом //Пробл. эндокринол. 1997. Т. 43. № 5. С. 16 19.
- Никушкин Е.В., Крыжановский Г. А., Михалева Л. И., Бордюкова М. М., Каплун А. Л. Взаимосвязь процессов перекисного окисления и фосфолипазного гидролиза липидов в синаптосомах // Бюл. эксп. биол. мед. 1989. Т. № 2. С. 174−177.
- Ноздрачев А.Д., Поляков Е. Л. Анатомия крысы (лабораторные животные) / Под ред. академика А. Д. Ноздрачева. СПб.: Издательство «Лань», 2001. 464 с.
- Ноздрачев А.Д., Филиппова Л. В., Панасюк Н. В., Арутюнян А. В., Зубжицкая Л. Б. Интенсивность процессов свободнорадикального окисления и генерации оксида азота при воздействии антигена// Доклады АН. 2001. Т.377. № 1. С. 139−141.
- Ноздрачев А.Д., Сотников О. С. Метасимпатическая система мозга // Доклады АН. 2006. Т.409. № 5. С. 707−709.
- Ноздрачев А.Д., Телушкин П. К. Активность глюкозо-6-фосфатазы в печени и уровень свободных жирных кислот в крови у крыс при инсулиновой гипогликемии // Доклады АН. 2008. Т. 423. № 4. С. 361−364.
- Окон Е.Б., Семенова Т. П., Грищенко Е. И. Снижение активности сукцинатдегидрогеназы в коре головного мозга крыс при хронической химической депривации катехоламинэргических систем // Нейрохимия. 1986. № 3. С. 290−293.
- Ордян Н.Э., Акулова В. К., Миронова В. И., Пивина С. Г., Ракицкая В. В. Влияние дефицита рецепторов прогестерона в раннем онтогенезе наформирование репродуктивных функций самок крыс // Рос. физиол. журн. им. И. М. Сеченова. 2008. Т.94. № 4. С.465−473.
- Панин Л.Е., Третьякова Т. А., Русских Г. С., Войцеховская Е. Э. Особенности регуляции ключевых ферментов гликолиза и пентозофосфатного пути в тканях с различной функциональной специализацией // Вопр. мед. химии. 1982. № 2. С. 26−30.
- Панков Ю.А. Новые гормоны и проблемы молекулярной эндокринологии //Пробл. эндокринол. 1998. Т.44. № 5. С. 3−7.
- Пастухов Ю.Ф., Поляков Е. Л., Чепкасов И. Е., Рашотт М. Э., Хендерсон Р. П. Парадоксальный сон индикатор разных форм гипометаболизма у млекопитающих и птиц // Доклады АН. 1998. Т. 358. № 1. С. 131−133.
- Пастухов Ю.Ф., Екимова И. В., Гужова И. В. Основной белок стресса обладает пирогенным действием // Доклады АН. 2003. Т. 388. № 6. С. 837 841.
- Прихожан В.М. Поражения нервной системы при сахарном диабете. М.: Медицина. 1981. 296 с.
- Прохорова М.И. Нейрохимия. Л.: Изд-во Ленингр. ун-та. 1979. 267 с.
- Прохорова М. И Методы биохимических исследований: Липидный и энергетический обмен. Л.: Изд-во Ленингр. ун-та, 1982. 272 с.
- Пушкарев Ю.П. Характеристика передаточной (медиаторной) функции в центральных и периферических моносинаптических образованиях. Автореф. дисс.. д-ра биологических наук. Л., 1979. 49 с.
- Пушкарев Ю.П., Лобов Г. И. Трудные вопросы физиологии. СПб.: Изд-во ЭЛБИ. 2007. 232 с.
- Розанов А .Я., Пархоменко Ю. М. Активность пируват- и а-кето-глутаратдегидрогеназного комплексов в различных отделах головного мозга крыс // Укр. биохим. ж. 1987. № 1. С.29−34.
- Розанов В.А. Влиятие пиридоксальфосфата и производных пантотената на у аминобутиратный шунт в головном мозге мышей // Вопр. мед. химии. 1980. Т. 26. № 1.С. 42−46.
- Самойлов М.О., Рыбникова Е. А., Тюлькова Е. И., Спирау Я., Пелто-Хьюкко М. Митохондриальные антиоксиданты тиоредоксин-2 и Mn-супероксиддисмутаза вовлекаются в механизмы гипоксической толерантности мозга // Доклады АН. 2002. Т.387. № 3. С.414−417.
- Стальная И.Д. Метод определения диеновой коньюгации ненасыщенных высших жирных кислот // Современные методы в биохимии. (Под ред. В.Н. Ореховича). М., Медицина. 1977. С. 63−64.
- Строев Е.А. Дегидрогеназы челночных циклов и их значение в регуляции обмена веществ в тканях животных // Дегидрогеназы в норме и патологии. Горький. Волго-Вятск. кн. изд-во. 1980. С. 28−36.
- Строев С.А., Самойлов М. О. Эндогенные антиоксиданты и гипоксическая толерантность мозга. СПб.: Ин-т физиологии им. И. П. Павлова РАН, 2006. 145с.
- Строев С.А., Тюлькова Е. И., Тугой И. А., Глущенко Т. С., Самойлов М. О., Пелто-Хьюкко М. Влияние прекондиционирования умеренной гипобарической гипоксией на экспрессию Mn-супероксиддисмутазы в гиппокампе крыс //Нейрохимия. 2007. Т.24. № 3. С.218−223.
- Сытинский И.А. Гамма-аминомасляная кислота в деятельности нервной системы (биохимия, фармакология, физиология, клиника). JL: Наука. 1972. 200 с.
- Телушкин П.К., Потапов П. П. Интенсивность гликолиза и активностьферментов энергетического обмена в мозге крыс при многократном воздействии гипогликемических доз инсулина // Пробл. эндокринол. 1994. Т.40. № 5. С.53−54.
- Телушкин П.К., Потапов П. П. Активность НАДФ-зависимых дегидро-геназ и уровень восстановленности пиридиновых нуклеотидов в мозге крыс при инсулиновой гипогликемии и в восстановительном периоде // Вопр. мед. химии. 1995. Т. 41. № 3. С.26−28.
- Телушкин П.К., Шидловская Т. Е. Активность ферментов и содержание субстратов ГАМК-шунта в мозге крыс при многократном воздействии гипогликемических доз инсулина // Вопр. мед. химии. 1996. Т. 42. № 4. С.306−308.
- Телушкин П.К., Потапов П. П. Взаимодействие активных форм кислорода и азота в развитии патологии у человека // Новости медицины и фармации Яринвест медикал. 1997. № 2. С. 33−35.
- Телушкин П.К. Интенсивность процессов перекисного окисления липидов, активность НАДФ- зависимых дегидрогеназ и протеаз в мозге крыс при многократном введении инсулина // Пробл. эндокринол. 1998. Т. 44. № 3. С. 35−38.
- Телушкин П.К. Глутамат и перекисное окисление в патогенезе заболеваний ЦНС // Вопр. мед. химии. 1998. Т. 44. №> 6. С. 520−526.
- Телушкин П.К., Ноздрачев А. Д. Гипогликемия и мозг: метаболизм и механизмы повреждения нейронов // Успехи физиол. наук. 1999. Т. 30. № 4. С. 14−27.
- Телушкин П.К., Ноздрачев А. Д., Потапов П. П. Активность ферментов дезаминирования в мозге крыс в восстановительном периоде после инсулиновой гипогликемии // Пробл. эндокринол. 2001. Т.47. № 5. С. 43−45.
- Телушкин П.К., Ноздрачев А. Д., Потапов П. П., Лучкин А. А. Гликолиз в головном мозге крыс, подвергнутых одно- и многократной гиперинсулинизации //Вестн. С.-Петерб. Ун-та. Сер. 3. 2004. № 3. С. 50−54.
- Телушкин П.К., Ноздрачев А. Д., Потапов П. П., Медведева Н. Б. Показатели метаболизма у крыс при многократной инсулиновой гипогликемии //Пробл. эндокринол. 2006. Т.52. № 5. С. 45−47.
- Телушкин П.К., Ноздрачев А. Д., Потапов П. П. Изменение энергетического обмена и повреждение нервных клеток у крыс при многократном введении высоких доз инсулина // Журнал эволюционной биохимии и физиологии. 2006. Т. 42. № 2. С. 125−129.
- Телушкин П.К., Ноздрачев А. Д., Потапов П. П. Показатели энергетического и азотистого обмена у крыс при инсулиновой гипогликемии //Известия РАН. Серия биологическая. 2008. № 3. С. 324−332.
- Тодоров Й. Клинические лабораторные исследования в педиатрии. София, 1961. 607 с.
- Филиппов С.П. ГАМК- глутамат- аспартат и трансаминазы мозга при инсулиновом нервном синдроме // Вопр. мед. химии. 1980. Т. 26. № 4. С.455−457.
- Филиппов С.П. АТФазная активность микросомальной и синаптосомальной фракций отделов мозга крыс при инсулиновой гипогликемии и ее купировании глюкозой // Пробл. эндокринол. 1991. Т. 37. № 3. С. 52−54.
- Флеров М.А., Герасимова И. А., Ракицкая В. В. Перекисное окисление липидов в стриатуме крыс при стрессе после введения кортизола // Рос. физиол. журн. 2002. Т.88. № 7. С.881−885.
- Флеров M.A., Смирнова Н. Н., Светлова З. В. Перекисное окисление белков плазмы крови больных сахарным диабетом типа 1 // Пробл. эндокринол. 2003. Т.49. № 4. С.3−4.
- Флеров М.А., Толстухина Т. И., Герасимова И. А. Процессы свободнорадикального окисления липидов в нейронах и нейроглии коры больших полушарий при судорогах // Бюл. эксперим. биол. мед. 2004. Т. 138. № 10. С. 385−387.
- Флеров М.А., Герасимова И. А. Перекисное окисление липидов некоторых отделов головного мозга в развитии постстрессорных депрессивных состояний у крыс с разной стратегией адаптивного поведения //Нейрохимия. 2006. Т.23. № 4. С.307−312.
- Флеров М.А., Шаляпина В. Г. Свободнорадикальное окисление липидов в мозгу активных и пассивных крыс в ходе развития постстрессорных депрессий // Рос. физиол. журн. им. И. М. Сеченова. 2008. Т.94. № 5. С.592−597.
- Шпаков А.А., Косарев А. В. Количественный анализ гетерогенности митохондрий мозга крысы в изолированной фракции и in vivo // Бюл. экспер. биол. мед. 1981. № 6. С. 679−682.
- Хама-Мурад А.Х., Павлинова Л. И., Мокрушин А. А. Вторичное повреждение при мозговом инсульте и возможность восстановления функций мозга (роль цитокинов, нейротрофических факторов, адгезионных молекул) //Нейрохимия. 2007. Т.24. № 2. С. 121−131.
- Хама-Мурад А.Х., Мокрушин А. А. Анализ функционирования глутаматергической и ГАМК-ергической медиаторных систем вобонятельной коре мозга спонтанно гипертензивных крыс in vitro // Изв. РАН. Серия биологическая. 2007. № 4. С.454−461.
- Холодова Е.А., Мохорт Т. В. Гипогликемические состояния и гипогликемическая кома при сахарном диабете // Здр. Белоруссии. 1988. № 5. С. 47−51.
- Хужамбердиев М., Сайдуллаев Т., Мамадиев М., Горкин В. З. Нарушения катаболизма биогенных аминов и других азотистых соединений в головном мозгу при экспериментальном атеросклерозе // Нейрохимия. 1986. Т.5. № 3. С. 277−285.
- Хухо Ф. Нейрохимия. Основы и принципы. М.: Мир. 1990. С. 229−231.
- Чалисова Н.И., Закуцкий А. Н., Анискина А. И., Филиппов С. В., Зезюлин П. Н., Ноздрачев А. Д. Влияние аргинина и его метаболитов на миокард крыс в органотипической культуре ткани // Доклады АН. 2007. Т.415, № 2. С.273−276.
- Чалисова Н.И., Закуцкий А. Н., Анискина А. И. Влияние аргинина и его метаболитов на культуру ткани миокарда крыс // Рос. физиол. журн. 2007. Т.93. № 4. С. 366−374.
- Abdul-Rahman A., Siesjo В.К. Local cerebral glucose consumption during insulin-induced hypoglycemia and in the recovery period following glucose administration//Acta Physiol. Scand. 1980. V.110. N2. P.149−159.
- Adkins A., Basu R., Persson M., Dicke В., Shah P., Vella A., Schwenk W.F., Rizza R. Higher insulin concentrations are required to suppress gluconeogenesis than glycogenolysis in nondiabetic humans // Diabetes. 2003. V. 52. N9. P. 2213−2220.
- Aftab-Guy D., Sandoval D., Richardson M. A, Tate D., Davis S.N. Effects of glycemic control on target organ responses to epinephrine in type 1 diabetes // Am. J. Physiol. Endocrinol. Metab. 2005. V. 289. P. 258−265.
- Agardh C.-D., Folbergrova J., Siesjo B.K. Cerebral metabolic changes in profound insulin-induced hypoglycemia, and in the recovery period following glucose administracion //J.Neurochem. 1978. V.31. N 5. P. 1135−1142.
- Agardh C.-D., Rosen I., Siesjo B.K. EEG and SER after hypoglycemic coma in the rat: correlation with cerebral metabolism // Neurosci Lett. 1979. V.13. N 3. P. 45.
- Agardh C.-D., Carlsson A., Linqvist M., Siesjo B.K. The effect of pronounced hypoglycemia on monoamine metabolism in rat brain // Diabetes. 1979. V. 28. N9. P.804−809.
- Agardh C.-D., Chapman A.G., Nilsson В., Siesjo B.K. Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia // J. Neurochem. 1981. V. 36. N2. P. 490−500.
- Agardh C.-D., Chapman A.G., Pelligrino D., Siesjo B.K. // Influence of severe hypoglycemia an mitochondrial and plasma membrane function in rat brain // J. Neurochem. 1982. V. 38. N 3. P. 662−668.
- Agardh C.-D., Smith M.L., Siesjo B.K. The influence of hypothermia on hypoglycemia-induced brain damage in the rat //Acta Neuropathol. (Berl). 1992. V.83.N4. P.379−385.
- Aksenov M. Y., Aksenova M. V., Carney J. M., Butterfield D. A. Oxidative modification of glutamine synthetase by amyloid (3 peptide // Free Radic. Res. 1997. V. 27. N3. P. 267−281.
- Ames III, A. CNS energy metabolism as related to function // Brain Res. Reviews. 2000. V. 34. N 1−2. P. 42−68.
- Amiel S.A., Sherwin R.S., Simonson D.C., Tamborlane W.V. Effect of intensive insulin therapy on glycemic thresholds for counterregulatory hormonerelease // Diabetes. 1988. V. 37. N 7. P. 901−907.
- Amiel S.A., Maran A. Hypoglycaemia in insulin-dependent diabetes mellitus: facts for the 1990s // Diabete Metab. 1993. V.19. N 4. P. 332−339.
- Amiel S.A. Studies in hypoglycaemia in children with insulin-dependent diabetes mellitus // Horm. Res. 1996. V. 45. N 6. P. 285−290.
- Arundine M., Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury // Cell Mol. Life Sci. 2004. V. 61. P. 657- 668.
- Astrup J., Norberg K. Potassium activiti in cerebral cortex in rats during progressive severe hypoglycemia//Brain Res. 1976. V. 103. N2. P. 418−423.
- Auer R.N., Olsson Y., Siesjo B.K. Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: A quntitative study // Diabetes. 1984. V. 33. N 5. P. 1090−1098.
- Auer R.N., Wieloch Т., Olsson Y., Siesjo B.K. The distribution of hypoglycemic brain damage // Acta Neuropathol.(Berl.).1984. V. 64. N 3. P. 177−191.
- Auer R.N., Kalimo H., Olsson Y., Siesjo B.K. The temporal evolution of hypoglycemic brain damage. I. Light and electron microscopic findings in therat cerebral cortex// ActaNeuropathol.(Berl.). 1985. V. 67. N 1−2. P.13−24.
