Помощь в написании студенческих работ
Антистрессовый сервис

Развитие двигательного поведения в онтогенезе крыс, перенесших гипоксию на разных этапах эмбриогенеза

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Механизмы действия гипоксии на клетки организма изучены достаточно хорошо. В результате гипоксического воздействия изменяется нормальный баланс нейромедиаторов (глутамата, дофамина, серотонина, ацетилхолина и др.) и продуктов их обмена в особо чувствительных структурах мозга (Nyakas et al., 1996; Lipton 1999; Самойлов, 1999) или нарушаются структурно-функциональные свойства клеточных мембран, что… Читать ещё >

Развитие двигательного поведения в онтогенезе крыс, перенесших гипоксию на разных этапах эмбриогенеза (реферат, курсовая, диплом, контрольная)

Содержание

  • Список условных сокращений
  • ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Общие представления об онтогенезе крыс
      • 1. 1. 1. Основные принципы развития нервной системы. Критические периоды чувствительности организма к пагубным воздействиям внешней среды
      • 1. 1. 2. Развитие двигательного поведения в онтогенезе крыс
      • 1. 1. 3. Некоторые аспекты участия сенсомоторной коры и стриатума в организации двигательного поведения
    • 1. 2. Влияние гипоксического воздействия на организм
      • 1. 2. 1. Виды гипоксии и возможный физиологический ответ организма на гипоксическое воздействие
      • 1. 2. 2. Молекулярно-клеточные механизмы развития гипоксического состояния в головном мозге
      • 1. 2. 3. Гипоксия, как фактор, повышающий риск возникновения нейродегенеративных заболеваний
      • 1. 2. 4. Влияние гипоксии на поведение животных
  • ГЛАВА 2. МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. Объект исследования
    • 2. 2. Модель гипоксического воздействия на животных
    • 2. 3. Методы экспериментальных исследований
      • 2. 3. 1. Исследование физиологического развития крыс во время раннего постнатального онтогенеза
      • 2. 3. 2. Исследование позно-тонических реакций в раннем постнатальном онтогенезе крыс
      • 2. 3. 3. Локомоция в «открытом поле»
      • 2. 3. 4. Обучение инструментальным пищедобывающим движениям
      • 2. 3. 5. Ориентация в 8-лучевом радиальном лабиринте
    • 2. 4. Операция по вживлению направляющих канюль в мозг животным
    • 2. 5. Порядок проведения инъекций тестируемых веществ в структуры мозга
    • 2. 6. Статистическая обработка результатов
  • ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
    • 3. 1. Развитие двигательного поведения в онтогенезе крыс
      • 3. 1. 1. Особенности развития двигательных и позно-тонических реакций в первый месяц постнатального развития
      • 3. 1. 2. Двигательные и позно-тонические реакции взрослых животных
      • 3. 1. 3. Формирование обучения и памяти
        • 3. 1. 3. 1. Обучение пищедобывающим движениям молодых (3−4-недельных) и взрослых (3−4-месячных) крыс
        • 3. 1. 3. 2. Анализ кратковременной памяти в радиальном лабиринте у взрослых (3−4-месячных) крыс
    • 3. 2. Влияние гипоксии на поведение крыс в онтогенезе
      • 3. 2. 1. Особенности двигательного поведения животных, перенесших гипоксию на разных сроках эмбриогенеза
        • 3. 2. 1. 1. Влияние гипоксии на 13,5-е сутки эмбриогенеза на развитие двигательных и позно-тонических реакций в первый месяц постнатального развития
        • 3. 2. 1. 2. Влияние гипоксии 18,5-е сутки эмбриогенеза на развитие двигательных и позно-тонических реакций в первый месяц постнатального развития
      • 3. 2. 2. Двигательные и позно-тонические реакции взрослых животных, перенесших гипоксию на разных сроках эмбриогенеза
        • 3. 2. 3. 1. Обучение пищедобывающим движениям молодых (3−4-недельных) и взрослых (3−4-месячных) крыс, перенесших пренатальную гипоксию на разных сроках эмбриогенеза
        • 3. 2. 3. 2. Анализ кратковременной памяти в радиальном лабиринте у взрослых (3−4-месячных) крыс, перенесших пренатальную гипоксию на разных сроках эмбриогенеза
    • 3. 3. Участие холинергических систем сенсомоторной коры и стриатума в регуляции двигательного поведения крыс
      • 3. 3. 1. Эффекты введения агониста (карбахола) и антагониста холинергической передачи (скополамина) в сенсомоторную кору на выполнение выученных движений и локомоции
      • 3. 3. 2. Эффекты введения агониста (карбахола) и антагониста холинергической передачи (скополамина) в разные отделы неостриатума на выполнение выученных движений и локомоции
    • 3. 4. Эффекты введения игибиторов а-секретазы и нейропептидаз (неприлизина и эндотелин-конвертирующего фермента) в кору мозга на поведение взрослых крыс
      • 3. 4. 1. Эффекты введения батимастата в кору мозга на поведение взрослых крыс в радиальном лабиринте
      • 3. 4. 2. Эффекты введения фосфорамидона в кору мозга на поведение взрослых крыс в радиальном лабиринте

