Помощь в написании студенческих работ
Антистрессовый сервис

Идентификация электрофоретических пиков в мицеллярной электрокинетической хроматографии на примере аминокислот и фенолов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Научная новизна. На примере аминокислот предложены и сравнены методы расчёта времён миграции, в том числе с применением стандартов времён миграции, позволяющие однозначно идентифицировать пики в многокомпонентных смесях. Для идентификации пиков использованы параметры гидрофобности, применённые к временам миграции с вычетом скорости электроосмотического потока. В случае с фенолами… Читать ещё >

Идентификация электрофоретических пиков в мицеллярной электрокинетической хроматографии на примере аминокислот и фенолов (реферат, курсовая, диплом, контрольная)

Содержание

  • 2. ОБЗОР ЛИТЕРАТУРЫ
    • 2. 1. Метод капиллярного электрофореза
      • 2. 1. 1. Способы проведения электросепарационных методов
      • 2. 1. 2. Перемещение ионов в электрическом поле
    • 2. 2. Электроосмотический поток 11 2.2.1. Управление электроосмотическим потоком
    • 2. 3. Капиллярный зонный электрофорез
      • 2. 3. 1. Регулирование селективности за счёт добавок
      • 2. 3. 2. Выбор буферного раствора
      • 2. 3. 3. Поверхностно-активные вещества
    • 2. 4. Мнцеллярная электрокинетическая хроматография
    • 2. 5. Способы детектирования фенолов и аминокислот
      • 2. 5. 1. Спекгрофотометрическое (СФ) детектирование фенолов
      • 2. 5. 2. Флуоресцентное детектирование фенолов
      • 2. 5. 3. Прочие методы детектирования фенолов
      • 2. 5. 4. Прямое фотометрическое детектирование аминокислот
      • 2. 5. 5. Косвенное фотометрическое детектирование аминокислот
      • 2. 5. 6. Масс-спектрометрическое детектирование аминокислот
      • 2. 5. 7. Флуоресцентное детектирование производных аминокислот
    • 2. 6. Способы ввода пробы
    • 2. 7. Динамическое модифицирование капилляров
      • 2. 7. 1. Низкомолекулярные ПАВ
      • 2. 7. 2. Полимерные ПАВ
    • 2. 8. Определение фенолов в виде анионов методом КЭ с обращением ЭОЛ
    • 2. 9. Определение фенолов в виде нейтральных соединений методами МЭКХ
    • 2. 10. Хроматографические методы определения фенолов
    • 2. 11. Методы количественного определения и разделения аминокислот
      • 2. 11. 1. Планарная хроматография
      • 2. 11. 2. Сорбционная колоночная хроматография
      • 2. 11. 2. Распределительная колоночная хроматография
      • 2. 11. 3. Ионообменная хроматография
      • 2. 11. 4. Вытеснительная ионообменная хроматография на ионообменных смолах
      • 2. 11. 5. Элюентная (проявительная) хроматография на ионообменных смолах
      • 2. 11. 6. Лигандообменная хроматография
      • 2. 11. 7. Высокоэффективная жидкостная хроматография
      • 2. 11. 8. Обращённо-фазовая жидкостная хроматография
      • 2. 11. 9. Ион-парная хроматография
    • 2. 12. Детектирование аминокислот и их производных 58 2.12.1. Детектирование производных аминокислот
    • 2. 13. Электрофоретические методы разделения аминокислот и их производных 63 2.13.1. Методы разделения призводных аминокислот с использованием МЭКХ
  • 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 3. 1. Приборы
    • 3. 2. Расходные материалы
    • 3. 3. Реактивы
    • 3. 4. Вспомогательные растворы для анализа аминокислот
    • 3. 5. Методы подготовки капилляров к работе
      • 3. 5. 1. Подготовка нового капилляра к работе
      • 3. 5. 2. Ежедневная подготовка капилляра к работе
      • 3. 5. 3. Подготовка к работе модифицированных капилляров
    • 3. 6. Стандартные растворы аминокислот
      • 3. 6. 1. Стандартный раствор 18 аминокислот
      • 3. 6. 2. Прочие стандартные растворы аминокислот и вспомогательных веществ
    • 3. 7. Электрофоретические буферные растворы для разделения производных аминокислот
    • 3. 8. Условия разделения ФТК-производных аминокислот и определения фенилтиомочевины
    • 3. 9. Проведение дериватизации
      • 3. 9. 1. Методика гидролиза белка
      • 3. 9. 2. Предварительная очистка гидролизата
      • 3. 9. 3. Удаление аммония
      • 3. 9. 4. Получение ФТК-аминокислот
      • 3. 9. 5. Экстракция фенилизотиоцианата
      • 3. 9. 6. Получение ФТГ-аминокислот
      • 3. 9. 7. Очистка от ионогенных примесей
    • 3. 10. Условия разделения ФТГ-производных аминокислот
    • 3. 11. Вспомогательные методики
      • 3. 11. 1. Определение фенилизотиоцианата
      • 3. 11. 2. Определение дифенилтиомочевины
      • 3. 11. 3. Определение потерь аминокислот при экстракции
    • 3. 12. Обработка данных 83 3.12.2. Сбор и обработка хроматографических данных 83 3.12.2. Расчёт параметров logD и logD'
    • 3. 13. Проведение количественного определения 84 3.13.1. Использование стандартной добавки триптофана к гидролизату 84 3.13.1. Использование смеси 16 аминокислот в качестве стандартной добавки
  • 4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
    • 4. 1. Электрофоретическое определение фенолов в виде анионов
      • 4. 1. 1. Выбор состава и рН буферного раствора
      • 4. 1. 2. Выбор концентрации полимеров
      • 4. 1. 3. Влияние добавок органического растворителя 91 в буферном растворе
      • 4. 1. 4. Исследование спектральных характеристик фенолов
      • 4. 1. 5. Селективность определения
      • 4. 1. 6. Эффективность разделения и влияние рН
      • 4. 1. 7. Свойства использованных полимеров и их влияние на удерживание фенолов
      • 4. 1. 8. Интервал линейности и пределы обнаружения
    • 4. 2. Определение фенолов методом мицеллярной электрокинетической хроматографии
      • 4. 2. 1. Выбор состава и рН буферного раствора
      • 4. 2. 2. Выбор концентрации ионенов
      • 4. 2. 3. Влияние добавок органического растворителя в буферном растворе
      • 4. 2. 4. Сравнение селективностей разделения ЮЗ
      • 4. 2. 5. Определение времён миграции фенолов по параметру гидрофобности Ханша
    • 4. 3. Определение аминокислот 107 4.3.1. Получение ФТГ-производных аминокислот
    • 4. 4. Электрофоретическое разделение аминокислот
      • 4. 4. 1. Выбор оптимальных условий разделения
      • 4. 4. 2. Идентификация аминокислот
      • 4. 4. 3. Использование «стандартов времён миграции»
      • 4. 4. 4. Использование параметра гидрофобности logD' для предсказания времён миграции
  • 5. ВЫВОДЫ