- Auer R.N., Kalimo H., Olsson Y., Siesjo B.K. The temporal evolution of hypoglycemic brain damage. II. Light and electron microscopic findings in the rat hyppocampus // Acta Neuropathol. (Berl.). 1985. V. 67. N 1−2. P. 25−36.
- Auer R.N., Kalimo H., Olsson Y., Wieloch T. The dentate gyrus in hypoglycemia. Pathology implicating excitotoxin-mediated neuronal necrosis // Acta Neuropathol. (Berl). 1985. V. 67. N 3−4. P. 279- 288.
- Auer R.N. Hypoglycemic brain damage // Stroke. 1986. V.17. N 4. P. 699 -708.
- Auer R.N., Hall P., Ingvar M., Siesjo B.K. Hypotension as a complication of hypoglycemia leads to enhanced energy failure but no increase in neuronal necrosis // Stroke. 1986. V.17. N 3. P. 442−449.
- Auer R.N. Excitotoxic mechanisms, and age-related susceptibility to brain damage in ischemia, hypoglycemia and toxic mussel poisoning //Neurotoxicology. 1991. V.12. N3. P.541−546.
- Auer R.N., Siesjo B.K. Hypoglycaemia: brain neurochemistry and neuropathology // Baillieres. Clin. Endocrinol. Metab. 1993. V. 7. N 3. P. 611 625.
- Auer R.N., Anderson L.G. Hypoglycaemic brain damage: effect of a dihydropyridine calcium channel antagonist in rats // Diabetologia. 1996. V.39. N 2. P. 129−134.
- Babcock G.T. How oxygen is activated and reduced in respiration // Proc. Natl. Acad. Sci. USA. 1999. V. 96. N 23. P. 12 971- 12 973.
- Bachelard H.S. Glucose as a fuel for the brain // Biochem. Soc. Trans. 1978. V. 6. N3.P. 530−534.
- Bachelard H. S. Glucose transport to the brain in vivo and in vitro. In: Cerebral Metabolism and Neural Function (Passonneau, J. V., Hawkins, R. A., Lust, W. D. and Welsh, F. A., eds). Williams & Wilkins, Baltimore. 1980. P. 106 119.
- Bachelard H.S. Cerebral metabolism and hypoglycemia // Hypoglycemia. London. 1981. P. 51−68.
- Back S. A., Luo N. L., Mallinson R. A. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes // Ann. Neurol. 2005. V. 58. N 1. P. 108−120.
- Bak L.K., Schousboe A., Waagepetersen H.S. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer // J. Neurochem. 2006. V. 98. N 3. P. 641−653.
- Balazs R., Patel A.J., Richter D. Metabolic compartmens in the brain: ther properties and relation to morphological structures // Metabolic compartmentation in the brain / Balazs R., Cremer J. eds. Macmillan, London. 1973. P. 167−184.
- Balfour R.H., Hansen A.M.K., Trapp S. Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem // J. Physiol. 2006. V. 570. N3.469−484.
- Balfour R.H., Trapp S. Ionic currents underlying the response of rat dorsal vagal neurones to hypoglycaemia and chemical anoxia // J. Physiol. 2007. V. 579. N. 3. P. 691−702.
- Banarer S., McGregor V.P., Cryer P.E. Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response // Diabetes. 2002. V. 51. N4. P. 958−965.
- Banks W.A., Jaspan J.B., Kastin A.J. Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays // Peptides. 1997. V. 18. N 8. P. 1257−1262.
- Baskin D. G., Figlewicz D. P., Woods S. C., Porte D. Jr., Dorsa D. M. Insulin in the brain // Annu. Rev. Physiol. 1987. V. 49. P. 335−347.
- Baquer N.Z., Hothersall J.S., McLean P. Function and regulation of thepentose phosphate pathway in brain I I Curr. Top. Cell Regul. 1988. V. 29. P. 265 289.
- Battezzati A., Benedini S., Fattorini A., Sereni L.P., L Luzi L Effect of hypoglycemia on amino acid and protein metabolism in healthy humans // Diabetes. 2000. V. 49. Iss. 9. P. 1543−1551.
- Beal M.F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? // Ann. Neurol. 1992. V. 31. P. 119−130.
- Beal M.F. Mechanisms of excitotoxicity in neurologic disease // FASEB J. 1992. V.6. N15. P. 3338−3344.
- Beguin P., Crambert G., Monnet-Tschudi F., Uldry M., Horisberger J.D., Garty H., Geering K. FXYD7 is a brain-specific regulator of Na, K-ATPase a^r isozymes// EMBO J. 2002. Y.21. P. 3264−3273.
- Behar K.L., Rothman D.L. In vivo nuclear magnetic resonance studies of glutamate- y-fminobutyric acid-glutamine cycling in rodent and human cortex: the central role of glutamine // J. Nutrition. 2001. V. 131. N 8. P. 2498−2504.
- Belke D. D., Betuing S., Tuttle M. J. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression // J. Clin. Invest. 2002. V. 109. N 5. P. 629 639.
- Benjamin A. M., Quastel J. H. Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: a possible role of ammonia in brain function // J. Neurochem. 1975. V. 25. N 3. P. 197−206.
- Ben Yoseph O., Boxer P.A., Ross B.D. Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway // Dev. Neurosci. 1994. V. 16. P. 328−336.
- Ben Yoseph О., Boxer P.A., Ross B.D. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress // J. Neurochem. 1996. V. 66. N 6. P. 2329−2337.
- Bergles D. E., Jahr С. E. Synaptic activation of glutamate transporters in hippocampal astrocytes//Neuron. 1997. V. 19. P. 1297−1308.
- Bergles D. E., Jahr С. E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus // J. Neurosci. 1998. V. 18. N 19. P. 7709−7716.
- Bergstedt K., Hu B.R., Wieloch T. Initiation of protein synthesis and heat-shock protein-72 expression in the rat brain following severe insulin-induced hypoglycemia//Acta Neuropathol. (Berl). 1993. V. 86. N2. P.145−153.
- Betz A.L., Goldstein G.W. Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries // Science. 1978. V. 202. P. 225−226.
- Betz A.L., Firth J.A., Goldstein G.W. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells // Brain Res. 1980. V.192. P. 17−28.
- Biggers D.W., Myers S., Neal D., Stinson R., Cooper N.B., Jaspan J.B., Wiliams P.E., Cherrington A.D., Frizzell R.T. Role of brain in counterregulation of insulin induced hypoglycemia in dogs // Diabetes. 1989. V. 37. N 1. P. 7−16.
- Binda C., Newton-Vinson P., Hubalek F., Edmondson D. E., Mattevi A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders // Nat. Struct. Biol. 2002. V. 9. P. 22−26.
- Bingham E.M., Dunn J., Sutcliffe-Goulden J., Marsden P., Amiel S. The effect of hypoglycaemia unawareness on brain glucose content, transport and metabolism during euglycaemia and hypoglycaemia in man (Abstract) // Diabetologia. 2004. V. 47. A83.
- Bin-Jaliah I., Maskell P.D., Kumar P. Indirect sensing of insulin-induced hypoglycaemia by the carotid body in the rat // J. Physiol. 2004. V. 556. N 1. P. 255−266.
- Bin-Jaliah I., Maskell P.D., Kumar P. Carbon dioxide sensitivity during hypoglycaemia-induced, elevated metabolism in the anaesthetized rat // J. Physiol. 2005. V. 563. N3. P. 883−893.
- Bogusky R.T., Lowenstein L.M., Lowenstein J.M. The purine nucleotide cycle. A pathway for ammonia production in the rat kidney // J. Clin. Invest. 1976. V. 58. N2. P. 326−335.
- Bolli G.B., Fanelli C.G. Physiology of glucose counterregulation to hypoglycemia // Endocrinol. Metab. Clin. 1999. V. 28. N 3. P. 467−493.
- Bolli G.B. Treatment and prevention of hypoglycemia and its unawareness in type 1 diabetes // Rev. Endocr. Metab. Disord. 2003. V. 4. N 4. P. 335−341.
- Bonvento G., Herard A. S., Voutsinos-Porche B. The astrocyte-neuron lactate shuttle: a debated but still valuable hypothesis for brain imaging // J. Cereb. Blood Flow Metab. 2005. V. 25. P. 1394−1399.
- Booth R.E.G., Clark J.B. The control of pyruvate dehydrogenase in isolated brain mitochondria//J. Neurochem. 1978. V. 30. P. 1003−1008.
- Borg W.P., Sherwin R.S., During MJ., Borg M.A., Shulman G.I. Local ventromedial hypothalamus glucopenia triggers counterregulatoiy hormone release //Diabetes. 1995. V. 44. N2. P. 180−184.
- Borg M.A., Sherwin R.S., Borg W.P., Tamborlane W.V., Shulman G.I. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats // J. Clin. Invest. 1997. V. 99. N 2. P. 361 365.
- Borza Т., Iancu C.V., Pike E., Honzatko R.B., Fromm HJ. Variations in the response of mouse isozymes of adenylosuccinate synthetase to inhibitors of physiological relevance // J. Biol. Chem. 2003. V. 278. N 9. P. 6673−6679.
- Boyle P.J., Schwartz N.S., Shah S.D., Clutter W.E., Ciyer P.E. Plasma glucose concentrations at the onset of hypoglycemic symptoms in patients with poorly controlled diabetes and in nondiabetics // N. Engl. J. Med. 1988. V. 318. P. 1487−1492.
- Boyle P.J., Nagy R.J., O’Connor A.M., Kempers S.F., Yeo R.A., Quails C.
- Adaptation in brain glucose uptake following recurrent hypoglycemia // Proc. Natl. Acad. Sci. USA. 1994. V. 91. P. 9352−9356.
- Boyle P.J., Kempers S.F., O’Connor A.M., Nagy R.J. Brain glucose uptake and unawareness of hypoglycemia in patients with insulin dependent diabetes mellitus//N. Engl. J. Med. 1995. V. 333. N 26. P. 1726−1731.
- Bradford H. F., Ward H. K., Thomas A. J. Glutamine a major substrate for nerve endings // J. Neurochem. 1978. V. 30. N 6. P. 1453−1459.
- Brdiczka D., Pette D. Intra- and extramitochondrial isozymes of NADP-malate dehydrogenase // Europ. J. Biohem. 1971. V. 19. P. 546 552.
- Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases// FreeRadic. Biol. Med. 1999. V. 27. N 9−10. P. 951−965.
- Briscoe V. J., Davis S. N. Hypoglycemia in type 1 and type 2 diabetes: physiology, patho-physiology, and management // Clinical Diabetes. 2006. V. 24. P. 115 121.
- Broer A., Brookes N., Ganapathy V., Dimmer K. S., Wagner C. A., Lang F., Broer S. The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux//J. Neurochem. 1999. V. 73. N 5. P. 2184−2194.
- Brown A. M., Westenbroek R. E., Baltan Tekkok S., Ransom B. R. Functional insulin receptors are selectively expressed on CNS astrocytes // Soc. Neurosci. Abstr. 2002. V. 28. Suppl. 581. P. 12.
- Brown A. M. Brain glycogen re-awakened // J. Neurochem. 2004. V. 89. N 3. P. 537−552.
- Bryan R.M.Jr., Keefer K.A., MacNeill C. Regional cerebral glucose utilization during insulin-induced hypoglycemia in unanesthetized rats. // J. Neurochem. 1986. V.46. N 6. P. 1904−1911.
- Bryan R.M.Jr., Pelligrino D.A. Cerebral blood flow during chronic hypoglycemia in the rat //Brain Res. 1988. V.475. N 2. P.397−400.
- Bukato G., Kochan Z., Swierczynski J. Different regulatory properties of the cytosolic and mitochondrial forms of malic enzyme isolated from human brain // Int J. Biochem Cell Biol. 1995. V. 27. N 10. P. 1003−1008.
- Bulsara M.K., Holman C.D.J., Davis E.A., Jones T.W. The impact of a decade of changing treatment on rates of severe hypoglycemia in a population-based cohort of children with type 1 diabetes // Diabetes Care. 2004. V. 27. P. 2293−2298.
- Butterworth R. F. Effects of hyperammonaemia on brain function // J. Inher. Metab. Dis. 1998. V. 21. N 1. P. 6−20.
- Butterworth R.F. Glutamate transporters in hyperammonemia // Neurochem. Int. 2002. V. 41. N 2−3. P. 81−85.
- Butterworth R.F., Merkel A.D., Landreville F. Regional amino acid distribution in relation to function in insulin hypoglycemia // J. Neurochem. 1982. V. 38. N5.P. 1483−1489.
- Butterworth R.F. Evidence that hepatic encephalopathy results from a defect of glutamatergic synaptic regulation // Mol. Neuropharmacol. 1992. V. 2. N 2. P. 229−232.
- Burdo J. R., Connor J. R. Brain iron uptake and homeostatic mechanisms: an overview//Biometals. 2003. V. 16. N 1. P. 63−75.
- Cadet J.L., Brannock C. Free radicals and the patology of brain dopamine systems // Neurochem. Int. 1998. V. 32. N 2. P. 117−131.
- Camacho A., Massieu L. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death // Arch. Med. Res. 2006. V. 37. N 1. P. 11−18.
- Cersosimo E., Garlick P., Ferretti J. Renal substrate metabolism and gluconeogenesis during hypoglycemia in humans // Diabetes. 2000. V. 49. Iss. 7. P. 1186−1193.
- Cersosimo E., Garlick P., Ferretti J. Abnormal glucose handling by the kidney in response to hypoglycemia in type 1 diabetes // Diabetes. 2001. V. 50. P. 20 872 093.
- Chan O., Zhu W., Ding Y., McCrimmon R.J., Sherwin R.S. Modulation of GABA in the ventromedial hypothalamus primarily affects glucagon and sympathoadrenal responses to hypoglycemia (Abstract) // Diabetes. 2005. V. 54. (Suppl. 1). A154.
- Chan-Palay V., Wu J.-Y., Palay S. L. Immunocytochemical localization of y-aminobutyric acid transaminase at cellular and ultrastructural levels // Proc. Natl. Acad. Sci. U.S.A. 1979. V.76. N 4. P. 2067−2071.
- Chapman A.G., Westerberg E., Siesjo B.K. The metabolism of purine and pirimidine nucleotides in rat cortex during insulin induced hypoglycemia and recovery // J. Neurochem. 1981. V. 36. N 1. P. 179−189.
- Charlton M., Nair K.S. Protein metabolism in insulin-dependent diabetes mellitus // J. Nutrition. 1998. V. 128. P. 323−327.
- Chaudhry F. A., Reimer R. J., Krizaj D., Barber D., Storm-Mathisen J., Copenhagen D. R., Edwards R. H. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission // Cell. 1999. V. 99. P. 769−780.
- Chavko M., Auker C. R., McCarron R. M. Relationship between protein nitration and oxidation and development of hyperoxic seizures // Nitric Oxide. 2003. V. 9. N LP. 18−23.
- Chen V., Ianuzzo C. D., Fong В. C., Spitzer J. J. The effects of acute andchronic diabetes on myocardial metabolism in rats // Diabetes. 1984. V. 33. Iss. 11. P. 1078- 1084.
- Chen H-S.V., Lipton S.A. The chemical biology of clinically tolerated NMDA receptor antagonists // J. Neurochem. 2006. V. 97. N 6. P. 1611−1626.
- Cherrington A.D. Central versus peripheral glucose sensing and the response to hypoglycemia // Diabetes. 2008. V. 57. P. 1158−1159.
- Chinopoulos C., Adam-Vizi V. Depolarization of in situ mitochondria by hydrogen peroxide in nerve terminals // Ann. N. Y. Acad. Sci. 1999. V. 893. P. 269−272.
- Chinopoulos C., Adam-Vizi V. Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease // J. Neurochem. 2001. V. 76. N 1. P. 302−306.
- Choi D. W., Maulucci-Gedde M., Kriegstein A. R. Glutamate neurotoxicity in cortical cell culture // J. Neurosci. 1987. V.7. P. 357−368.
- Choi D. W., Rothman S. M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death// Annu. Rev. Neurosci. 1990. V. 13. N 1. P. 171−182.
- Ciolino H.P., Levine R.L. Modification of proteins in endothelial cell death during oxidative stress // Free Radic. Biol. Med. 1997. V. 22. N 7. P. 1277−1282.