Актуальность проблемы.

Несмотря на обширный литературный материал (Tilney, 1933; Bolles Woods, 1964; Fox, 1964, 1965; Altman, Sudarshan, 1975; Massion, 1994; Muir, 2000; и др.), посвященный развитию двигательного поведения человека и животных, вопрос о роли наиболее важных возрастных периодов в формировании и развитии центральных механизмов двигательной активности остается весьма актуальным. Значение таких периодов для индивидуального развития организмов в целом было изучено и описано П. Г. Светловым (1978). Он отмечал наиболее частую гибель зародышей после действия неблагоприятных факторов в период, предшествующий имплантации зародыша в стенку матки, а также возникновение различных патологий при воздействиях во время формирования зачатков органов. Дж. Доббингом (Dobbing, 1968) была высказана гипотеза о существовании повышенной чувствительности мозга к действию неблагоприятных факторов в периоды его наиболее интенсивного роста. В литературе описаны критические периоды влияния внешних факторов на мозг, как в пренатальном, так и в постнатальном онтогенезе (Dickerson & Walmsley, 1967; Dobbing, Sands, 1973; Клоссовский, 1966; Дмитриева, 1971; Кассиль и др., 2000; Отеллин и др., 2007). Однако механизмы возникновения патологии развития, без знания которых невозможна разработка профилактики и коррекции соматических и ментальных нарушений, пока еще недостаточно изучены.

В медицинской практике отклонения в развитии нервной системы детей наиболее часто сопряжены с недостатком кислорода во время внутриутробного развития. Пренатальная гипоксия может быть вызвана нарушением плодно-плацентарного потока, заболеваниями беременной женщины или плода, а также внешними условиями, зависящими от состояния окружающей среды (Nyakas et al., 1996). Гипоксические повреждения эмбрионального мозга могут приводить к гибели или увеличивать риск возникновения психических и нейродегенеративных заболеваний с возрастом (Пальчик, Шабалов, 2001).

Механизмы действия гипоксии на клетки организма изучены достаточно хорошо. В результате гипоксического воздействия изменяется нормальный баланс нейромедиаторов (глутамата, дофамина, серотонина, ацетилхолина и др.) и продуктов их обмена в особо чувствительных структурах мозга (Nyakas et al., 1996; Lipton 1999; Самойлов, 1999) или нарушаются структурно-функциональные свойства клеточных мембран, что само по себе может приводить к гибели клеток (Наливаева и др., 1998; Самойлов, 1999; Mishra, Delivoria-Papadopoulos, 1999). Кроме того, гипоксия изменяет работу генетического аппарата клетки (Gleadle, Ratcliffe, 1998; Саго, 2001; Semenza, 2001; Рыбникова и др., 2004) и может инициировать транскрипцию специфических генов, ответственных за программируемую гибель клетки (Mishra, Delivoria-Papadopoulos, 1999; Mu et al., 1999). При этом патологические изменения в ЦНС зависят от длительности гипоксического воздействия и от этапа онтогенетического развития ЦНС, на котором это воздействие применялось (Кассиль и др., 2000; Журавин, 2002).