Актуальность работы. Высокоэффективный капиллярный электрофорез и мицеллярная электрокинетическая хроматография (МЭКХ) являются динамично развивающимися методами химического анализа, позволяющими в короткое время проводить разделение, идентификацию и количественное определение компонентов сложных смесей. По принципу разделения метод МЭКХ близок к обращённо-фазовой жидкостной хроматографии, в связи с этим представляется интересным применить современную методологию расчётов, применяемую в жидкостной хроматографии, для расчёта и оптимизации условий разделения сложных органических соединений.

Вместе с тем сильная зависимость от температуры, электропроводности буферного раствора и раствора пробы и наличия ионогенных примесей в пробе приводят к недостаточной воспроизводимости времён миграции как в МЭКХ, так и в капиллярном зонном электрофорезе. В работе рассмотрено использование различных подходов к снижению и компенсации влияния различных эффектов, связанных с электропроводностью на стадии подготовки проб.

Цель работы состояла в изучении процессов разделения сложных смесей органических соединений методами мицеллярной электрокинетической хроматографии с последующим анализом реальных объектов на примере протеиновых гидролизатов (сывороточного альбумина и рыбной муки), а также определением примесей фенолов в фармацевтической продукции. Цели работы предусматривали решение следующих задач:

1. Разделение фенолов и ФТГ-аминокислот на модельных смесях.

2. Оптимизацию условий разделения смесей и идентификацию электрофоретических пиков.

3. Разработку схемы проведения реакций дериватизации аминокислот с получением смеси производных, пригодных для анализа методом МЭКХ, в том числе и для анализа реальных объектов (гидролизатов).

4. Предложение и сравнение методов надёжной идентификации пиков в многокомпонентных смесях на примере аминокислот и фенолов.

Научная новизна. На примере аминокислот предложены и сравнены методы расчёта времён миграции, в том числе с применением стандартов времён миграции, позволяющие однозначно идентифицировать пики в многокомпонентных смесях. Для идентификации пиков использованы параметры гидрофобности, применённые к временам миграции с вычетом скорости электроосмотического потока. В случае с фенолами продемонстрирована высокая корреляция параметра log/5 с временем миграции фенолов, разделяемых методом МЭКХ при обращенном электроосмотическом потоке, на основании полученных данных был рассчитан параметр logP я-гексилрезорцина из полученных электрофоретических данных. В ходе экспериментов с аминокислотами показано, что расчётные значения параметра logD также имеют корреляцию с временем миграции для наборов ФТГ-аминокислот сходной структуры, но не обеспечивают достаточной точности идентификации электрофоретических пиков. Для аминокислот рассмотрены и сравнены варианты с одним и двумя стандартами времён миграции. Для определения аминокислот в реальных объектах предложена схема дериватизации, позволяющая разделять аминокислоты методом МЭКХ при работе с реальными объектами, включающая очистку от ионогенных соединений и аммония, а также методы количественного определения с использованием стандартной добавки триптофана или группы из 16 аминокислот.