- Clausen T. Na±K+ pump regulation and skeletal muscle contractility // Physiol. Rev. 2003. V. 83. P. 1269−1324.
- Cohen G., Kesler N. Monoamine oxidase and mitochondrial respiration // J. Neurochem. 1999. V. 73. N 6. P. 2310−2315.
- Cooper A. J., Plum F. Biochemistry and physiology of brain ammonia // Physiol. Rev. 1987. V. 67. P. 440−519.
- Cooper A. J., Meister A. Metabolic significance of transaminations. In: Transaminases (Christen P. and Metzler D. E., eds). Wiley, New-York. 1985. P. 534−563.
- Cornelius F., Mahmmoud Y.A. Functional modulation of the sodium pump: the regulatory proteins «Fixit» //News. Physiol. Sci. 2003. V.18. N 1. P. 119−124.
- Cornford E.M., Hyman S., Cornford M.E., Clare-Salzler M. Down-regulation of blood-brain glucose transport in the hyperglycemic nonobese diabetic mouse // Neurochem. Res. 1995. V. 20. P. 869−873.
- Costa E., Armstrong D.M., Guidotti A. Gangliosides in the protection against glutamate excitotoxicity. //Prog. Brain Res. 1994. V.101. P. 357−373.
- Coyle J.T., Puttfarcken P. Oxidative stress, glutamate and neurodegenerative disorders // Science. 1993. V. 262. P. 689−695.
- Crane P.D., Pardridge W.M., Braun L.D., Nyerges A.M., Oldendorf W.H. The interaction of transport and metabolism on brain glucose utilization: a reevaluation of the lumped constant// J. Neurochem. 1981. V. 36. P. 1601−1604.
- Cravioto R.O., Massieu H., Izquierdo J.J. Free amino acids in rat brain during insulin shock// Proc.Soc.Exp.Biol. 1951. V. 78. N 5. P. 856−858.
- Crone С, Olesen S.P. Electrical resistance of brain microvascular endothelium // Brain Res. 1982. V. 241. P. 49−55.
- Cruz F., Scott S. R., Barroso I., Santisteban P., Cerdan S. Ontogeny and cellular localization of the pyruvate recycling system in rat brain // J. Neurochem. 1998. V. 70. N6. P. 2613−2619.
- Cryer P.E. Hypoglycemia risk reduction in type 1 diabetes // Exp. Clin. Endocrinol. Diabetes. 2001. V. 109. N 2. P. 412−423.
- Cryer P.E., Davis S.N., Shamoon H. Hypoglycemia in diabetes // Diabetes Care. 2003. V. 26. P. 1902−1912.
- Cryer P.E. Current concepts: Diverse causes of hypoglycemia-associated autonomic failure in diabetes // N. Engl. J. Med. 2004. V. 350. N 22. P. 2272 -2279.
- Cryer P.E. Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes // Diabetes. 2005. Vol. 54. N 12. P. 35 923 601.
- Cryer P.E. Hypoglycemia, functional brain failure, and brain death // J. Clin. Invest. 2007. V. 117. P. 868−870.
- Cullingford Т. E., Eagles D. A., Sato H. The ketogenic diet upregulates expression of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in rat brain // Epilepsy Res. 2002. V. 49. N2. P. 99−107.
- Cutler R.W., Sipe J.C. Mediated transport of glucose between blood and brain in the cat//Amer. J. Physiol. 1971. V. 220. P. 1182−1186.
- Dagogo-Jack S.E., Craft S., Cryer P.E. Hypoglycemia -associated autonomic failure in insulin dependent diabetes mellitus // J. Clin. Invest. 1993. V. 91. P. 819 -828.
- Daikhin Y., Yudkoff M. Ketone bodies and brain glutamate and GAB A metabolism//Dev. Neurosci. 1998. V. 20. P. 358−364.
- Dalsgaard M.K., Quistorff В., Danielsen E.R., Selmer C., Vogelsang Т., Secher N.H. A reduced cerebral metabolic ratio in exercise reflects metabolismand not accumulation of lactate within the human brain // J. Physiol. 2004. V. 554. N2. P. 571−578.
- Daniel P. M., Love E. R., Pratt О. E. Insulin and the way the brain handles glucose // J. Neurochem. 1975. V. 25. N 4. P. 471−476.
- Daniel P. M., Love E. R., Pratt О. E. The influence of insulin upon the metabolism of glucose by the brain // Proc. Royal Soc. London Biol. Sci. 1977. V. 196. P. 85−104.
- Darley-Usmar V., Wiseman H., Halliwell B. Nitric oxide and oxygen radicals: a guestion of balance //FEBS Letters. 1995. V. 369. P. 131−135.
- Davis M., Shamoon H. Counterregulatory adaptation to recurrent hypoglycemia in normal humans // J. Clin. Endocrinol. Metab. 1991. V. 73. P. 995−1001.
- Davis S.N., Shavers C., Mosqueda-Garcia Costa F. Effects of differing antecedent hypoglycemia on subsequent counterregulation in normal humans // Diabetes. 1997. V. 46. N 9. P. 1328−1335.
- Dawson A.G. Oxydation of cytosolic NADH formed during aerobic metabolism in mammalian eels // Trends. Biochem. Sci. 1979. V. 4. N 8. P. 171 176.
- Dawson R.M.C. Cerebral amino acids in fluoracetate poisoned, anaesthetized and hypoglycemic rats // Biochim. Biophys. Acta. 1953. V. 11. N 3. P. 548−552.
- Deary I.J., Hepburn D.A., MacLeod K.M., Frier B.M. Partitioning the symptoms of hypoglycaemia using multi-sample confirmation factor analysis // Diabetologia. 1993. V. 36. N8. P. 771−777.
- DeFronzo R.A., Hendler R., Christensen N. Stimulation of counterregulatory hormonal responses in diabetic man by a fall in glucose concentration // Diabetes. 1980. V. 29. N2. P. 125−131.
- Delia Porta P., Maiolo A.T., Negri Y.U. Cerebral blood flow and metabolism in therapeutic insulin coma // Metabolism. 1964. V. 13. N1. P. 131 140.
- Depre С., Rider M. H., Hue L. Mechanisms of control of heart glycolysis // Eur. J. Biochem. 1998. V. 258. P. 277 290.
- DeRopp R.S., Snedeker E.H. Effect of drugs on amino acid levels in the rat brain//J. Neurochem. 1961. V. 7. N1. P. 128−134.
- DeRosa M.A., Cryer P.E. Hypoglycemia and the sympathoadrenal system: neurogenic symptoms are largely the result of sympathetic neural, rather than adrenomedullary, activation // Am. J. Physiol. Endocrinol. Metab. 2004. V. 287. P. 32−41.
- Desco M.-C., Asensi M., Marquez R., Martinez-Vails J., Vento M., Pallardo F. V., Sastre J., Vina J. Xanthine oxidase is involved in free radical production in type 1 diabetes. Protection by allopurinol // Diabetes. 2002. V. 51. N P. 11 181 124.
- Dhahbi J. M., Mote P. L., Wingo J., Rowley В. C., Cao S. X., Walford R. L., Spindler S. R. Caloric restriction alters the feeding response of key metabolic enzyme genes //Mech. Ageing Dev. 2001. V. 122. N 10. P. 1033−1048.
- Diedrich L., Sandoval D., Davis S.N. Hypoglycemia associated autonomic failure // Clin. Auton. Res. 2002. V. 12. N 5. P. 358 -365.
- DiRocco R.J., Grill HJ. The forebrain is not essential for sympathoadrenal hyperglycemic response to glucoprivation // Science. 1979. V. 204. P. 112−114.
- DiRocco R.J. Measurement of cerebral glucose transport and metabolism during physiological and pathological states // Expl. Biol. Med. 1986. V. 11. N 1. P. 70−121.
- Dizon J., Burkhoff D., Tauskela J., Whang J., Cannon P., Katz J. Metabolic inhibition in the perfused rat heart: evidence for glycolytic requirement for normal sodium homeostasis // Am. J. Physiol. Heart. Circ. Physiol. 1998. V. 274. P. 10 821 089.
- Djuricic В., Olson S.R., Assaf H.M. Formation of free choline in brain tissue during in vitro energy deprivation. // J. Cereb. Blood Flow Metab. 1991. V. 11. N2. P.308−313.
- Dringen R., Hamprecht B. Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of astroglia-rich primary cultures // J. Neurochem. 1992. V. 58. N2. P. 511−517.
- Dringen R., Hamprecht B. Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells // Brain Res. 1997. V. 759. N 1. P. 67−75.
- Dringen R., Kussmaul L., Hamprecht B. Rapid clearance of tertiary butyl hydroperoxide by cultured astroglial cells via oxidation of glutathione // Glia. 1998. V. 23. N2. P. 139−145.
- Dringen R. Metabolism and functions of glutathione in brain // Prog. Neurobiol. 2000. V. 62. N 6. P. 649−671.
- Dringen R., Pawlowski P. G., Hirrlinger J. Peroxide detoxification’by brain cells // J. Neurosci. Res. 2005. V. 79. N 1−2. P. 157−165.
- Dubyak G.R. Ion homeostasis, channels, and transporters: an update on cellular mechanisms // Adv. Physiol. Educ. 2004. V. 28. N 1. P. 143−154.
- Duncan A. J., Heales S. J. Nitric oxide and neurological disorders // Mol. Aspects Med. 2005. V. 26. N 1−2. P. 67−96.
- Duncombe W. The colorimetric microdetermination of non-esterified fatty acids in plasma // Clin.Chim. Acta. 1964. V. 9. N 2. P. 122−125.
- Dunn J., Cranston I.C., Marsden P.K., Amiel S.A. Measurement of brain perfusion in response to acute hypoglycaemia in healthy volunteers: a 150-water positron emission tomography study (Abstract) // Diabetologia. 2004. V. 47. (Suppl. 1). A322.
- Dunn-Meynell A.A., Routh V.H., Kang L., Gaspers L., Levin B.E. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons // Diabetes. 2002. V. 51. N 7. P. 2056−2065.
- Dykens J.A. Isolated cerebral and cerebellar mitochondria produce freerj Iradicals when exposed to elevated Ca and NO: implication for neurodegeneration // J. Neurochem. 1994. V. 63. N3. P. 584−591.
- Eisenberg S., Seltzer H.S. The cerebral metabolic effects of acutely induced hypoglycemia in human subjects // Metabolism. 1962. V. 11. N 6. P. 1162−1168.
- Ekblom J., Jossan S. S., Bergstrom M., Oreland L., Walum E., Aquilonius S. M. Monoamine oxidase-B in astrocytes // Glia. 1993. V. 8. N 2. P. 122−132.
- Engelsen В., Fonnum F. Effects of hypoglycemia on the transmitter pool and the metabolic pool of glutamate in rat brain // Neurosci. Lett. 1983. V. 42. N 3. P. 317−322.
- Erdo S.L., Michler A., Wolff J.R. GABA accelerates excitotoxic cell death in cortical cultures: protection by blockers of GABA-gated chloride channels // Brain Res. 1991. V. 542. P. 254−258.
- Erecinska M., Zaleska M. M., Nissim I., Nelson D., Dagani F., Yudkoff M. Glucose and synaptosomal glutamate metabolism: studies with 15N. glutamate // J.
- Neurochem. 1988. V. 51. N 3. P. 892−902.
- Erecinska M., Silver I.A. Metabolism and role of glutamate in mammalian brain // Prog. Neurobiol. 1990. V. 35. N 4. P. 245−296.
- Erecinska M., Nelson D., Silver I.A. Metabolic and energetic properties of isolated nerve ending particles (synaptosomes) // Biochim. Biophys. Acta. 1996. V. 1277. P. 13−34.
- Escartin C., Valette J., Lebon V., Bonvento G. Neuron-astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy // J. Neurochem. 2006. V. 99. N 2. P. 393−401.
- Fahn S., Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it // Ann. Neurol. 1992. V. 32. N 6. P. 804−812.
- Fam S. S., Morrow J. D. The isoprostanes: unique products of arachidonic acid oxidation a review// Curr. Med. Chem. 2003. V. 10. N 17. P. 1723−1740.
- Fanelli C. G, Di Vincenzo A., Modarelli F. Post-hypoglycaemic hyperketonaemia does not contribute to brain metabolism during insulin-induced hypoglycaemia in humans //Diabetologia. 1993. V. 36. N 11. P. 1191−1197.
- Fanelli C.G., Dence C.S., Markham J., Videen Т.О., Paramore D.S., Cryer P.E., Powers W.J. Blood to brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes // Diabetes. 1998. V. 47. N9. P. 1444−1450.
- Fanelli C.G., Paramore D.S., Hershey Т., Terkamp C., Ovalle F., Craft S., Cryer P.E. Impact of nocturnal hypoglycemia on hypoglycemic cognitive dysfunction in type 1 diabetes. Diabetes. 1998. V. 47. N 12. P. 1920−1927.
- Feise G., Kogure K., Busto K.R. Effect of insulin hypoglycemia upon cerebral energy metabolism and EEG activity in the rat // Brain. Res. 1977. V. 126. N 2. P.263−280.
- Ferre P., Foretz M., Azzout-Marniche D., Becard D., Foufelle F. Sterol-regulatory-element-binding protein lc mediates insulin action on hepatic gene expression//Biochem. Soc. Trans. 2001. V. 29. P. 547−552.
- Ferrendelli J.A., Chang M.M. Brain metabolism during hypoglycemia. Effect of insulin on regional central nervous system glucose and energy reserves inmice // Arch. Neurol. 1973. V. 28. N3. P. 173−177.
- Fisher S.J., Briining J.C., Lannon S., Kahn C.R. Insulin signaling in the central nervous system is critical for the normal sympathoadrenal response to hypoglycemia//Diabetes. 2005. V. 54. N 5. P. 1447−1451.
- Fitzpatrick S.M., Cooper A.J.L., Duffy Т.Е. Use of p-methylene-D, L-aspartate to asses the role of aspartate aminotransferase in cerebral oxidative metabolism // J. Neurochem. 1983. V. 41. N 5. P. 1370−1383.
- Flanagan D.E., Keshavarz Т., Evans M.L., Flanagan S., Fan X., Jacob R.J., Sherwin R.S. Role of corticotrophin-releasing hormone in the impairment of counterregulatory responses to hypoglycemia // Diabetes. 2003. V. 52. N 3. P. 605−613.
- Fonnum F. Glutamate: a neurotransmitter in mammalian brain // J.Neurochem. 1984. V. 42. N 1. P. 1−11.
- Fowler C. J., Wiberg A., Oreland L., Marcusson J., Winblad B. The effect of age on the activity and molecular properties of human brain monoamine oxidase // J. Neural. Transm. 1980. V. 49. N 1−2. P. 1−20.
- Fowler J. S., Volkow N. D., Wang G. J., Logan J., Pappas N., Shea C., MacGregor R. Age-related increases in brain monoamine oxidase В in living healthy human subjects // Neurobiol. Aging. 1997. V. 18. N 4. P. 431−435.
- Fredericks M., Ramsey R. B. 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system // J. Neurochem. 1978. V. 31, N6. P. 15 291 531.
- Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas // J. Biol. Chem. 1989. V. 264. N 14. P.7761−7764.
- Fridovich I. Superoxide radical and superoxide dismutases // Annu. Rev.
- Biochem. 1995. V. 64. N abs. P. 97−112.
- Fridovich I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? // Ann. N. Y. Acad. Sci. 1999. V. 893. N 1. P. 13−18.
- Frizzell R.T., Jones E.M., Davis S.N., Biggers D.W., Myers S.R., Connolly C.C., Neal D.W., Jaspan J.B., Cherrington A.D. Counterregulation during hypoglycemia is directed by widespread brain regions // Diabetes. 1993. V. 42. N 9. P. 1253−1261.
- Fujioka M., Okuchi K., Hiramatsu K.I. Specific changes in human brain after hypoglycemic injury // Stroke. 1997. V. 28. N 3. P. 584−587.
- Fujita S., Donovan C.M. Celiac-superior mesenteric ganglionectomy, but not vagotomy, suppresses the sympathoadrenal response to insulin-induced hypoglycemia//Diabetes. 2005. V. 54. P. 3258−3264.