В нашем исследовании были выбраны два срока воздействия острой гипоксии на самок крыс во время беременности: 13,5-й день, относящийся к предплодному (эмбриональному) периоду, когда в головном мозге активно протекают основные гистогенетические процессы (деление клеток и их миграция), и 18,5-й день, относящийся к плодному (постимплантационному) периоду, когда уровень пролиферации клеток в мозге снижается и ускоряются процессы их созревания и дифференцировки (Волохов, 1968; Резников, 1981).

Центральные механизмы регуляции двигательной активности животных в значительной степени определяются функциональными свойствами сенсомоторных структур мозга, к которым относятся кора больших полушарий и стриатум (Иоффе, 1975; 1991; Батуев, Таиров, 1978; Толкунов 1978, 2002; Шаповалова, 1996; Шуваев, Суворов, 2001). Именно эти структуры страдают в первую очередь при недостатке кислорода в крови как развивающихся, так и взрослых животных (Самойлов, 1985; Burke, Baimbridge, 1993; Nyakas et al., 1996; Jansen, Low, 1996; Schwab et al., 1997; Piantadosi et al., 1997; Журавин и др., 2002;2007). В проведенном в нашей лаборатории комплексном исследовании с применением поведенческих, морфологических и биохимических методов было обнаружено, что пренатальная гипоксия приводит к значительным деструктивным изменениям нервной ткани сенсомотроной коры и стриатума, а также к изменению функциональных свойств холинергической системы этих структур в онтогенезе крыс. Эти морфо-функциональные нарушения развития ЦНС могут являться ключевым звеном в формировании поведенческих реакций, обучения и памяти в процессе взросления животных и человека, а также приводить к развитию различных нейродегенеративных заболеваний. О степени этих нарушений можно судить на основании изучения особенностей развития поведенческих реакций у животных.

Таким образом, представляется важным исследовать последствия нарушений нормального эмбриогенеза в развитии двигательного поведения крыс на разных этапах онтогенеза.

Цели и задачи исследования.

Целью настоящей работы является изучение особенностей развития врожденных и приобретенных движений на разных этапах онтогенеза крыс в условиях их нормального и нарушенного в результате действия гипоксии эмбриогенеза.

Для достижения цели были поставлены следующие задачи:

1. Исследовать развитие двигательных и позно-тонических реакций крыс линии Вистар в первый месяц постнатального онтогенеза.

2. Охарактеризовать процессы обучения инструментальному рефлексу и формирования разных видов памяти у молодых (3−4-недельных) и взрослых (3−4-месячных) контрольных самцов крыс.

3. Выявить особенности развития двигательного поведения в первый месяц постнатального развития у животных, перенесших пренатальную гипоксию на 13,5-е (Е13,5) или 18,5-е сутки (Е18,5) эмбриогенеза.

4. Выявить особенности формирования разных видов памяти у молодых (3−4-недельных) и взрослых (3−4-месячных) самцов крыс, перенесших гипоксию на разных этапах эмбриогенеза (Е13,5 и Е18,5).

5. Изучить влияние инъекций агониста (карбахола) и антагониста (скополамина) холинергической системы в сенсомоторную кору и различные области неостриатума мозга на локомоцию и выполнение инструментального рефлекса взрослыми животными.

6. Провести анализ влияния инъекций ингибиторов а-секретазы (фермента, вовлеченного в непатогенный процессинг предшественника амилоидного пептида) и нейропептидаз (неприлизина и эндотелин-конвертирующего фермента, обладающих амилоид-деградирующими свойствами) на кратковременную память у крыс.

Научная новизна.

На применявшейся в нашей работе модели пренатального нарушения развития головного мозга (трехчасовая нормобарическая гипоксическая гипоксия при 7% О2) показано, что наиболее значительные изменения в физиологическом развитии и формировании двигательного поведения в раннем постнатальном онтогенезе возникают в результате гипоксического воздействия на Е 13,5, но не на Е18,5.

Впервые показано, что гипоксия на Е13,5 или на Е18,5 приводит к обратимым изменениям врожденных форм двигательного поведения и необратимому нарушению механизмов кратковременной и долговременной памяти.