Практическая значимость работы. В ходе работы предложены подходы к надёжной идентификации разделяемых соединений. Предложены методы использования стандартов времён миграции. На примере фенолов продемонстрировано использование параметров гидрофобности для определения последовательности выхода пиков на электрофореграмме. В случае аминокислот предложены эффективные численные методы с использованием одного и двух стандартов времён миграции. Проведено сравнение численных методов идентификации аминокислот и методов с использованием параметров гидрофобности. Предложена схема проведения реакций дериватизации, позволяющая работать с широким кругом реальных объектов. В работе сравнены различные условия проведения реакций дериватизации и очистки смеси производных для получения минимальных количеств побочных продуктов, также приводится оценка потерь аминокислот при проведении дериватизации. Методика опробована при анализе гидролизатов протеина и рыбной муки.

Апробация работы. Результаты работы докладывались на международных конференциях «Euroanalysis XII» (Дортмунд, Германия, 2002) — SBS 2003 «100 years of chromatography» (Москва, Россия, 2003), научных коллоквиумах лаборатории хроматографии кафедры аналитической химии.

Публикации результатов. По материалам диссертации опубликовано 4 статьи и 5 тезисов докладов.

5. ВЫВОДЫ.

1. Предложены и сравнены два способа идентификации пиков фенилтиогидантоин (ФТГ)-аминокислот, разделяемых в режиме мицеллярной электрокинетической хроматографии. Показано, что вариант с идентификацией ФТГ-аминокислот по стандартам времён миграции позволяет идентифицировать электрофоретические пики всех 16 разделяемых аминокислот. Способ идентификации аминокислот с учётом гидрофобности имеет ряд преимуществ, поскольку в случае применения к ФТГ-производным неполярных аминокислот позволяет предсказывать порядок выхода электрофоретических пиков, однако применение корреляционного уравнения позволяет провести ещё более точный расчёт.

2. На примере фенолов показана высокая корреляция параметра гидрофобности log/5 с временем миграции для группы ФТГ-аминокислот — аланина, лейцина (изолейцина), триптофана и фенилаланина, коэффициент корреляции с параметром logP R2 = 0,99.

3. Предложен метод получения фенилтиогидантоинов 16 аминокислот для анализа методом капиллярного электрофореза в режиме мицеллярной электрокинетической хроматографии. Способ получения производных включает реакцию гидролизата белка с фенилизотиоцианатом с последующей циклизацией фенилтиокарбаминатных производных в трифторуксусной кислоте (схема представлена). Предложены дополнительные процедуры очистки фенилтиокарбаминатов и фенилтиогидантоинов аминокислот от побочных продуктов и ионогенных примесей. Способ опробован при анализе гидролизатов протеина и рыбной муки.

4. Предложены способы количественного определения аминокислот с использованием внутреннего стандарта — ФТГ-триптофана и стандартных добавок других аминокислот на стадии дериватизации.