- Gaitonde M.K., Dahl D.R., Elliott K.A.C. Entry of glucose carbon into amino acid of rat brain and liver in vivo after injection of uniformly 14C-labelled glucose //Biochem. J. 1965. V. 94. N2. P. 345−352.
- Gaitonde M.K., Evison E., Evans G.M. The rate of utilization of glucose via hexosemonophosphate shunt in brain // J. Neurochem. 1983. V. 41. N 5. P. 12 531 260.
- Gajewski C.D., Yang L., Schon E.A., Manfredi G. New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters // Mol. Biol. Cell. 2003. V. 14. N 9. P. 3628−3635.
- Galva M. D., Bondiolotti G. P., Olasmaa M., Picotti G. B. Effect of aging on lazabemide binding, monoamine oxidase activity and monoamine metabolites in human frontal cortex // J. Neural. Transm. Gen. Sect. 1995.V. 101. N 1−3. P. 8394.
- Garcia-Fernandez M., Ortega-Saenz P., Castellano A., Lopez-Barneo J. Mechanisms of low-glucose sensitivity in carotid body glomus cells // Diabetes. 2007. V. 56. P. 2893−2900.
- Garcia-Nogales P., Almeida A., Bolanos J.P. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection // J. Biol. Chem. 2003. V. 278. N 2. P. 864−874.
- Garofalo O., Cox D.W., Bachelard H.S. Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro // J. Neurochem. 1988. V. 51. N 1. P.172−176.
- Geering K. FXYD proteins: new regulators of Na-K-ATPase // Am. J. Physiol. Renal Physiol. 2006. V. 290. P. 241−250.
- Geha R.M., Rebrin I., Chen K., Shih J.C. Substrate and inhibitor specificities for human monoamine oxidase A and В are influenced by a single amino acid // J. Biol. Chem. 2001. V. 276. N 13. P. 9877- 9882.
- Gerlach M., Ben-Shachar D., Riederer P., Youdim M.B.H. Altered brain metabolism of iron as a cause of neurodegenerative diseases? // J. Neurochem. 1994. V. 63. N3. P. 793−807.
- Ghajar J.B.G., Plum F., Duffy Т.Е. Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery un unanaesthetised rats // J. Neurochem. 1982. V. 38. N 3. P. 397−409.
- Ghajar J.B.G., Gibson G.E., Duffy Т.Е. Regional acetylcholine metabolismin brain during acute hypoglycemia and recovery // J. Neurochem. 1985. V. 44. N l.P. 94−98.
- Gibson G.E., Blass J.P. Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia // J. Neurochem. 1976. V. 27. N 1. P.37−42.
- Gjedde A., Crone C. Induction processes in blood-brain transfer of ketone bodies during starvation // Am. J. Physiol. 1975. V. 229. N 5. P. 1165−1169.
- Gjedde A., Crone C. Blood-brain glucose transfer: repression in chronic hyperglycemia// Science. 1981. V. 214. P. 456−457.'
- Goldberg N.D., Passoneau J.V., Lowry O.H. Effects of changes in brain metabolism on the levels of citryc acid cycle intermediates // J. Biol. Chem. 1966. V. 241. N17. P. 2997−3003.
- Gonzalez F. J. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1 // Mutat. Res. 2005. V. 569. N 1−2. P. 101−110.
- Goodenr C.J., Horn D.G., Berrie M.A. Investtigation of the effect of insulin upon regional brain glucose metabolism in the rat in vivo // Endocrinology. 1980. V. 107. N6. P. 1827−1832.
- Gorbunov N., Esposito T. Activation of glutamate receptors stimulates the formation of nitrite in synaptosomes from rat cerebellum // J. Neurochem. 1994. V. 62. N6. P. 2205−2211.
- Gorell J.M., Law M.M., Lowry O.H., Ferrendelli J.A. Levels of cerebral cortical glycolytic and citryc acid cycle metabolytes during hypoglycemic stupor and its reversal // J. Neurochem. 1977. V. 29. N 1. P. 187−191.
- Gosmanov N.R., Szoke E., Israelian Z., Smith Т., Cryer P.E., Gerich J.E., Meyer C. Role of the decrement in intraislet insulin for the glucagon response to hypoglycemia in humans // Diabetes Care. 2005. V. 281. P. 124−1131.
- Grasic G.P., Hollman M. Molecular neurobiology of glutamate receptors // Annu.Rev. Physiol. Palo Alto (Calif.). 1992. P. 507−586.
- Greene A. E., Todorova M. Т., McGowan R., Seyfried T. N. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose//Epilepsia.2001. V.42.N11 .P. 1371 -13 78.
- Greene A.E., Todorova M.T., Seyfried T.N. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies // J. Neurochem. 2003. V. 86. N 3. P. 529−537.
- Gribble F.M., Loussouarn G., Tucker S.J., Zhao C., Nichols C.G., Ashcroft F.M. A novel method for measurement of submembrane ATP concentration // J. Biol. Chem. 2000. V. 275. P. 30 046−30 049.
- Grillo C., Piroli G., Lima A., McEwen B.S., De Nicola A.F. Aldosterone up-regulates mRNA for the a- and (3-isoforms of (Na, K)-ATPase in several brain regions from adrenalectomized rats // Brain Res. 1997. V. 767. N 1. P. 120−127.
- Gubler С J. Studies of the physiological function of tiamine // J. Biol. Chem. 1961. V. 236. P. 3112−3120.
- Guo M., WuM. H., Korompai F., Yuan S. Y. Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes //
- Physiol. Genomics. 2003. V. 12. P. 139 146.
- Cutler R.W., Sipe J.C. Mediated transport of glucose between blood and brain in the cat // Amer. J. Physiol. 1971. V. 220. P. 1182−1186.
- Gutteridge J. M. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides // FEBS Lett. 1986. V. 201. N 2. P. 291−295.
- Guzman M., Blazquez C. Is there an astrocyte-neuron ketone body shuttle? // Trends Endocrinol. Metab. 2001. V. 12. N 4. P. 169−173.
- Haberg A., Qu H., Bakken I. J., Sande L. M., White L. R., Haraldseth O., 1
- Unsgard G., Aasly J., Sonnewald U. In vitro and ex vivo C-NMR spectroscopy studies of pyruvate recycling in brain // Dev. Neurosci. 1998. V. 20. P. 389−398.
- Halliwell В., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease // Biochem. J. 1984. V. 219. N 1. P. 1−14.
- Halliwell В., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview // Methods Enzymol. 1990. V. 186. P. 1−85.
- Halliwell В., Gutteridge J. M. Biologically relevant metal ion-dependent hydroxyl radical generation. An update // FEBS Lett. 1992. V. 307. N 1. P. 108 112.
- Halliwell B. Reactive oxygen species and the central nervous system // J. Neurochem. 1992. V. 59. N 5. P. 1609−1623.
- Halliwell В., Gutteridge J. M. Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals // J. Neurochem. 1997. V. 69. N 3. P. 1330−1331.
- Halliwell В., Zhao K., Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies // Free Radic. Res. 1999. V. 31. N 6. P. 651−669.
- Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment // Drugs Aging. 2001. V. 18. N 9. P. 685−716.
- Halliwell В. Hypothesis: proteasomal dysfunction: a primary event in neurodegeneration that leads to nitrative and oxidative stress and subsequent cell death //Ann. N. Y. Acad. Sci. 2002. V. 962. N 1. P. 182−194.
- Halliwell B. Oxidative stress in cell culture: an under-appreciated problem? // FEBS Lett. 2003. V. 540. N 1−2. P. 3−6.
- Halliwell В., Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? // Br. J. Pharmacol. 2004. V. 142. P. 231−255.
- Halliwell В., Rafter J., Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? // Am. J. Clin. Nutr. 2005. V. 81. P. 268−276.
- Halliwell B. Oxidative stress and neurodegeneration: where are we now? // J. Neurochem. 2006. V. 97. N 6. P. 1634−1658.
- Hamai M., Minokoshi Y., Shimazu T. L-Glutamate and insulin enhance glycogen synthesis in cultured astrocytes from the rat brain through different intracellular mechanisms // J. Neurochem. 1999. V. 73. N. 1. P. 400- 407.
- Han S.M., Kim M.S., Namkoong C., Jang P., Chun S., Park J.Y., Lee K.U. Hypothalamic AMP-activated protein kinase mediates counterregulatory responses to hypoglycemia (Abstract) // Diabetes. 2005. V. 54. (Suppl. 1).A387.
- Нага M. R., Snyder S. H. Cell signaling and neuronal death // Annu. Rev. Pharmacol. Toxicol. 2007. V. 47. P. 117−141.
- Harris R.J., Wieloch Т., Symon L., Siesjo B.K. Cerebral extracellular calcium activity in severe hypoglycemia: Relation to extracellular potassium and energy state // J. Cereb. Blood Flow Metabol. 1984. V. 4. N 2. P. 187−193.
- Harten В., Leeuw F.-E., Weinstein H.C., Scheltens P., Biessels G.J. Brain imaging in patients with diabetes. A systematic review // Diabetes Care.2006. V. 29. P. 2539−2548.
- Harvey J. Leptin: a diverse regulator of neuronal function // J. Neurochem.2007. V. 100. N2. P. 307−313.
- Hassel В., Bachelard H., Jones P., Fonnum F., Sonnewald U. Trafficking ofamino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate // J. Cereb. Blood Flow Metab. 1997. V.17. P. 12 301 238.
- Hasselbalch S.G., Knudsen G.M., Capaldo В., Postiglione A., Paulson O.B. Blood-brain barrier transport and brain metabolism of glucose during acute hyperglycemia in humans // J. Clin. Endocrinol. Metab. 2001. V. 86. N 5. P. 19 861 990.
- Hauptmann N., Grimsby J., Shih J. C. Cadenas E. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA // Arch. Biochem. Biophys. 1996. V. 335. N 2. P. 295−304.
- Hawkins R.A., Mans A.M. Intermediary metabolism of carbohydrates and other fuels // Handb. Neurochem. 1983. V. 3. P. 259−292.
- Hawkins R.A., O’Kane R.L., Simpson I.A., Vina J.R. Structure of the blood-brain barrier and its role in the transport of amino acids // J. Nutr. 2006. V. 136. P. 218−226.
- Heller S.R., Cryer P.E. Reduced neuroendocrine and symptomatic responses to subsequent hypoglycemia after one episode of hypoglycemia in nondiabetic humans // Diabetes. 1991. V. 40. N 2. P. 223−226.
- Henn F. A., Hamberger A. Glial cell function: uptake of transmitter substances // Proc. Natl. Acad. Sci. U.S.A. 1971. V. 68. P. 2686−2690.
- Hepburn D.A., MacLeod K.M., Pell A.C., Scougal I.J., Frier B.M. Frequency and symptoms of hypoglycaemia experienced by patients with type 2 diabetes treated with insulin//Diabet. Med. 1993. V.10. N 3. P. 231−237.
- Hernandez R.J. Na+/K±ATPase regulation by neurotransmitters // Neurochem. Int. 1992. V. 20. N 1. P. 1−10.
- Hertz L., Wu P. H., Schousboe A. Evidence for net uptake of GABA into mouse astrocytes in primary cultures: its sodium dependence and potassium independence //Neurochem. Res. 1978. V. 3. N 3. P. 313−323.
- Hertz L., Dringen R., Schousboe A., Robinson S. R. Astrocytes: glutamate producers for neurons // J. Neurosci. Res. 1999. V. 57. P. 417−428.
- Hertz L., Yu A. C., Kala G., Schousboe A. Neuronal-astrocytic and cytosolic-mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation // Neurochem. Int. 2000. V. 37. N 2−3. P. 83−102.
- Herzog R.I., Chan O., Yu S., Dziura J., McNay E.C., Sherwin R.S. Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration // Endocrinol. 2008. V. 149. N4. P. 1499−1504.
- Hevener A.L., Bergman R.N., Donovan C.M. Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia // Diabetes. 2000. V. 49. N 1. P. 8 12.
- Heyes M.P., Papagapiou M., Leonard C. Markey S.P., Auer R.N. Brain and plasma quinolinic acid in profound insulin-induced hypoglycemia // J. Neurochem. 1990. V.54. N 3. P. 1027−1033.
- Hinzen D.H., Becker P., Muller U. Einfluss von Insulin auf den regionalen Phospholipidstoffwechsel des Kaninchengehirns in vivo // Pflugers Arch. 1970. Bd. 321. N 1. S. 1−14.
- Hinzen D.H., Muller U. Energistoffwechsel und Funktion des Kaninchengehirns wahrend Insulinhypoglykamie // Pflugers Arch. 1971. Bd. 322. N 1. S. 47−59.
- Hirk J.E. A procedure for quantitative determination of the diaphorase activity of connective tussie // Clinical Chemistry. 1963. V. 9. N 6. P. 776−779.
- Hirrlinger J., Resch A., Gutterer J.M., Dringen R. Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells // J. Neurochem. 2002. V. 82. N 3.P. 635−644.
- Holstein A., Plaschke A., Egberts E.-H. Clinical characterization of severe hypoglycemia: a prospective population-based study // Exp. Clin. Endocrinol. Diabetes. 2003. V.lll. N 6. P.364−369.
- Honegger P., Braissant O., Henry H., Boulat O., Bachmann C., Zurich M.-G., Pardo B. Alteration of amino acid metabolism in neuronal aggregate cultures exposed to hypoglycaemic conditions // J. Neurochem. 2002. Vol. 81. N 6. P. 1141−1151.
- Horber F. F., Haymond M. W. Human growth hormone prevents the protein catabolic side effects of prednisone in humans // J. Clin. Invest. 1990. V. 86. N 1. P. 265−272.
- Horinaka N., Artz N., Jehle J. Examination of potential mechanisms in the enhancement of cerebral blood flow by hypoglycemia and pharmacological doses of deoxyglucose //J. Cereb. Blood Flow Metab. 1997. V. 17. N 1. P. 54−63.
- Hou X., Roberts L. J. II., Gobeil F. Jr. Isomer-specific contractile effects of a series of synthetic F2-isoprostanes on retinal and cerebral microvasculature // Free Radic. Biol. Med. 2004. V. 36. N 2. P. 163−172.
- HubalekF., Pohl J., Edmondson D.E. Structural comparison of human monoamine oxidases A and B. Mass spectrometry monitoring of cysteine reactivities //J. Biol. Chem. 2003. V. 278. N. 31. P. 28 612 28 618.
- Humphries К. M., Yoo Y., Szweda L. I. Inhibition of NADH-linked mitochondrial respiration by 4-hydroxy-2-nonenal // Biochemistry. 1998. V. 37. N 2. P. 552−557.
- Hutson S. M., Berkich D., Drown P., Xu В., Aschner M., LaNoue K.F. Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism // J. Neurochem. 1998. V. 71. N 2. P. 863−8874.
- Ikeda M., Yoshida S., Busto R. Cerebral phosphoinositide and energy metabolism during and after insulin-induced hypoglycemia. // J. Neurochem. 1987. V. 49. N1. P. 100−106.
- Ikemoto A., Bole D.G., Ueda T. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase // J. Biol. Chem. 2003. V. 278. N 8. P. 5929−5940.
- Imai Т., Kondo M., Isobe K. Cerebral energy metabolism in insulin induced hypoglycemia in newborn piglets: in vivo 3 IP-nuclear magnetic resonance spectroscopy // Acta Paediatr. Jpn. 1996. V. 38. N 4. P. 343−347.
- Imlay J. A. Pathways of oxidative damage // Annu. Rev. Microbiol. 2003. V.57. P. 395−418.
- Inoue K., Koizumi S., Tsuda M. The role of nucleotides in the neuron-glia communication responsible for the brain functions // J. Neurochem. 2007. V. 102. N5. P. 1447−1458.
- Inouye K., Shum K., Chan O., Mathoo J., Matthews S.G., Vranic M. Effects of recurrent hyperinsulinemia with and without hypoglycemia on counterregulation in diabetic rats // Am. J. Physiol. Endocrinol. Metab. 2002. V. 282. P. 1369−1379.
- Irwin I., Delanney L., Chan P., Sandy M. S., Di Monte D. A., Langston J. W. Nigrostriatal monoamine oxidase A and В in aging squirrel monkeys and C57BL/6 mice // Neurobiol. Aging. 1997. V. 18. N 2. P. 235−241.
- Israelian Z., Gosmanov N.R., Szoke E., Bokhari S., Cryer P.E., Gerich J.E.,
- Meyer С. Increasing the decrement in insulin secretion improves glucagon responses to hypoglycemia in advanced type 2 diabetes // Diabetes Care. 2005. V. 28. P. 2691−2696.
- Jenner, P., and Olanow, C. W. Oxidative stress and the pathogenesis of Parkinson’s disease // Neurology. 1996. V.47. Suppl. 3. P. 161−170.
- Jiang H., Jiang Q., Liu W., Feng J. Parkin suppresses the expression of monoamine oxidases //J. Biol. Chem. 2006. V. 281. N 13. P. 8591- 8599.
- Johnson J.L. Glutamic asid as a synaptic transmitter in the nervous system. A review // Brain Res. 1972. V. 37. N 1. P. 1−4.
- Johnston J. P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue// Biochem. Pharmacol. 1968. V. 17. P. 1285−1297.
- Kanamori K., Ross B. D. In vivo activity of glutaminase in the brain of hyperammonaemic rats measured in vivo by 15N nuclear magnetic resonance // Biochem. J. 1995. V. 305. P. 329−336.
- Kaufman E. E., Driscoll B. F. Evidence for cooperativity between neurons and astroglia in the regulation of CO2 fixation in vitro // Dev. Neurosci. 1993. V. 15. P. 299−305.
- Kaur G., Kaur K. Effect of acute starvation on monoamine oxidase and Na+, K (+)-ATPase activity in rat brain // Mol. Chem. Neuropathol. 1990. V. 13. N 3. 175−183.
- Kaur G., Arora S.K. Acetylcholinesterase and Na+, K (+)-ATPase activities in different regions of rat brain during insulin-induced hypoglycemia // Mol. Chem. Neuropathol. 1994. V. 21. N 1. P. 83−93.
- Keating D.J. Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases // J. Neurochem. 2008. V.104.N2. P. 298−305.
- Kemp A., Kits A. A colorimetric micromethod for the determination of glycogen in tissues // Biochem. J. 1954. V. 56. N 4. P. 646 648.
- Kiessling M., Weigel K., Gartzen D., Kleihues P. Regional heterogeneity of L-(3- 3H) tyrosine incorporation intorat brain proteins during severe hypoglycemia // J. Cereb. Blood Flow Metabol. 1982. V. 2. N 2. P. 249−253.
- Kiernan M.C., Cindy Lin C. S.-Y., Burke D. Differences in activity-dependent hyperpolarization in human sensory and motor axons // J. Physiol. 2004. V. 558. N1. P. 341−349.
- Kiessling M., Xie Y., Kleihues P. Regionally selective inhibition of cerebral protein sinthesis in the rat during hypoglycemia and recovery // J. Neurochem. 1984. V. 43. N6. P. 1507−1514.
- Kimura Т., Allen P.B., Nairn A.C., Caplan M.J. Arrestins and spinophilin competitively regulate Na+, K±ATPase trafficking through association with a large cytoplasmic loop of the Na+, K±ATPase // Mol. Biol. Cell. 2007. V. 18. N 11. P. 4508−4518.
- King P., Parkin H., Macdonald I.A. The effect of intravenous lactate on cerebral function during hypoglycaemia // Diabet Med. 1997. V. 14. N 1. P. 19−28.
- Knauff H.G., Mark D., Mayer G. Des verhalten der Proteine und der serin -und colaminhaltigen Phosphatide des Zentralnervenzystems wahrend der Insulinhypoglykamie // Hoppe-Seylers Z. Physiol. Chem. 1961. Bd. 326. N 21. S. 227 234.
- Knecht К., Wiesmiiller K.H., Gnau V., Jung G., Meyermann R., Todd K.G., Hamprecht B. AMP deaminase in rat brain: localization in neurons and ependymal cells // J. Neurosci. Res. 2001. V. 66. N 5. P. 941−950.
- Knoll J., Magyar K. Some puzzling pharmacological effects of monoamine oxidase inhibitors // Adv. Biochem. Psychopharmacol. 1972. V. 5. N 2. P. 393 408.
- Kodl C.T., Seaquist E.R. Cognitive dysfunction and diabetes mellitus // Endocrin. Rev. 2008. V. 29. N 4. P. 494−511.
- Koh D. W., Dawson Т. M., Dawson V. L. Mediation of cell death by poly (ADP-ribose) polymerase-1 // Pharmacol. Res. 2005. V. 52. P. 5−14.
- Koivikko M.L., Salmela P.I., Airaksinen K.E.J., Tapanainen J.S., Ruokonen A., Makikallio Т.Н., Huikuri H.V. Effects of sustained insulin-induced hypoglycemia on cardiovascular autonomic regulation in type 1 diabetes // Diabetes.2005.V.54.P.744−750.
- Korf J., Gramsbergen J.B. Timing of potential and metabolic brain energy // J. Neurochem. 2007. V. 103. N 5. P. 1697−1708.
- Kovachich G.B., Haugaard N. Pyruvate dehydrogenase activation in rat brain cortical slices by elevated concentrations of external potassium ions // J. Neurochem. 1977. V. 28. N 5. P. 923−927.
- Koubova J., Guarente L. How does calorie restriction work? // Genes Dev. 2003 .V.17.N3.P.313−321.
- Koyama Y., Coker R.H., Stone E.E., Lacy D.B., Jabbour K., Williams P.E.,
- Wasserman D.H. Evidence that carotid bodies play an important role in glucoregulation in vivo// Diabetes. 2000. V. 49. N 9. P. 1434−1442.
- Krebs H.A., Veech R. Regulation of the redox state of the pyridine nucleatides in liver // Pyridine nucleatide dependent dehydrogenases / H. Sund eds. Berlin, New-York, Springer-Verlag. 1970. P. 413−438.
- Kristian Т., Gido G., Siesjo B.K. Brain calcium metabolism in hypoglycemic coma//J.Cereb. Blood Flow Metab. 1993. V. 13. N 6. P. 955−961.
- Kristian Т., Gido G., Siesjo B.K. The influence of acidosis on hypoglycemic brain damage. //J. Cereb. Blood Flow Metab. 1995. V. 15. N 1. P.78−87.
- Kudin A.P., Debska-Vielhaber G., Kunz W.S. Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria // Biomed. Pharmacother. 2005. V. 59. N 4. P. 163−168.
- Kumagai A.K., Kang Y.S., Boado R.J., Pardridge W.M. Upregulation of GLUT1 glucose transporter mRNA and protein in experimental chronic hypoglycemia//Diabetes. 1995. V. 44. N 12. P. 1399−1404.
- Kumagai A. K. Glucose transport in brain and retina: implications in the management and complications of diabetes // Diabet. Metab. Res. Rev. 1999. V. 15. N 4. P. 261−273.
- Kumar P. How sweet it is: sensing low glucose in the carotid body // J. Physiol. 2007. V. 578. N.3. 627−630.
- Kussmaul L., Hamprecht В., Dringen R. The detoxification of cumene hydroperoxide by the glutathione system of cultured astroglial cells hinges on hexose availability for the regeneration of NADPH // J. Neurochem. 1999. V. 73. N3. P. 1246−1253.
- Kvamme E., Lenda K. Regulation of glutaminase by exogenous glutamate, ammonia and 2-oxoglutarate in synaptosomal enriched preparation from rat brain // Neurochem. Res. 1982. V. 7. N 6. P. 667−678.
- Lafon-Cazal M., Pietri S., Culcasi M., Bockaert J. NMDA-dependent superoxide production and neurotoxicity// Nature. 1993. V.364. P. 535−537.
- Lai J.C.K., Clark J.B. Isocitrate dehydrogenase and malate dehydrogenase in sinaptic and non-synaptic rat brain mitochondria: a comparison of their kinetic constants //Biochem. Soc. Trans. 1978. V. 6. N 5. P. 993−995.
- Lai J.C.K., Cooper A.J.L. Brain a-ketoglutarate dehydrogenase complex: kinetic properties regional distribution and effects of inhibitors // J. Neurochem. 1986. V. 47. N5. P. 1376−1386.
- La Noue K. F., Niklas W.J., Williamson J.R. Control of citric acid cicle activity in rat heart mitochondria // J. Biol. Chem. 1970. V. 245. N 1. P. 102−111.
- Larsson О. M., Schousboe A. Kinetic characterization of GABA-transaminase from cultured neurons and astrocytes // Neurochem. Res. 1990. V.15.N P. 1073−1077.
- Lebedev A.A., Gurkovskaya O.V., Nozdrachev A.D., Shabanov P.D. Role of the dopaminergic system of the brain in the effects of glucocorticoid hormones // Neurosci. Behav. Physiol. 2003.V.33, N3. P.231−236.
- Lebovitz R. M., Zhang H., Vogel H., Cartwright J. Jr, Dionne L., Lu N.,
- Huang S., Matzuk M. M. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice // Proc. Natl Acad. Sci. USA. 1996. V. 93. N 18. P. 9782−9787.
- Lee С. K., Weindruch R., Prolla T. A. Gene-expression profile of the ageing brain in mice // Nat. Genet. 2000. V. 25. N 3. P. 294−297.
- Lee S.M., Koh H.J., Park D.C., Song В .J., Huh T.L., Park J.W. Cytosolic NADP±dependent isocitrate dehydrogenase status modulates oxidative damage to cells//Free Radic. Biol. Med. 2002. V. 32. N11. P. 1185−1196.
- Lee S.P., Yeoh L., Harris N.D., Davies C.M., Robinson R.T., Leathard A., Newman C., Macdonaldl.A., Heller S.R. Influence of autonomic neuropathy on QTc interval lengthening during hypoglycemia in type 1 diabetes // Diabetes. 2004. V. 53. P. 1535−1542.
- Lee Van der K. A. J. M., Willemsen P. H. M., Samec S. Fasting-induced changes in the expression of genes controlling substrate metabolism in the rat heart //J. Lipid Res. 2001. Vol. 42. P. 1752- 1758.
- Leino R. L., Gerhart D. Z., Duelli R., Enerson В. E., Drewes L. R. Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem. Int. 2001. V.38. N 6. P. 519−527.
- Lenaz G., Bovina C., Castelluccio C., Fato R., Formiggini G., Genova M. L., Marchetti M., Pich M. M., Pallotti F., Parenti Castelli G., Biagini G. Mitochondrial complex I defects in aging // Mol. Cell. Biochem. 1997. V. 174. N 1−2. P. 329−333.
- Leong S.F., Clark J.B. Regional developmental of glutamate dehydrogenase in the rat brain // J. Neurochem. 1984. V. 43. N 1. P. 105−111.
- Levin B.E., Routh V.H., Kang L., Sanders N.M., Dunn-Meynell A.A. Neuronal glucosensing. What do we know after 50 years? // Diabetes. 2004. V. 53. P. 2521−2528.
- Levy L. M., Warr O., Attwell D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na±dependent glutamate uptake // J. Neurosci. 1998. V. 18. N23. P. 9620−9628.
- Lewis L.D., Ljunggren В., Norberg K., Siesjo B.K. Changes in carbohydrate substrates, amino acids and ammonia in the brain during insulin-induced hypoglycemia // J. Neurochem. 1974. V. 23. N 4. P. 659−671.
- Lewis L.D., Ljunggren В., Ratcheson R.A., Siesjo B.K. Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG // J. Neurochem. 1974. V. 23. N 4. P. 673−679.
- Liang L. P., Patel M. Iron-sulfur enzyme mediated mitochondrial superoxide toxicity in experimental Parkinson’s disease // J. Neurochem. 2004. V. 90. N 5. P. 1076−1084.
- Lilavivathana U., Brodows R.G., Woolf P.D., Campbell R.G. Counterregulatory hormonal responses to rapid glucose lowering in diabetic man // Diabetes. 1979. V. 28. N 10. P. 873−877.
- Lin S. J., Kaeberlein M., Andalis A. A., Sturtz L. A., Defossez P. A., Culotta V. C., Fink G. R., Guarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration // Nature. 2002. V. 418. N 6895. P. 344−348.
- Linder N., Rapola J., Raivio К. O. Cellular expression of xanthine oxidoreductase protein in normal human tissues // Lab. Invest. 1999. V.79. N 8. P. 967−974.
- Lindvall O., Auer R.N., Siesjo B.K. Mechanisms of hypoglycemic brain damage. Evidence against a significant role of the noradrenergic locus coeruleus system // Exp. Brain Res. 1988. V. 73. N 1. P. 219−223.
- Liochev S. I., Fridovich I. Cross-compartment protection by SOD1 // Free
- Radic. Biol. Med. 2005. V. 38. N 1. P. 146−147.
- Lipton P., Robacker K. Glycolysis and brain function: IC+. stimulation of protein synthesis and K+ uptake require glycolysis// Fed. Proc. 1983. V. 42. N 12. P. 2875−2880.
- Lipton P. Glycolysis is necessary for normal synaptic transmission in guinea-pig hippocampal slices // Soc. Neurosci. Abstr. 1991. V. 17. P. 1155.
- Ljunggren В., Schutz H., Siesjo B.K. Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia // Brain Res. 1974. V. 73. N2. P. 277−289.
- Logan W.J., Snyder S.H. Unigue high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tussie of the rat // Nature (London). 1971. V 234. P. 297−299.
- Losy J., Bernat R. Catecholamines in the rat brain during hypoglycemic convulsions and coma // Acta Physiol. Pol. 1989. V. 40. N 5−6. P. 479−485.
- Lowry O.H., Rosebough N.J., Farr A.L., Randall R.J. Protein measuriment with the folin phenol reagent // J. Biol. Chem. 1951. V. 193. P. 265−275.
- Lund-Andersen H., Kjeldsen C.S. Uptake of glucose analogues by rat brain cortecs slices: membrane transport versus metabolism of 2-deoxy- D- glucose // J. Neurochem. 1977. V. 29. N 2. P. 205−211.
- Lund-Andersen H. Transport of glucose from blood to brain // Physiol. Rev. 1979. V. 59. N2. P. 305−348.
- Magistretti P. J, Pellerin L. Cellular mechanisms of brain energy metabolism: Relevance to functional brain imaging and to neurodegenerative disorders // Ann. NY Acad. Sci. 1996. V. 777. P. 380−387.
- Magistretti P. Brain energy metabolism. In: Fundamental Neuroscience, 2nd edn. (Squire, L., ed.). Academic Press, New York. 2003. pp. 339−360.
- Maher F., Vannucci S.J., Simpson I.A. Glucose transporter proteins in brain // FASEB J. 1994. V. 8. P. 1003−1011.
- Mailly F., Marin P., Israel M., Glowinski J., Premont J. Increase in external glutamate and NMDA receptor activation contribute toCb-induced neuronal apoptosis//J. Neurochem. 1999. V.73.N3.P. 1181−1188.
- Marinelli S., Federici M., Giacomini P., Bernardi G., Mercuri N.B. Hypoglycemia enhances ionotropic but reduces metabotropic glutamate responses in substantia nigra dopaminergic neurons // J. Neurophysiol. 2001. V. 85. P. 11 591 166.
- Marks V., Teale J.D. Hypoglycemia: factitious and felonious // Endocrinol. Metab. Clin. 1999. V. 28. N 3. P. 579−601.
- Marris P.G., Bachelard H.S., Cox-Dawid W.G., Cooper J.C. C13 nuclear magnetic resonances studies of glucose metabolism in guinea-pig brain slices // Biochem. Soc. Trans. 1986. V. 14. N 6. P. 1270−1271.
- Martin D. L. The role of glia in the inactivation of neurotransmitters. In: Neuroglia. (Kettenmann H., Ransom B.R. eds.) Oxford University Press N. Y. 1995. P. 732−745.
- Martinez-Hernandez A., Bell K. P., Norenberg M. D. Glutamine synthetase: glial localization in brain // Science. 1977. V. 195. P. 1356−1358.