Показать весь текст

Список литературы

  1. Руководство по капиллярному электрофорезу. Под. ред. A.M. Волощука. Научный совет РАН по хроматографии. М.: Наука, 1996,231 с.
  2. K.D. Lukacs, J.W. Jorgenson. Capillary zone electrophoresis: effect of physical parameters on separation efficiency and quantitation. // J. High Res. Chromatogr., 1985, V. 8, No. 8, P. 407−411.
  3. S. Terabe, T. Isemura. Ion-exchange electrokinetic chromatography with polymer ions for the separation of isomeric ions having identical electrophoretic mobilities. // Anal. Chem., 1990, V. 62, No. 6, P. 650−659.
  4. W.J. Lambert, D.L. Middleton. pH hysteresis effect with silica capillaries in capillary zone electrophoresis. // Anal. Chem., 1990, V. 62, No. 15, P. 1585−1587.
  5. Th.P.E.M. Verheggen, A.C. Schoots, F.M. Everaerts. Feasibility of capillary zone electrophoresis with suppression of electroendosmotic flow in completely closed systems. //J. Chromatogr. A, 1990, V. 503, No. 1, P. 245−255.
  6. S. Terabe. Electrokinetic chromatography: an interface between electrophoresis and chromatography. // Trends Anal. Chem., 1989, V. 8, No. 4, P. 129−134.
  7. L.E. Vera-Avila, M. Caude, R. Rosset. Ion pair chromatography. II. Resolution of amino acids and ethylene and aromatic carboxylic acids mixtures. // Analusis, 1982, V. 10, No. 1, P. 43−49.
  8. Каталог Agilent Inc., Rapid Screening of Amino Acids in Food by CE-ESI-MS.
  9. Y.F.Cheng, N.J.Dovichi. Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence. // Science, 1988, V. 242, No. 2, P. 562−564.
  10. A. Zemann, D. Volgger. Separation of priority pollutant phenols with coelectroosmotic capillary electrophoresis. // Anal. Chem., 1997, V. 69, No. 16, P. 3243−3250.
  11. A. Rembaum, W. Baumgartner, A. Eisenberg. Aliphatic ionenes. // J. Polym. Sci. Polym. Lett. Ed., 1968, V. 6, No. 3, P. 159−171.
  12. Y. Zhao, C.E. Lunte. pH-mediated field amplification on-column preconcentration of anions in physiological samples for capillary electrophoresis. // Anal. Chem., 1999, V. 71, No. 18, P. 3985−3991.
  13. T. Okada. Non-aqueous capillary electrophoretic separation of Bronsted acids as heteroconjugated anions. // J. Chromatogr. A, 1997, V. 771, No. 1−2, P. 275−284.
  14. T.Zhao, X.-B. Hu, J.-K. Cheng, X.-R.Lu. P-sulfonic calyx4. arene as running buffer additive in electrokinetic chromatography. // J. Liq. Chromatogr. Relat. Technol., 1998, V. 21, No. 20, P. 3111−3124.
  15. M.R.Lehman, C.D.Thompson, C.S.Marvel. Quantenary ammonium salts from halogenated alkyl dimethylamines. III. Omega-bromo-heptyl-, -octyl-, -nonyl- and -decyl-dimethylamines. // J. Am. Chem. Soc., 1933, V. 55, No. 5, P. 1977−1981.
  16. D. Puig, D. Barcel6. Determination of phenolic compounds in water and waste water. // Trends Anal. Chem., 1996, V. 15, No. 8, P. 362−375.
  17. D. Kaniansky, E. Kr6mova, V. Madajova, M. Masar, J. Marak, F.I. Onuska. Determination of nitrophenols by capillary zone electrophoresis in a hydrodynamically closed separation compartment. // J. Chromatogr. A, 1997, V. 772, No. 1−2, P. 327−337.
  18. A.J. Zemann. Sub-minute separations of organic and inorganic anions co-electroosmotic capillary electrophoresis. // J. Chromatogr. A, 1997, V. 787, No. 1−2, P. 243−251.
  19. X. Liu, H. Frank. Separation of chlorophenols by capillary zone electrophoresis. The influence of pH of the electrophoretic buffer on selectivity. // J. High Res. Chromatogr., 1998, V. 21, No. 5, P. 309−314.
  20. I. Rodriguez, M.I. Turnes, M.H. Bollain, M.C. Mejuto, R. Cela. Determination of phenolic pollutants in drinking water by capillary electrophoresis in the sample stacking mode. // J. Chromatogr. A, 1997, V. 778, No. 1−2, P. 279−288.
  21. F.B. Erim. Effect of cationic polymer on the separation of phenols by capillary electrophoresis. //J. Chromatogr. A, 1997, V. 768, No. 1, P. 161−167.
  22. F.B. Erim. Separation of phenols by capillary electrophoresis in a polyethyleneimine-coated capillary. // J. Microchem., 1997, V. 57, No. 3, P. 283−287.
  23. P.G. Muijselaar, H.A. Cleassens, C.A. Cramers. Migration behavior of monovalent weak acids in micellar electrokinetic chromatography. Mobility model versus retention model. // J. Cromatogr. A, 1997, V. 765, No. 2, P. 295−306.