- Marty N., Dallaporta M., Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis //Physiology. 2007. V. 22. N 4. P. 241 251.
- Marynissen G., Sener A., Malaisse W.J. Occurrence of the purine nucleotide cycle in rat pancreatic islets // Biochem. Med. Metab. Biol. 1992. V. 48. N 2. 127 136.
- Mastaitis J.W., Wurmbach E., Cheng H., Sealfon S.C., Mobbs C.V. Acute induction of gene expression in brain and liver by insulin-induced hypoglycemia // Diabetes. 2005. V. 54. N 4. P. 952−958.
- Matsumoto N., Kumamoto E., Furue H., Yoshimura M. GABA-mediated inhibition of glutamate release during ischemia in substantia gelatinosa of the adult rat//J. Neurophysiol. 2003. V. 89. P. 257−264.
- Matthaei S., Horuk R., Olefsky J.M. Blood-brain glucose transfer in diabetes mellitus. Decreased number of glucose transporters at blood-brain barrier // Diabetes. 1986. V. 35. N 10. P. 1181−1184.
- McAuley V., Deary I.J., Freier B.M. Symptoms of hypoglycemia in people with diabetes // Diabet. Med. 2001. V. 18. N 9. P. 690 705.
- McCall A.L., Millington W.R., Wurtman R.J. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus // Proc. Natl. Acad. Sci. U. S. A. 1982. V. 79. P. 5406−5410.
- McCall A.L., Fixman L.B., Fleming N., Tornheim K., Chick W., Ruderman N.B. Chronic hypoglycemia increases brain glucose transport // Am. J. Physiol. 1986. V. 251. P. 442−447.
- McCrimmon R.J., Fan X., Evans M.L., McNay E., Chan O., Ding Y., Sherwin R.S. VMH K-ATP channels play a key role in sensing hypoglycemia and triggering counterregulatory hormonal responses (Abstract) // Diabetes. 2004. V. 53 (Suppl. 2). A42.
- McCrimmon R.J., Fan X., Shaw M., Zhu W., Ding Y., Sherwin R.S. Reversal of defective hormone responses to hypoglycemia through activation of AMP-kinase in rat ventromedial hypothalamus (Abstract) // Diabetes. 2005. V. 54. (Suppl. 1). A69.
- Mcllwain H. Мак Илвейн. Биохимия и центральная нервная система. М.: Изд. иностр. лит. 1962. 420 с.
- Mcllwain Н. Bachelard H.S. Biochemistry and the central nervous sistem. Churchill Livingstone, Edinburg, London, 1971. 346 p.
- McKenna M. C., Sonnewald U., Huang X., Stevenson J., Zielke H. R. Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes // J. Neurochem. 1996. V. 66. N 1. P. 386−393.
- McKenna M. C., Tildon J. Т., Stevenson J. H., Huang X., Kingwell K. G. Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes // Neurochem. Res. 1995. V. 20. N 12. P. 1491−1501.
- Meldrum B. S. Glutamate as a neurotransmitter in the brain: review of physiology and pathology // 2000. J. Nutr. V. 130. P. 1007−1015.
- Melov S., Schneider J. A., Day B. J., Hinerfeld D., Coskun P., Mirra S. S., Crapo J. D., Wallace D. C. A novel neurological phenotype in mice lackingmitochondrial manganese superoxide dismutase //Nat. Genet. 1998. V. 18. P. 159 163.
- Michiels C. Physiological and pathological responses to hypoxia // Am. J. Pathol. 2004. V.164. P. 1875−1882.
- Miksys S., Tyndale R. F. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics // Drug Metab. Rev. 2004. V. 36. N2. P. 313−333.
- Minelli A., Brecha N. C., Karschin C., DeBiasi S., Conti F. GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex // J. Neurosci. 1995. V. 15. P. 7734−7746.
- Minich Т., Yokota S., Dringen R. Cytosolic and mitochondrial isoforms of NADP±dependent isocitrate dehydrogenases are expressed in cultured rat neurons, astrocytes, oligodendrocytes and microglial cells // J. Neurochem. 2003. V. 86. N3.P. 605−614.
- Mitchell G.A., Kassovska-Bratinova S., Boukaftane Y. Medical aspects of ketone body metabolism // Clin. Invest. Med. 1995. V. 18. N 3. P. 193−216.
- Miura Т., Muraoka S., Ogiso T. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by ferrylmyoglobin // Chem. Biol. Interact. 1997. V. 107. N 3. P. 173 183.
- Moche S.L., Sperber E.F., Velisek L. Critical issues of developmental seizure disorders // Physiol. Res. 1993. V. 42. N 3. P. 145−154.
- Monaghan D.T., Beaton J.A. Diversity and organization of excitatory amino acid receptors in the CNS // Excitatory amino acids and second messenger systems / Eds. Teichberg V.I. and Turski L. Berlin: Springer Verlag, 1992. V. 3. P. 1−15.
- Moncada S., Bolanos J.P. Nitric oxide, cell bioenergetics and neurodegeneration // J. Neurochem. 2006. V. 97. N 6. P. 1676−1689.
- Morrow J. D. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans // Arterioscler. Thromb. Vase. Biol. 2005. V. 25. P. 279−286.
- Mujsce D.J., Christensen M.A., Vannucci R.C. Regional cerebral blood flow and glucose utilization during hypoglycemia in newborn dogs // Am. J. Physiol. 1989. V. 256. N 6. P. 1659−1666.
- Nadler J.V., Evenson D.A., Cuthbertson GJ. Comparative toxicity of kainic acid and other acidic amino acids toward rat hippocampal neurons // Neuroscience. 1981. V. 6. N 12. P. 2505−2517.
- Nakaki Т., Nakayama M., Kato R. Inhibition by nitric oxide and nitric oxide-producing vasodilatators of DNA synthesis in vascular smooth muscle cells // Eur. J. Pharmacol. 1990. V. 189. N 2. P.347−353.
- Natelson S., Pincus J.B., Lugovay J.K. Microestimacion of citric acid. A new colometric reaction for pentabromacetone // J. Biol. Chem. 1948. V. 175. N 2. P. 743−753.
- Nehlig A., Pereira de Vasconcelos A. Glucose and ketone body utilization by the brain of neonatal rats // Prog. Neurobiol. 1993. V. 40. N 2. P. 163−221.
- Nehlig A. Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia //Diabetes Metab. 1997. V.23.N l.P. 18−29.
- Ni Y., Malarkey E.B., Parpura V. Vesicular release of glutamate mediates bidirectional signaling between astrocytes and neurons // J. Neurochem. 2007. V. 103. N4. P. 1273−1284.
- Nilsson В., Agardh C.D., Ingvar M., Siesjo B.K. Cerebrovascular response during and following severe insulin-induced hypoglycemia: CO2 sensitivity, autoregulation, and influence of prostaglandin synthesis inhibition // Acta Physiol.
- Scand. 1981. Vol.111. N 4. P. 455−463.
- Nissim I., Brosnan M., Yudkoff M., Nissim J., Brosnan J.T. Studies of hepatic glutamine metabolism in the perfused rat liver with 15N-labeled glutamine // J. Biol. Chem. 1999. V. 274. P. 28 958−28 965.
- Norberg K., Siesjo B.K. Oxidative metabolism of the cerebral cortex of the rat in severe insulin induced hypoglycemia // J. Neurochem. 1976. V. 26. N 2. P. 345−352.
- O^Brien R.M., Streeper R.S., Ayala J.E., Stadelmaier B.T., Hornbuckle L.A. Insulin-regulated gene expression // Biochem. Soc. Trans. 2001. V. 29. P. 552−558.
- Ochoa S. Malic dehydrogenase. In: Metods in Enzymology. London, Acad. Press. 1955. V.l. P. 735−736.
- Oldendorf W.H., Brown WJ. Greater number of capillary endothelial cell mitochondria in brain than in muscle // Proc. Soc. Exp. Biol. Med. 1975. V. l49. P. 736−738.
- Ottersen O.P. Exitatory amino acid neurotransmitters: anatomical systems // Exitatory amino acid antaggonists / Ed. Meldrum B.S. Oxford: Blackwell Scientific, 1991. P. 14−38.
- Ouwerkerk Ouwerkerk R., Damen P., de Haan K., Staal G.E., Rijksen G. Hexose monophosphate shunt activity in erythrocytes related to cell age // Eur. J. Haematol. 1989. V. 43. N5. P. 441−447.
- Ovalle F., Fanelli C.G., Paramore D.S., Craft S., Cryer P.E. Brief twice weekly episodes of hypoglycemia reduce detection of clinical hypoglycemia intype 1 diabetes mellitus // Diabetes. 1998. V. 47. N. P. 1472−1479.
- Owen О. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., Cahill G. F. Jr. Brain metabolism during fasting // J. Clin. Invest. 1967. V. 46. N 10. P. 1589−1595.
- Palaiologos G., Hertz L., Schousboe A. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate // J. Neurochem. 1988. V. 51. N 1. P. 317 320.
- Pan J. W., Telang F. W., Lee J. H., de Graaf R. A., Rothman D. L., Stein D. Т., Hetherington H. P. Measurement of beta-hydroxybutyrate in acute hyperketonemia in human brain // J. Neurochem. 2001. V. 79. N 3. P. 539−544.
- Pan J. W., de Graaf R. A., Rothman D. L., Hetherington H. P. 13C-2,4.-b-hydroxybutyrate metabolism in human brain // J. Neurochem. 2002. V. 81. Suppl. P. 45.
- Papagapiou M.P., Auer R.N. Regional neuroprotective effects of the NMDA receptor antagonist MK801 (dizocilpine) in hypoglycemic brain damage. // J. Cereb. Blood Flow Metab. 1990. V.10. N 2. P. 270−276.
- Pappenheimer J.R. On the location of the blood-brain barrier. In: Proceedings of a Symposium on the Blood-Brain Barrier, sponsored by the Wates Foundation Truex Press. Oxford. 1970. P. 66−84.
- Pappenheimer J.R., Setchell B.P. Cerebral glucose transport and oxygen consumption in sheep and rabbits // J. Physiol. (Lond). 1973. V.233. N 3. P. 529 551.
- Pardridge W.M., Oldendorf W.H. Kinetics of blood-brain barrier transport of hexoses //Biochem. Biophys. Acta. 1975. V. 382. P. 377−392.
- Pardridge W.M., Oldendorf W.H. Transport of metabolic substrates through the blood-brain barrier // J.Neurochem. 1977. V. 28. N 1. P. 5−12.
- Pardridge W.M. Brain metabolism: a perspective from the blood-brain barrier //Physiol. Rev. 1983. V. 63. P. 1481−1535.
- Pardridge W.M., Boado R.J., Farrell C.R. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization I I J. Biol. Chem. 1990. V. 265. P. 18 035−18 040.
- Pardridge W.M., Triguero D., Farrell C.R. Downregulation of blood-brain barrier glucose transporter in experimental diabetes // Diabetes. 1990. V. 39. N 9. P. 1040−1044.
- Pardridge W.M., Boado RJ. Molecular cloning and gene expression of blood-brain barrier glucose transporter. In: The Blood-Brain Barrier: Cellular and Molecular Biology. (Pardridge W.M. ed). New York: Raven Press. 1993. P. 395 440.
- Park C.K., Nehls D.G., Graham D.I. Focal cerebral ischemia in the cat: treatment with the glutamate antagonist MK-801 after induction of ischemia// J.Cereb.Blood Flow Metab. 1988. V. 8. N 4. P. 757−762.
- Paschen W., Bengtsson F., Rohn G., Bonnekoh P., Siesjo В., Hossmann K.A. Cerebral polyamine metabolism in reversible hypoglycemia of rat: relationship to energy metabolites and calcium. //J. Neurochem. 1991. V. 57. N 1. P. 204−215.
- Pascual J. M., Carceller F., Roda J. M., Cerdan S. Glutamate, glutamine and GABA as substrates for the neuronal and glial compartments after focal cerebral ischemia in rats // Stroke. 1998. V. 29. P. 1048−1057.
- Patel M. S. The effect of ketone bodies on pyruvate carboxylation by rat brain mitochondria // J. Neurochem. 1974. V.23. N. P. 865−867.
- Patel A., Rothman D. L., Wang В., Behar K. L. Glutamine is a significant precursor for GABA synthesis in the rat cortex following acute GABA-transaminase inhibition. In: Abst. Am. Soc. Neurochem., 31st Ann. Meeting, March 25−29, Chicago, IL. 2000.
- Patenaude A., Murthy M. R., Mirault M. E. Emerging roles of thioredoxin cycle enzymes in the central nervous system // Cell. Mol. Life Sci. 2005. V. 62. N 10. P. 1063−1080.
- Paul T. Effect of a prolonged superoxide flux on transferrin and ferritin//
- Arch. Biochem. Biophys. 2000. V. 382. N 2. P. 253−261.
- Pellerin L., Magistretti P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization // Proc. Natl. Acad. Sci. USA. 1994. V. 91. N 22. P. 10 625−10 629.
- Pellerin L., Magistretti P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization // Proc. Natl. Acad. Sci. USA. 1994. V. 91. P. 10 625−10 629.
- Pellerin L., Pellegri G., Bittar P. G., Charnay Y., Bouras C., Martin J. L., Stella N., Magistretti P. J. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle // Dev. Neurosci. 1998. V. 20. P. 291 299.
- Pelligrrino D., Almquist L.O., Siesjo B.K. Effects of insulin-induced hypoglycemia on intracellular pH and impedance in the cerebral cortex of the rat //BrainRes. 1981.V. 221. N1. P. 129−147.
- Pelligrino D., Siosjo B.K. Regulation of extra and intracellular pH in the brain in severe hypoglycemia // J. Cereb. Blood Flov Metabol. 1981. V.l. N 1. P. 85−96.
- Pelligrino D.A., Miletich D.J., Seals C.D. Effect of insulin on cerebral glucose metabolism in the awake goat // J. Cereb. Blood Flow Metab. 1983. V. 3. N 1. P. 470−471.
- Phillis J. W., O’Regan M. H. A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders // Brain Res. Brain Res. Rev. 2004. V. 44. N 1. P. 13−47.
- Plaitakis A., Shashidharan P. Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease // J. Neurol. 2000. V. 247. P. II25-II35.
- Plaute G.W.H., Aogaichi Т. Purification and some properties of DPN-ICDH of mammalian liver // J. Biol. Chem. 1968. V. 243. N 10. P. 5573−5582.
- Plum L., Belgardh B.F., Bruning J.C. Central insulin action in energy and glucose homeostasis // J. Clin. Invest. 2006. V. 116. P. 1761−1766.
- Porras О. H., Loaiza A., Barros L. F. Glutamate mediates acute glucose transport inhibition in hippocampal neurons // J. Neurosci. 2004. V. 24. P. 96 699 673.
- Porte D. Jr., Baskin D.G., Schwartz M.W. Insulin signaling in the central nervous system. A critical role in metabolic homeostasis and disease from C. elegans to humans // Diabetes. 2005. V. 54. N 5. P. 1264−1276.
- Purich D.L., Fromm H.J. The kinetics and regulation of rat brain hexokinase // J. Biol. Chem. 1971. V. 246. P. 3456−3463.
- Rahman В., Kussmaul L., Hamprecht В., Dringen R. Glycogen is mobilized during the disposal of peroxides by cultured astroglial cells from rat brain // Neurosci. Lett. 2000. V. 290. N 3. P.169−172.
- Raju В., Cryer P.E. Loss of the decrement in intraislet insulin plausibly explains loss of the glucagon response to hypoglycemia in insulin deficient diabetes // Diabetes. 2005. V. 54. N 3. P. 757−764.
- Rao V. L., Murthy C. R. Transport and metabolism of glutamate by rat cerebellar mitochondria during ammonia toxicity // Mol. Chem. Neuropathol. 1993. V. 19. P. 297−312.
- Redies C., Hoffer L. J., Beil C., Marliss E. В., Evans A. C., Lariviere F., Marrett S., Meyer E., Diksic M., Gjedde A. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET // Am. J. Physiol. 1989. V.256.P.805−810.