  24. D.J. Bailey, J.G. Dorsey. pH effects on micelle-water partitioning determined by micellar electrokinetic chromatography. // J. Cromatogr. A, 1999, V. 852, No. 2, P. 559−571.
  25. A. Versari, G.P. Parpinello, S. Galassi. Analysis of selected phenolic compounds by MECC and HPLC. A comparative study. // Ann. Chim., 1999, V. 89, No. 11−12, P. 901−910.
  26. Y. He, H. Lee. Separation of structural homologues of alkylphenols and isomers of 4-nonylphenol by cyclodextrin-modified micellar electrokinetic chromatography. // J. Chromatogr. A, 1996, V. 749, No. 1−2, P. 227−236.
  27. S. Kar, P. Dasgupta. Measurement of phenols on a loop-supported liquid film by micellar electrokinetic chromatography and direct UV detection. // J. Chromatogr. A, 1996, V. 739, No. 1−2, P. 379−387.
  28. M.C. Boyce, I.J. Bennett. Complimentary role of micellar electrokinetic capillary chromatography and high performance liquid chromatography in the separation of plant phenolics. // Anal. Lett., 1996, V. 29, No. 10, P. 1805−1815.
  29. C.-E. Lin, W.-C. Lin. Migration behavior of dichlorophenols for replicate separations without replenishment of buffer electrolyte in micellar electrokinetic capillary chromatography. // J. Chromatogr. A, 1996, V. 732, No. 2, P. 361−367.
  30. A.L. Gray, J.T. Hsu. Novel sulfonic avid-modified starburst dendrimer used as a pseudostationary phase in electrokinetic chromatography. // J. Chromatogr. A, 1998, V. 824, No. 1, P. 119−124.
  31. C. Liu, Т. Ma, B. Zhang, P. Wang, X. Fang, H. Li. Separation of alkylphenols in oil field water by micellar electrokinetic chromatography. // Sepu, 1999, V. 17, No. 3, P. 236−239.
  32. C.P. Ong, C.L. Ng, N.C. Chong, H.K. Lee, S.F.Y. Li. Retention of eleven priority phenols using micellar electrokinetic chromatography. // J. Chromatogr. A, 1990, V. 516, No. 1, P. 263−270.
  33. C.A. Groom, J.H.T. Luong. Sulfobutylether-|}-cyclodextrin-mediated capillary electrophoresis for separation of chlorinated and substituted phenols. // Electrophoresis, 1997, V. 18, No. 7, P. 1166−1172.
  34. J.-B. Kim, K. Otsuka, S. Terabe. On-line sample concentration in micellar electrokinetic chromatography with cationic micelles in a coated capillary. // J. Cromatogr. A, 2001, V. 912, No. 2, P. 343−352.
  35. Z. Yuan, S. Zhang. // Anal. Lett., 1998, V. 26, P. 614−620.
  36. S. Takeda, S.-I. Wakida, M. Yamane, K. Higashi, S. Terabe. Effect of the polar groups on anionic surfactant on migration behavior in micellar electrokinetic chromatography. // J. Chromatogr. A, 1997, V. 781, No. 1−2, P. 11−16.
  37. C.E. Lin, Y.T. Chen, T.Z. Wang. Separation of benzenediamines, benzenediols and aminophenols in oxidative hair dyes by micellar electrokinetic chromatography using cationic surfactants. //J. Chromatogr. A, 1999, V. 837, No. 1−2, P. 241−252.
  38. W. Ding, J.S. Fritz. Separation of neutral compounds and basic drugs by capillary electrophoresis in acidic solution using laurylpoly (oxyethylene) sulfate as an additive. //Anal. Chem., 1998, V. 70, No. 9, P. 1859−1865.
  39. Т. Zhao, X. Ни, J. Cheng, X. Lu. Use of ealix4. arene to separate positional isomers in capillary electrophoresis. //Anal. Chim. Acta, 1998, V. 358, No. 9, P. 263−268.
  40. M.M. Bushey, J.W. Jorgenson. Separation of dansylated methylamine and dansylated methyl-D3-amine by micellar electrokinetic capillary chromatography with methanol-modified mobile phase. // Anal. Chem., 1989, V. 61, No. 5, P. 260−264.
  41. P. Mubmann, K. Levsen, W. Radeck. Gas-chromatographic determination of phenols in aqueous sample after solid phase extraction. // Fresenius J. Anal. Chem., 1994, V. 348, No. 10, P. 654−659.
  42. B. Bennett, B.F.J. Bowler, S.R. Larter. Determination of C0-C3 alkylphenols in crude oils and waters. //Anal. Chem., 1996, V. 68, No. 20, P. 3697−3702.
  43. M.A. Crespin, E. Ballesteros, M. Gallego, M. Valcarcel. Trace enrichment of phenols by on-line solid-phase extraction and gas chromatographic determination. // J. Chromatogr. A, 1997, V. 757, No. 1−2, P. 165−172.
  44. E. Ballesteros, M. Gallego, M. Valcarcel. On-line preconcentration and gas chromatographic determination of N-methylcarbamates and their degradation products in aqueous samples. // Environ. Sci. Technol., 1996, V. 30, No. 6, P.2071−2077.
  45. M.-L. Bao, K. Barbieri, D. Burrini, O. Griffini, F. Pantani. Traces determination of phenols in water by solid phase extraction followed by pentafluorobenzoylation. // Ann. Chim. (Rome), 1996, V. 86, No. 7−8, P. 343−356.
  46. M.A. Crespin, E. Ballesteros, M. Gallego, M. Valcarcel. Automatic preconcentration of chlorophenols and gas chromatographic determination with electron capture detection. //Chromatographia, 1996, V. 43, No. 11−12, P. 633−639.
  47. K. Kadokami, K. Sato, M. Koga, R. Shinohara. Simultaneous determination of 285 chemicals in water at ppt levels by GC-ion trap mass spectrometry. // Anal. Sci. Technol., 1995, V. 8, No. 4, P. 771−778.
  48. R. Tyagi. Determination of substituted phenols in water by gas chromatography / mass spectroscopy after solid phase extraction. // Fres. Environ. Bull., 1995, V. 4, No. 12, P. 751−759.
  49. M.L. Bao, F. Pantani, K. Barbieri, D. Burrini, 0. Griffini. Direct acetylation followed by solid-phase disk extraction and GC-ITDMS for the determination of trace phenols in water. // Chromatographic 1996, V. 42, No. 3−4, P. 227−233.
  50. J.J. Mangas, M.P. Gonzalez, R. Rodriguez, D. Blanco. Solid-phase extraction and determination of trace aroma and flavour components in cider by GC-MS. // Chromatographia, 1996, V. 42, No. 1−2, P. 101−105.
  51. A. Geissler, H.F. Scholer. Gaschromatographic determination of phenol, methyl-phenols, chlorophenols, nitrophenols and nitroquinones in water at 0.1 pg-Г1. // Water Research, 1994, V. 28, No. 10, P. 2047−2053.
  52. J. Ruana, I. Urbe, F. Borrull. Determination of phenols at the ng/1 level in drinking and river wares by liquid chromatography with uv and electrochemical detection. // J. Chromatogr. A, 1993, V. 655, No. 2, P. 217−226.
  53. T.J. Clark, J.E. Bunch. Quantitative determination of phenols in mainstream smoke with solid-phase microextraction gas chromatography — selected ion monitoring mass spectrometry. // J. Chromatogr. Sci., 1996, V. 34, No. 6, P. 272−275.
  54. R. Lega, G. Ladwig, O. Meresz, R.E. Clement, G. Crawford, R. Salemi, Y. Jones. Quantitative determination of organic priority pollutants in sewage sludge by GC/MS. // Chemosphere, 1997, V. 34, No. 8, P. 1705−1712.
  55. L.E. Vera-Avila, J. Reza, R. Covarrubias. On-line trace enrichment, cleanup and determination of the most hydrophilic priority pollutant phenols in water. // Int. J. Environ. Anal. Chem., 1996, V. 63, No. 4, P. 301−314.
  56. E. Pocurull, R.M. Marce, F. Borrull. Determination of phenolic compounds in natural waters by liquid chromatography with ultraviolet and electrochemical detection after on-line trace enrichment. //J. Chromatogr. A, 1996, V. 738, No. 1, P. 1−9.
  57. M.T. Galceran, 0. Jauregui. Determination of phenols in sea water by liquid chromatography with electrochemical detection after enrichment by using solid-phase extraction cartridges and disks. // Anal. Chim. Acta, 1995, V. 304, No. 1, P. 75−84.
  58. K.A. Massey, D.L. Van Engelen, I.M. Warner. Determination of carbaryl and its primary metabolite, 1-naphthol, by reversed-phase high-performance liquid chromatography with fluorometric detection. // Talanta, 1995, V. 42, No. 10, P. 1457−1463.
  59. S. Dupeyron, M. Astruc, M. Marbach. Automated solid-phase extraction for routine determination of phenol and chlorophenols at trace level in water by high-performance liquid chromatography. // Analusis, 1995, V. 23, No. 9, P. 470−473.
  60. L.V. Perez-Arribas, M.E. Leon-Gonzalez, L.M. Polo-Diez. Phenol determination by HPLC using an ion chromatography column and inverse least squares analysis of partially resolved peaks. // Analusis, 1994, V. 22, No. 7, P. 369−372.
  61. V. Coquart, M.-C. Hennion. Trace-level determination of polar phenolic compounds in aqueous samples by high-performance liquid chromatography and on-line preconcentration on porous graphitic carbon. // J. Chromatogr. A, 1992, V. 600, No. 2, P. 195−201.