- Reeds L.J., Pettit F.H., Yeaman D.J., Reague W.M. Structure, function and regulation of the mammalian pyruvate dehydrogenase complex // Trands in Enzymology / P. Mildner, B. Rees eds. Oxford, Pergamon Press. 1980. V. 1. P. 4756.
- Resir M., Lenz E., Bernstein H.G., Dorn A. Insulin-laik immunoreactivity in human cerebrospinal fluid in independet of insulin blood levels // Hum. Neurobiol. 1985. V. 4. N 1. P. 53−55.
- Rhee S. G., Chae H. Z., Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling // Free Radic. Biol. Med. 2005. V. 38. N 12. P. 1543−1552.
- Ribak С. E., Tong W. M., Brecha N. C. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus //J. Сотр. Neurol. 1996. V. 367. P. 595−606.
- Richards K.S., Bommert K., Szabo G., Miles R. Differential expression of Na+/K±ATPase a-subunits in mouse hippocampal interneurones and pyramidal cells // J. Physiol. 2007. V. 585. N 2. P. 491−505.
- Roberts E., Hammerschlag R. Amino acid transmitters // Basic Neurochemistry/ Eds. Albers R.W., Siegel G.J., Katzman R., Agranoff B.W. Boston: Brown and Co. 1972. P. 131−168.
- Robinson R.T., Harris N.D., Ireland R.H., Lee S., Newman C., Heller S.R. Mechanisms of abnormal cardiac repolarization during insulin-induced hypoglycemia //Diabetes. 2003. V. 52. P. 1469 1474.
- Roncero I., Alvarez E., Chowen I.A., Sanz C., Rabano A., Vazquez P., Blazquez E. Expression of glucose transporter isoform GLUT-2 and glucokinase genes in human brain // J. Neurochem. 2004. V. 88. N 7. P. 1203−1210.
- Ros J., Pecinska N., Alessandri В., Landolt H., Fillenz M. Lactate reducesglutamate-induced neurotoxicity in rat cortex // J. Neurosci. Res. 2001. V. 66. N 5. P. 790−794.
- Rose C. Effect of ammonia on astrocytic glutamate uptake/release mechanisms //J. Neurochem. 2006. V. 7. N 1. P. 11−15.
- Rose C., Kresse W., Kettenmann H. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH // J. Biol. Chem. 2005. V. 280. N 22. P. 20 937−20 944.
- Rothstein J. D., Martin L., Levey A. I., Dykes-Hoberg M., Jin L., Wu D., Nash N., Kuncl R. W. Localization of neuronal and glial transporters // Neuron. 1994. V. 13. P. 713−725.
- Routh V.H. Glucosensing neurons in the ventromedial hypothalamic nucleus (VMN) and hypoglycemia-associated autonomic failure (HAAF) // Diabetes. Metab. Res. Rev. 2003. V. 19. N 5. P. 348−356.
- Ruth V.J., Park T.S., Gonzales E.R., Gidday J.M. Adenosine and cerebrovascular hyperemia during insulin-induced hypoglycemia in newborn piglet // Am. J. Physiol. 1993. V. 265. N 5. P. 1762−1768.
- Ryan L. D., Roskoski R., Jr. Net uptake of gamma-aminobutyric acid by ahigh affinity synaptosomal transport system // J. Pharmacol. Exp. Ther. 1977. V. 200. P. 285−291.
- Saad S.F. Further observations on the role of y-aminobutyric acid in insulin-induced hypoglycaemic convulsions // Europ. J. Pharmacol. 1972. V. 17. N 1. P. 152−156.
- Sablin S.O., Ramsay R.R. Monoamine oxidase contains a redox-active disulfide // J. Biol. Chem. 1998.V. 273. N 23. P. 14 074 14 076.
- Salganicoff L., Koeppe R.E. Subcellular distribution of piruvate carboxylase, diphosphopyridine nucleotide and tpiphosphopyridine nucleotide isocitrate dehydrogenase and malate ensyme in rat brain // J. Biol. Chem. 1968. V. 243. N 12.3416−3420.
- Salomon R. G. Distinguishing levuglandins produced through the cyclooxygenase and isoprostane pathways // Chem. Phys. Lipids. 2005. V. 134. N l.P. 1−20.
- Sanchez-Carbente M. R., Castro-Obregon S., Covarrubias L., Narvaez V. Motoneuronal death during spinal cord development is mediated by oxidative stress // Cell Death Differ. 2005. V. 12. P. 279−291.
- Sandberg M., Nystrom В., Hamberger A. Metabolically derived aspartate. Elevated extracellular levels in vivo in iodoacetate poisoning // J. Neurosci Res. 1985. V. 13. N3. P. 489−495.
- Sandberg M., Butcher S.P., Hagberg H. Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus // J. Neurochem. 1986. V. 47. N 1. P. 178−184.
- Sanders N.M., Ritter S. Repeated 2-deoxy-D-glucose-induced glucoprivation attenuates Fos expression and glucoregulatory responses during subsequent glucoprivation //Diabetes. 2000. V. 49. N 11. P. 1865−1874.
- Sapolsky R.M. Cellular defenses against excitotoxic insults // J. Neurochem. 2001. V. 76. N 6. P. 1601−1611.
- Sato K., Kashiwaya Y., Keon C. A., Tsuchiya N., King M. Т., Radda G. K., Chance В., Clarke K., Veech R. L. Insulin, ketone bodies, and mitochondrial energy transduction // Faseb J. 1995. V. 9. N 8. P. 651−658.
- Schenclc J. F., Zimmerman E. A. High-field magnetic resonance imaging of brain iron: birth of a biomarker? //NMR Biomed. 2004. V. 17. N 7. P. 433−445. Schousboe A., Westergaard N., Sonnewald U., Petersen S. В., Huang R., Peng L.,
- Hertz L. Glutamate and glutamine metabolism and compartmentation in astrocytes // Dev. Neurosci. 1993. V. 15. P. 359−366.
- Schousboe A., Waagepetersen H. S. Role of astrocytes in glutamate homeostasis: implications for excitotoxicity // Neurotox. Res. 2005. V. 8. P. 221 225.
- Schulz J.B., Henshaw D.R., Siwek D. Involvement of free radicals in excitotoxicity in vivo II J.Neurochem. 1995. V. 64. N 5. P. 2239−2247.
- Schulingkamp R. J., Pagano Т. C., Hung D., Raffa R. B. Insulin receptors and insulin action in the brain: review and clinical implications // Neurosci. Biobehav. Rev. 2000. V. 24. N 8. P. 855−872.
- Schulz J.B., Matthews R.T., Jenkins B.G. Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo //J. Neurosci. 1995. V. 15. N 12. P. 8419−8423.
- Schultz V., Lowenstein J. M. Purine nucleotide cycle. Evidence for the occurrence of the cycle in brain // J. Biol. Chem. 1976. V. 251. N 2. 485−492.
- Schwarcz R., Whetsell W.O.Jr., Mangano R.M. Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain // Science. 1983. V. 219. P. 316−318.
- Press Ltd. 1983. V. 39. P. 122−137.
- Schwechter E. M., Veliskova J., Velisek L. Correlation between extracellular glucose and seizure susceptibility in adult rats // Ann. Neurol. 2003. V. 53. N 1. P. 91−101.
- Scuri R., Mozzachiodi R., Brunelli M. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons // J. Neurophysiol. 2005. V. 94. P. 1066−1073.
- Segel S.A., Paramore D.S., Cryer P.E. Hypoglycemia-associated autonomic failure in advanced type 2 diabetes // Diabetes. 2002. V. 51. N 3. P. 724−733.
- Sepkuty J. P., Behar K. L., Rothstein J. D. Molecular knockdown of the glutamate transporter EAAC1 reduces new GAB A synthesis in rat hippocampus // Soc. Neurosci. Abstr New Orleans, LA. 2000.
- Shank R. P., Bennett G. S., Freytag S. O., Campbell G. L. Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools // Brain Res. 1985. V. 329. N 2. P. 364−367.
- Sheardown M.J., Nielsen E.O., Hansen A.J. 2,3,-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)-quinoxaline: a neuroprotectant for cerebral ischemia // Science. 1990. V. 247. P. 571−574.
- Sheng M., Kim M. J. Postsynaptic signaling and plasticity mechanisms // Science. 2002. V. 298. P. 776−780.
- Sherwin R.S. Bringing light to the dark side of insulin. A journey across the blood-brain barrier // Diabetes. 2008. V. 57. P. 2259−2268.
- Sheu K.F.R., Blass J.P. The alpha-ketoglutarate dehydrogenase complex // Ann. N. Y. Acad. Sci. 1999. V. 893. N 1. P. 61−78.
- Shih J. C., Chen K., Ridd M. J. Monoamine oxidase: from genes to behavior // Annu. Rev. Neurosci. 1999. V. 22. P. 197−217.
- Shulman R. G., Rothman D. L. Interpreting functional imaging studies in terms of neurotransmitter cycling // Proc. Natl. Acad. Sci. U.S.A. 1998. V. 95. N 20. P. 11 993 -11 998.
- Sibson N. R., Dhankhar A., Mason G. F., Behar K. L., Rothman D. L., jo ,
- Shulman R. G. In vivo С NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling // Proc. Natl. Acad. Sci. U.S.A. 1997. V. 94. N6. P. 2699−2704.
- Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L., Shulman R. G. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity // Proc. Natl. Acad. Sci. U.S.A. 1998a. V. 95. N 1. P. 316−321.
- Sibson N. R., Shen J., Mason G. F., Rothman D. L., Behar K. L., Shulman R.14
- G. Functional energy metabolism: in vivo C-NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronal activity // Dev. Neurosci. 1998b. V. 20. P. 321−330.
- Sibson N. R., Mason G. F., Shen J., Cline G. W., Herskovits A. Z., Wall
- J.E.M., Behar K. L., Rothman D. L., Shulman R. G. In vivo 13C NMRmeasurement of neurotransmitter glutamate cycling, anaplerosis, and TCA cycle1flux in rat brain during 2- C. glucose infusion in rat brain // J. Neurochem. 2001. V.76. N 4. P. 975−989.
- Sidenius P., Jakobsen J. Anterograde fast component of axonal transport during insulin-induced hypoglycemia in nondiabetic and diabetic rats // Diabetes. 1997. V. 36.1ss. 7.P. 853−858.
- Sieber F.E., Derrer S.A., Eleff S.M. Hypocapnic-hypoglycemic interactions on cerebral high-energy phosphates and pH in dogs //Am. J. Physiol. 1992. V. 263. N6. P. 1864−1871.
- Sieber F.E., Wilson D.A., Hanley D.F., Traystman R.J. Extracellular potassium activity and cerebral blood flow during moderate hypoglycemia in anesthetized dogs // Am. J. Physiol. 1993. V. 264. N 6. P. 1774−1780.
- Siesjo B.K. Brain energy metabolism. New-York, Chochesrer, John Wiley and Sons. 1978. 630 p.
- Siesjo B.K. Cell demage in the brain: A speculative synthesis // J. Cereb. Blood Flow Metabol. 1981. V. 1. N 1. P. 155−185.
- Siesjo B.K., Agardh C.D. Hypoglycemia // Handb. Neurochem. 1983. V. 3. P. 353 379.
- Siesjo В. K. Hypoglycemia, brain metabolism, and brain damage // Diabetes Metab. Rev. 1988. V. 4. P. 113−144.
- Siesjo B.K., Memezawa H., Smith M.L. Neurocytotoxicity: pharmacological implications // Fundam. Clin. Pharmacol. 1991. V. 5. N 9. P. 755−767.
- Siesjo B.K., Katsura K. Ischemic brain damage: focus on lipids and lipid mediators//Adv. Exp. Med. Biol. 1992. V.318. P.41−56.
- Simpson I.A., Appel N.M., Hotari M., et al. Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited // J. Neurochem. 1999. V. 72. N2. P. 238−247.
- Smith D., Pernet A., Reid H., Bingham E., Rosenthal J.M., Macdonald I., Umpleby A.M., Amiel S.A. The role of hepatic portal glucose sensing in modulating responses to hypoglycaemia in man // Diabetologia. 2002. V. 45. N 8. P. 1416−1424.
- Smith W. L. Cyclooxygenases, peroxide tone and the allure of fish oil // Curr. Opin. Cell Biol. 2005. V.17. N 2. P. 174−182.
- Socoloff L. Relation between physiological function and energy metabolism in the central nervous systems / J. Neurochem. 1977. V. 28. N 5. P. 13−26.
- Socoloff L. Circulation and energy metabolism of the brain // Basis Neurochem. / G.J. Siegel, R.W. Alberts, B.W. Agranoff e.a. eds. Boston, Little, Brown. 1979. P. 471−495.
- Sokoloff L. Sites and mechanisms of function-related changes in energy metabolism in the nervous system // Dev. Neurosci. 1993. V. 15. P. 194−206.
- Sokoloff L., Takahashi S., Gotoh J., Driscoll B. F., Law M. J. Contribution of astroglia to functionally activated energy metabolism // Dev. Neurosci. 1996. V. 18. P. 343−352.
- Sonnewald U., Westergaard N., Schousboe A., Svendsen J. S., Unsgard G.1 <7
- Petersen S. B. Direct demonstration by C. NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons // Neurochem. Int. 1993. V. 22. P. 19−29.
- Soong N. W., Hinton D. R., Cortopassi G., Arnheim N. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain // Nat. Genet. 1992. V. 2. N4. P. 318−323.
- Sottocasa J. — Соттоказа Дж. Выделение митохондрий и митохондриальных мембран // В кн.: Биохимическое исследование мембран / Под ред. 3. Медда. 1979. М. Мир. С. 54−74.
- Soundarapandian М.М., Zhong X., Peng L., Wu D., Lu Y. Role of КЛ1Р channels in protection against neuronal excitatory insults // J. Neurochem. 2007. V. 103. N5. P. 1721−1729.
- Spenser A.F., Lowenstein J.M. Citrate content of liver and kidney of rat various metabolic states and in fluoroacetate poisoning // Biochem. J. 1967. V. 103. N2. P. 342−348.
- Staehr P., Hother-Nielsen O., Landau B.R., Chandramouli V., Hoist J.J., Beck-Nielsen H. Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis // Diabetes. 2003. V. 52. N 2. P. 260−267.
- Starkov A.A., Fiskum G., Chinopoulos C., Lorenzo B.J., Susan E. Browne S.E., Patel M. S., Beal M. F. Mitochondrial a- ketoglutarate dehydrogenasecomplex generates reactive oxygen species // J. Neurosci. 2004. V. 24. N 36. P. 7779−7788.
- Suarez I., Bodega G., Fernandez B. Glutamine synthetase in brain: effect of ammonia // Neurochem. Int. 2002. V. 41. N 2−3. P.123−142.
- Suh S.W., Fan Y., Hong S.M., Liu Z., Matsumori Y., Weinstein P.R., Swanson R.A., Liu J. Hypoglycemia induces transient neurogenesis and subsequent progenitor cell loss in the rat hippocampus // Diabetes. 2005. V. 54. P. 500−509.
- Suh S.W., Gum E.T., Hamby A.M., Chan P.H. Swanson R.A. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase // J. Clin. Invest. 2007.V. 117. P. 910−918.
- Sun G. Y., Horrocks L.A., Farooqui A.A. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases // J. Neurochem. 2007. V. 103. N. 1. P. 1−16.
- Swain J. A., Darley-Usmar V., Gutteridge J. M. Peroxynitrite releases copper from caeruloplasmin: implications for atherosclerosis // FEBS Lett. 1994. V. 342. Nl.P. 49−52.
- Swanson R.A., Choi D.W. Glial glycogen stores affect neuronal survival during glucose deprivation in vitro II J. Cereb. Blood Flow Metab. 1993. V.13. N l.P. 162−169.
- Sweeney G., Klip A. Regulation of the Na+/K±ATPase by insulin: why and how? // Mol. Cell. Biochem. 1998. V. 182. P. 121−133.
- Szerb J. C., O’Regan P. A. Effect of glutamine on glutamate release from hippocampal slices induced by high K+ or by electrical stimulation: interaction with different Ca2+ concentrations // J. Neurochem. 1985. V. 44. N 6. P. 17 241 731.