  62. B. Paterson, C.E. Cowie, P.E. Jackson. Determination of phenols in environmental waters using chromatography with electrochemical detection. // J. Chromatogr. A, 1996, V. 731, No. 1−2, P. 95−102.
  63. X.B.Chen, J.H.Pagella, M.L.Bakker, O.Parra. Determination of aromatic metabolites in ruminant urine by high-performance liquid chromatography. // J. Chromatogr. B: Biomed. Appl., 1996, V. 682, No. 2, P. 201−208.
  64. E. Lederer, M. Lederer. Chromatography: A review of principles and applications. Elsevier Pub. Co., Amsterdam, 1953,460 pp.
  65. H.R. Bentley, J.K. Whitehead. Water-miscible solvents in the separation of amino-acids by paper chromatography. // Biochem. J., 1950, V. 46, P. 341−345.
  66. C.H. de Verdier, G. Agren. Paper chromatographic analysis of amino acids and peptides in tissue extracts and enzyme hydrolyzed proteins. // Acta Chem. Scand., 1948, V. 2, P. 783−796.
  67. E.F, McFarren. Buffered filter paper chromatography of the amino acids. // Anal. Chem., 1951, V. 23, No. 1, P. 168−174.
  68. P. Досон, Д. Эллиот, У. Эллиот, К. Джонс. Справочник биохимика. М.: Мир, 1991,544 с.
  69. D.W.Armstrong, М.McNeely. Use of micelles in the TLC separation of polynuclear aromatic compounds and amino acids. // Anal. Lett., 1979, V. 12, No. A12, P. 1285−1291.
  70. D.A. Hall, A. Tiselius. The separation of small amounts of aromatic amino acids. // Acta Chem. Scand., 1951, V. 5, P. 854−858.
  71. G.Schramm, J.Primosigh. Die Adsorptionsanalyse der Aminosauren. II. Gruppenseparation der kompletten Mischung. // Ber. dtsch. chem. Ges., 1944, B. 77, S. 417−426.
  72. H. Beyer, U. Schenk. Determination of dinitrophenylamino acids in structural proteins by chromatography on nylon powder columns. II. The ether-soluble dinitrophenylamino acids. // J. Chromatogr. A, 1969, V. 39, P. 482−490.
  73. Т. Yamabe, N. Takai, H. Nakamura. Analysis of Dns-amino acids by liquid chromatography. I. Selection of optimum mobile phase composition for separation of Dns-amino acids on polyvinyl acetate del. // J. Chromatogr. A, 1975, V. 104, No. 2, P. 359−365.
  74. A.J.P. Martin, R.L.M. Synge. A new form of chromatogram employing two liquid phases. //Biochem. J., 1941, V. 35, P. 1358−1368.
  75. S. Moore, W.H. Stein. Chromatography of amino acids on starch columns. Separation of phenylalanine, leucine, isoleucine, methionine, tyrosine, and valine. // J. Biol. Chem., 1948, V. 176, No. 1, P. 337−365.
  76. S. Moore, W.H. Stein. Chromatography of amino acids on starch columns. Solvent mixtures for the fractionation of protein hydrolysates. // J. Biol. Chem., 1949, V. 178, No. 1, P. 53−77.
  77. S.M. Partridge, R.G. Westall. Displacement chromatography on the synthetic ion-exchange resins. 1. Separation of organic bases and amino-acids using cation-exchange resins. // Biochem. J., 1949, V. 44, P. 418−428.
  78. S.M. Partridge. Displacement chromatography on the synthetic ion-exchange resins. 4. The isolation of glucosamine and histidine from a protein hydrolysate. // Biochem. J., 1949, V. 45, P. 459−463.
  79. S.M. Partridge, R.C. Brimley. Displacement chromatography on the synthetic ion-exchange resins. 7. Separations using a strongly basic resin. // Biochem. J., 1951, V.49, P. 153−157.
  80. S. Moore, W.H. Stein. Chromatography of amino acids on sulfonated polystyrene resins. // J. Biol. Chem., 1951, V. 192, No. 2, P. 663−681.
  81. S.Moore, D.H. Spackman, W.H. Stein. Chromatography of amino acids on sulfonated polystyrene resins. An improved system. // Anal. Chem., 1958, V. 30, No. 7, P. 1185−1190.
  82. D.H. Spackman, W.H. Stein, S. Moore. Automatic recording apparatus for use in chromatography of amino acids. // Anal. Chem., 1958, V. 30, No. 7, P. 1190−1206.
  83. D.H. Simmonds, R.J. Rowlands. Automatic equipment for simultaneous determination of amino acids separated on several ion exchange resin columns. // Anal. Chem, 1960, V. 32, No. 2, P. 259−268.
  84. E.A. Peterson, Н.А. Sober. Variable gradient device for chromatography. // Anal. Chem, 1959, V. 31, No. 5, P. 857−862.
  85. В.Г. Мальцев, Б. Г. Беленький, M.JI. Александров. Оптимизация автоматического хроматографического анализа аминокислот. // Журн. аналит. химии, 1978, Т. 33, № 4, С. 798−807.
  86. S. Moore, W.H. Stein. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. // J. Biol. Chem, 1954, V. 211, No. 2, P. 907−913.
  87. R.W. Hubbard. Studies in accelerated amino acid analysis. // Biochem. Biophys. Res. Commun, 1965, V. 19, No. 6, P. 679−685.
  88. J.V. Benson, Jr., M.J. Gordon, J.A. Patterson. Accelerated chromatographic analysis of amino acids in physiological fluids containing glutamine and asparagine. // Anal. Biochem, 1967, V. 18, No. 2, P. 228−240.
  89. В. Hemmasi, E. Bayer. Ligand-exchange chromatography of amino acids on cooper-, cobalt-, and zinc-chelex 100. // J. Chromatogr. A, 1975, V. 109, No. 1, P. 43−48.
  90. B.A. Даванков, Дж, Навратил, X. Уолтон. Лигандообменная хроматография. М.: Мир, 1990,294 с.
  91. Химия привитых поверхностных соединений. Под. ред. Г. В. Лисичкина. М.: Физматлит, 2003,592 с.
  92. W.R. Melander, C.Horvath. Mechanistic study on ion-pair reversed-phase chromatography. //J. Chromatogr. A, 1980, V. 201, P. 211−224.
  93. M. Koller, H. Eckert. Derivatization of peptides for their determination by chromatographic methods. //Anal. Chim. Acta, 1997, V. 352, No. 1−3, P. 31−59.
  94. S. Moore, W. Stein. Photometric ninhydrin method for use in the chromatography of amino acids. //J. Biol. Chem., 1948, V. 176, No. 1, P. 367−388.
  95. G.R.Rhodes, V.K.Boppaa. High-performance liquid chromatographic analysis of arginine-containing peptides inbiological fluids by means of a selective post-column reaction with fluorescence detection. // J. Chromatogr., 1988, V. 444, P. 123−131.
  96. T. Teerlink. Derivatization of posttranslationally modified amino acids. // J. Chromatogr. B: Biomed. Appl., 1994, V. 659, No. 1−2, P. 185−207.
  97. H. Bruckner, M. Lupke. Use of chromogenic and fluorescent oxycarbonyl chlorides as reagents for amino acid analysis by high-performance liquid chromatography. // J. Chromatogr. A, 1995, V. 697, No. 1−2, P. 295−307.
  98. S. Terabe, Y. Ishihama, H. Nishi, T. Fukuyama, K. Otsuka. Effect of urea addition in micellar electrokinetic chromatography. // J. Chromatogr. A, 1991, V. 545, No. 2, P. 359−368.
  99. K.C. Waldron, N.J. Dovichi. Sub-femtomole determination of phenylthiohydantoin amino acids: Capillary electrophoresis and thermooptical detection. // Anal. Chem, 1992, V. 64, No. 13, P. 1396−1399.
  100. M. Albin, R. Weinberger, E. Sapp, S. Moring. Fluorescence detection in capillary electrophoresis evaluation of derivatizing reagents and techniques. // Anal. Chem, 1991, V. 63, No. 5, P. 417−422.
  101. S. Oguri, K. Yokoi, Y. Motohase. Determination of amino acids by high-performance capillary electrophoresis with on-line mode in-capillary derivatization. // J. Chromatogr. A, 1997, V. 787, No. 1−2, P. 253−260.
  102. ACD/LC Simulator, version 8.0, Advanced Chemistry Development, Inc., Toronto ON, Canada, www.acdlabs.com, 2004.
  103. A.V. Pirogov, M.M. Platonov, O.A. Shpigun. Polyelectrolyte sorbents based on aliphatic ionenes for ion chromatography. // J. Chromatogr. A, 1999, V. 850, No. 1−2, P. 53−63.
  104. A.V. Pirogov, O.V. Krokhin, M.M. Platonov, Ya.I. Deryugina, O.A. Shpigun. Ion-chromatographic selectivity of polyelectrolyte sorbents based on some aliphatic and aromatic ionenes. // J. Chromatogr. A, 2000, V. 884, No. 1−2, P. 31−39.
  105. A.V. Pirogov, W. Buchberger. Ionene-coated sulfonated silica as a packing material in the packed-capillary mode of electrochromatography. // J. Chromatogr. A, 2001, V. 916, No. 1−2, P. 51−59.
  106. Справочник по аналитической химии. Под ред. Лурье Ю. М.: Госхимиздат 1979 г. 480 с.
  107. S.G. Dmitrienko, E.N. Myshak, L.N. Pyatkova. An empirical relationship between distribution coefficients of phenols by polyurethane foams and their octanol-water distribution constants and p Ka values. I I Talanta, 1999, V. 49, No. 2, P. 309−318.
  108. Z. Li, X. Zhang, Y. Chen, Y. Zhong. Hydrophobic interaction of ionenes in aqueous solution. // Macromolecules, 1992, V. 25, No. 1, P. 450−470.
Заполнить форму текущей работой