- Tabernero A., Medina J.M., Giaume C. Glucose metabolism and proliferation in glia: role of astrocytic gap junctions // J. Neurochem. 2006. V. 99. N4. P. 1049−1061.
- Taegtmeyer H., McNulty P., Young M. E. Adaptation and maladaptation ofthe heart in diabetes: Part I//Circulation. 2002. V. 105. N 14. P. 1727- 1733.
- Tallroth G., Ryding E., Agardh C.D. The influence of hypoglycaemia on regional cerebral blood flow and cerebral volume in type 1 (insulin-dependent) diabetes mellitus // Diabetologia. 1993. V. 36. N 6. P. 530−535.
- Tarr M., Brada D., Samson F.E. Cerebral high-energty phosphates during insulin hypoglycemia // Amer. J. Physiol. 1962. V. 203. N 4. P. 690−692.
- Telushkin P.K., Nozdrachev A.D. Metabolism alteration in the rat brain during repeated hypoglycemic doses of insulin exposure // J. Neurochem. 1998. V. 71. (Suppl.). S80D.
- Terry R. D., DeTeresa R., Hansen L. A. Neocortical cell counts in normal human adult aging // Ann. Neurol. 1987. V. 21. N 6. 530−539.
- Teves D., Videen Т.О., Cryer P.E., Powers W.J. Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia // Proc. Natl. Acad. Sci. USA. 2004. V. 101. N. 16. P. 6217−6221.
- Tewes B.J., Galla H.-J. Lipid polarity in brain capillary endothelial cells // Endothelium. 2001. V.8. P. 207−220.
- Tews J.K., Carter S.H., Stone W.E. Chemical changes in the brain during insulin hypohlycemia and recovery // J. Neurochem. 1965. V. 12. N 8. P. 679−683.
- Therien A.G., Blostein R. Mechanisms of sodium pump regulation // Am. J. Physiol. Cell Physiol. 2000. V. 279. P. 541−566.
- Thomas M., Sherwin R.S., Murphy J., Kerr D. Importance of cerebral bloodflow to the recognition of and physiological responses to hypoglycemia // Diabetes. 1997. V. 46. N 5. P. 829−833.
- Tian G.-F., Baker A.J. Protective effect of high glucose against ischemia-induced synaptic transmission damage in rat hippocampal slices // J. Neurophysiol. 2002. V. 88. N 1. P. 236−248.
- Tildon J. Т., Roeder L. M. Transport of 3-hydroxy3−14C.butyrate by dissociated cells from rat brain // Am. J. Physiol. 1988. V. 255. P. 133−139.
- Timothy G.R. Obesity. Fat cells // Endocrinol. Metab. Clin. 1996. V. 25. N 4. P. 847- 867.
- Tkacs N.C., Pan Y., Raghupathi R., Dunn-Meynell A.A., Levin B.E. Cortical Fluoro-Jade staining and blunted adrenomedullary response to hypoglycemia after noncoma hypoglycemia in rats // J. Cerebr. Blood Flow Metab. 2005. V. 25. P. 1645−1655.
- Tombaugh G.C., Sapolsky R.M. Evolving concepts about role of acidosis in ischemic neuropathology // J. Neurochem. 1993. V. 61. N 3. P. 793−803.
- Towler D.A., Havlin C.E., Craft S., Cryer P.E. Mechanism of awareness of hypoglycemia: perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms //Diabetes. 1993. V. 42. N 12. P. 1791−1798.
- Tretter L., Vera Adam-Vizi. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress // Philosophical Transactions of The Royal Society В Biological Sciences. 2005. V. 360. P. 1464−1467.
- Trovati M., Anfossi G., Cavalot F., Vitali S., Massucco P., Mularoni E., Schinco P., Tamponi G., Emanuelli G. Studies on mechanisms involved in hypoglycemia-induced platelet activation // Diabetes, 1986. V. 35. Iss. 7. P. 818 825.
- Tsacopoulos M., Magistretti P. J. Metabolic coupling between glia and neurons //J. Neurosci. 1996. V. 16. P. 877−885.
- Tsacopoulos M., Carol L., Poitry-Yamate C.L., Poitry S. Ammonium and glutamate released by neurons are signals regulating the nutritive function of a glial cell // J. Neurosci. 1997. V. 17. N 7. P. 2383−2390.
- Turrens J. F. Mitochondrial formation of reactive oxygen species // J. Physiol. 2003. V. 552. N 2. P. 335−344.
- Ulovec Z., Narancsik P., Gamulin S. Effects of hypoglycemia on rat brain polyribosome sedimentation pattern // J. Neurochem. 1985. V. 45. N 2. P. 352 354.
- Unger J. W., Livingston J. N., Moss A. M. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects // Prog. Neurobiol. 1991. V. 36. N 5. P. 343−362.
- Van den Berg C. J. A model of compartmentation in mouse brain based on glucose and acetate metabolism. In: Metabolic Compartmentation in the Brain (Balazs R. Cremer J.E. eds.) John Wiley and Sons New York, NY. 1972. P. 137 166.
- Van Meer G., Gumbiner В., Simons K. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next // Nature. 1986. V. 322. P. 639−41.
- Van Meer G., Simons K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells // EMBO J. 1986. V. 5. P. 1455−1464.
- Vannucci S.J., Haekins R. Substrates of energy metabolism of the pituitary and pineal glands // J. Neurochem. 1983. V. 41. N 6. P. 1718−1725.
- Vannucci R.C., Brucklacher R.M. Cerebral mitochondrial redox states during metabolic stress in the immature rat//Brain Res. 1994. V. 653. N1−2. P.141−147.
- Van Remmen H., Ikeno Y., Hamilton M. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging // Physiol. Genomics. 2003. V. 16. P. 29−37.
- Varoqui H., Zhu H., Yao D., Ming H., Erickson J. D. Cloning and functional identification of a neuronal glutamine transporter // J. Biol. Chem. 2000. V. 275. N 6. P. 4049−4054.
- Veech R. L., Chance В., Kashiwaya Y., Lardy H. A., Cahill G. F. Jr. Ketone bodies, potential therapeutic uses // IUBMB Life. 2001. V. 51. N 4. P. 241−247.
- Veneman Т., Mitrakou A., Mokan M., Cryer P., Gerich J. Induction of hypoglycemia unawareness by asymptomatic nocturnal hypoglycemia // Diabetes. 1993. V. 42. N9. P. 1233−1237.
- Vogel R., Wiesinger H., Hamprecht В., Dringen R. The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required // Neurosci. Lett. 1999. V. 275. N 1. P. 97−100.
- Vorbrodt A.W. Ultrastructural cytochemistry of blood-brain barrier endothelial Prog. Histochem. Cytochem. 1988. V. 18. P. 1−99.
- Vrba R. Glucose metabolism in rat brain in vivo // Nature (London). 1962. V. 195. P. 663−665.
- Vrba R., Gaitonde M.K., Richter D. The conversion of glucose carbon into pritein in the brain and other organs of the rat // J. Neurochem. 1962. V. 9. P. 465 475.
- Vrba R., Bachelard H. S., Krawezynski J. Interrelationship between glucose utilisation of brain and heart // Nature (London). 1963. V. 197. N 2. P. 869−870.
- Waagepetersen H. S., Bakken I. J., Larsson О. M., Sonnewald U., Schousboe1. о
- A. Metabolism of lactate in cultured GABAergic neurons studied by С nuclearmagnetic resonance spectroscopy // J. Cereb. Blood Flow Metab. 1998. V. 18. P. 109−117.
- Waagepetersen H. S., Sonnewald U., Larsson О. M., Schousboe A. A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons J. Neurochem. 2000. V. 75. N 2. P. 471−479.
- Wan S., Browning K.N. D-Glucose modulates synaptic transmission from the central terminals of vagal afferent fibers // Am. J. Physiol. Gastrointest. Liver Physiol. 2008. V. 294. P. 757−763.
- Wang Y.C., Huang R.C. Effects of sodium pump activity on spontaneous firing in neurons of the rat suprachiasmatic nucleus // J. Neurophysiol. 2006. V. 96. P. 109−118.
- Wanienski R. A., Martin D. L. Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures // J. Neurochem. 1986. V. 47. N1. P. 304−313.
- Ward H. K., Thanki С. M., Bradford H. F. Glutamine and glucose as precursors of transmitter amino acids: ex vivo studies // J. Neurochem. 1983. V. 40. N3. P. 855−860.
- WardD.S., Voter W.A., Karan S. The effects of hypo- and hyperglycaemia on the hypoxic ventilatory response in humans // J. Physiol. 2007. V. 582. N 2. P. 859−869.
- Watanabe Т., Goto H., Osava H. Specific development of isocitric dehydrogenase in rat brain // Biochem. Biophys. Acta. 1974. V. 358. N 2. P. 240 246.
- Watford M. Hepatic glutaminase expression: relationship to kidney-type glutaminase and to the urea cycle // FASEB J. 1993. V. 7. P. 1468−1474.
- Westergaard N., Sonnewald U., Schousboe A. Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited // Dev. Neurosci. 1995 V. 17. P. 203−211.
- Wiesinger H. Glia-specific enzyme systems. In: Neuroglia. (Kettenmann H. Ransom B. R. eds.). Oxford University Press New York, NY. 1995. P. 488−499.
- Wieloch Т., Harris R.J., Symon L., Siesjo B.K. Influence severe hypoglycemia on brain extracellular calcium and potassium activities, energy and phospholipid metabolism // J. Neurochem. 1984. V. 43. N 1. P. 160−168.
- Wieloch T. Hypoglycemia-induced neuronal damage prevented by an N-methy 1-D-aspartate antagonist// Science. 1985. V.230. P. 681−683.
- Wieloch Т., Engelsen В., Westerberg E., Auer R. Lesions of the glutamatergic cortico-striatal projections ameliorate hypoglycemic brain damage in the striatum // Neurosci Lett. 1985. V. 58. N 1. P. 25−30.
- Wieloch T. Endogenous excitotoxins as possible mediators of ischemic and hypoglycemic brain damage // Adv. Exp. Med. Biol. 1986. V. 203. P. 127−138.
- Willams B.L., Wilson K.B. Вильяме B.JI., Вилсон К. Б. Методы практической биохимии. М.: Мир. 1978. С. 38−58.
- Willoughby J., Craig F.E., Harvey S.A.K., Clark J.B. 2-oxoglutarate: oxidation and role as a potential precursor of cytosolic acetyl-CoA for the synthesis of acetylcholine in rat brain synaptosomes // J. Neurochem. 1989. V. 52. N 3. P. 896−901.
- Wilson J.E. Brain hexokinase // J. Biol. Chem. 1968. V. 243. P. 3640−3647. Wilson J.E. Brain hexokinase the prototype ambiqutous enzyme // Curr. Tur. Cell Regull. 1980. V. 16. N 1. P 11−44.
- Wilson J.E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function // J. Exper. Biol. 2003. V. 206. P. 2049−2057.
- Willson V.J.C., Tipton K.F. The activation of ox-brain NAD±dependent isocitrate dehydrogenase by magnesium ions // Europ. J. Biochem. 1981. V. 113. N 3. P. 477−483.
- Wrona M. Z., Dryhurst G. Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders // Chem. Res. Toxicol. 1998. V. 11. N6. P. 639−650.
- Wu X., Gao J., Yan J., Owyang C., Li Y. Hypothalamus-brain stem circuitry responsible for vagal efferent signaling to the pancreas evoked by hypoglycemia in rat // J. Neurophysiol. 2004. V. 91. P. 1734−1747.
- Wysmyk-Cybula U., Albrecht J. Zawartose kwasu y-aminomaslowego (GABA) oraz aktywnose decarbokzylazy glutominowej (GAD) w mozgu szcura w warunkach doswiadezalnej hipoglikemii //Neuropatol. Pol. 1981. Vol. 19. N 3. P. 369−376.
- Yang X.J., Kow L.M., Pfaff D.W., Mobbs C.V. Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose // Diabetes. 2004. V. 53. N l.P. 67−73.
- Yao D., Mackenzie В., Ming H., Varoqui H., Zhu H., Hediger M. A., Erickson J. D. A novel system A isoform mediating Na+/neutral amino acid cotransport// J. Biol. Chem. 2000. V. 275. N 30. P. 22 790−22 797.
- Yi J. H., Hazell A. S. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury // Neurochem. Int. 2006. V. 48. P. 394−403.
- Ylinen A.M.A., Miettinen R., Pitkanen A., Gulyas A.I. Freund T.F., Riekkinen P J. Enhanced gabaergic inhibition preserves hippocampal structure and function in a model of epilepsy // Proc. Nat. Acad. Sci. USA. 1991. V.88. N 17. P. 7650−7653.
- Youdim M.B.H., Riederer P. Neurotoxiciti of nitric oxide and decompartmentation of ferritin-iron // J. Neurochem. 1993. V. 61. (Suppl). S53A.
- Young M. E., McNulty P., Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: Part II//Circulation. 2002. V. 105. N15. P. 1861−1870.
- Yu A.C.H., Schousboe A., Hertz L. Metabolic fate of (I4C)-labelled glutamate in astrocytes // J. Neurochem. 1982. V. 39. N 4. P. 954−966.
- Yu S., Ding W.G. The 45 kDa form of glucose transporter 1 (GLUT1) is localized in oligodendrocyte and astrocyte but not in microglia in the rat brain // Brain. Res. 1998. V. 797. P. 65−72.
- Yuan P-Q., Yang H. Neuronal activation of brain vagal-regulatory pathways and upper gut enteric plexuses by insulin hypoglycemia // Am. J. Physiol. Endocrinol. Metab. 2002. V. 283. Iss. 3. P. 436−448.
- Yudkoff M., Daikhin Y., Grunstein L., Nissim I., Stern J., Pleasure D., Nissim I. Astrocyte leucine metabolism: significance of branched-chain amino acid transamination // J. Neurochem. 1996a. V. 66. N 1. P. 378−385.
- Yudkoff M., Daikhin Y., Nelson D., Nissim I., Erecinska M. Neuronal metabolism of branched-chain amino acids: flux through the aminotransferase pathway in synaptosomes // J. Neurochem. 1996b. V. 66. N 6. P. 2136−2145.
- Yudkoff M. Brain metabolism of branched-chain amino acids // GLIA. 1997. V. 21. N1. P. 92−98.
- Yudkoff M., Daikhin Y., Nissim I., Grunstein R., Nissim I. Effects of ketone bodies on astrocyte amino acid metabolism // J. Neurochem. 1997. V. 69. N 5. P. 682−692.
- Zammitt N.N., Frier B.M. Hypoglycemia in type 2 diabetes // Diabetes Care. 2005. V. 28. P. 2948−2961.
- Zammitt N.N., Warren R.E., Deary I.J., Frier B.M. Delayed recovery of cognitive function following hypoglycemia in adults with type 1 diabetes. Effect of impaired awareness of hypoglycemia // Diabetes. 2008. V. 57. P. 732−736.
- Zanotto L., Heinemann U. Aspartate and glutamate induced reductions in extracellular free calcium and sodium concentration in area CA1 of «in vitro» hippocampal slices of rats // Neurosci Lett. 1983. V. 35. N 1. P. 79−84.
- Zecca L., Youdim M. В., Riederer P., Connor J. R., Crichton R. R. Iron, brain ageing and neurodegenerative disorders // Nat. Rev. Neurosci. 2004. V. 5. P. 863 873.
- Zeevalk G.D., Nicklas W.J. Action of the anti-ischemic agent ifenprodil on N-methyl-D-aspartate and kainate-mediated excitotoxicity // Brain Res. 1990. V. 522. Nl.P. 135−139.
- Zeevalk G.D., Nicklas W.J. Lactate prevents the alterations in tissue amino acids, decline in ATP, and cell damage due to aglycemia in retina // J. Neurochem.2000. V. 75. N3. P. 1027−1034. /f
- Zhang M., Buttigieg J., Nurse C.A. Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body // J. Physiol. 2007. V. 578. N 3. P. 735−750.
- Zhuo L., Sun В., Zhang C. L., Fine A., Shiu S. Y., Messing A. Live astrocytes visualized by green fluorescent protein in transgenic mice // Dev. Biol. 1997. V. 187. N 1. P. 36−42.