На оригинальной модели выработки инструментального рефлекса впервые обнаружено, что холинергическая система сенсомоторной коры участвует в разнонаправленной регуляции врожденной двигательной активности (локомоция) и выполнения инструментальных движений разной степени сложности (быстрых врожденных и выученных медленных).

Показано, что холинергическая система стриатума участвует в регуляции медленных манипуляторных движений, имеющих дополнительные тактильную и тоническую компоненты.

Впервые в экспериментах с интракортикальным (i.e.) введением батимастата, ингибитора а-секретазы, показана важная роль этого фермента в процессах запоминания экспериментальной задачи у взрослых крыс, а также у молодых животных при развитии нейронных сетей неокортекса, необходимых для формирования памяти на более поздних сроках развития.

В экспериментах с i.e.

введение

м фосфорамидона выявлено участие в процессах запоминания у взрослых крыс таких амилоид-деградирующих ферментов, как нейропептидазы неприлизин и эндотелин-конвертирующий фермент.

Впервые выявлена взаимосвязь между снижением активности а-секретазы и амилоид-деградирующих ферментов и нарушением процесса запоминания.

Положения, выносимые на защиту:

1. Пренатальная гипоксия приводит к задержке физиологического развития и становления двигательного поведения в первый месяц постнатального развития. Обнаруженные различия в выполнении движений животными контрольной и экспериментальных групп нивелируются по мере их взросления, тогда как нарушения обучения и памяти, обнаруженные в раннем онтогенезе, сохраняются у взрослых животных.

2. 13,5-е сутки эмбрионального развития, соответствуя периоду, когда в мозге преобладают процессы пролиферации и миграции, являются значимыми как для физиологического развития и становления в раннем онтогенезе врожденных форм двигательного поведения животных, так и для нормального развития когнитивных процессов мозга.

3. 18,5-е сутки эмбрионального развития, соответствуя периоду, когда в мозге преобладают процессы созревания и дифференцировки, являются важными для развития когнитивных процессов и менее значимыми для развития врожденных форм двигательного поведения.

4. Холинергическая система сенсомоторной коры участвует в регуляции как врожденных, так и выученных движений (быстрых и медленных), а в стриатуме она регулирует преимущественно медленные инструментальные движения, имеющие дополнительные тактильную и тоническую компоненты.

5. Когнитивные нарушения, наблюдаемые после пренатальной гипоксии, могут возникать в результате снижения активности фермента а-секретазы предшественника амилоидного пептида и нейропептидазнеприлизина и эндотелин-конвертирующего фермента.

Теоретическая и практическая значимость.

Результаты работы свидетельствуют о том, что на более поздних сроках эмбрионального развития уменьшается восприимчивость организма к повреждающему влиянию гипоксии. Подтверждается предположение, что воздействие патогенного фактора в период преимущественной генерации и миграции нейробластов формирующихся структур головного мозга приводит к более существенным нарушениям двигательных реакций, зависящих от их нормального развития. Полученные данные важны для понимания процессов формирования мозга и могут найти свое применение в медицинской практике, поскольку пренатальная гипоксия является одним из главных патогенных факторов, нарушающих развитие у детей.

Выявленные в работе нарушения физиологического развития, двигательного поведения и когнитивных функций, вызываемые гипоксическим воздействием в определенные периоды эмбриогенеза, позволяют обосновать и найти новые подходы к разработке методов диагностики и профилактики болезней, связанных с пренатальной патологией.

Обнаруженное нарушение когнитивных функций после пренатальной гипоксии должно учитываться в дошкольных и школьных учреждениях при обучении и работе с детьми.

Результаты исследования и вытекающие из них выводы дополняют существующие представления о механизмах формирования процессов обучения и памяти и могут быть использованы в лекциях по нейробиологии развития и психофизиологии в биологических и медицинских ВУЗах.

Апробация работы. Материалы диссертации докладывались на: XI-XIII Международных совещаниях и школах по эволюционной физиологии. С.-Петербург, 1996, 2001 и 2006; XXXIII международном конгрессе физиологических наук. С.-Петербург, 1997; Meeting of the British Royal Physiological Society. Bristol, 1997; XVII и XVIII съездах Всероссийского физиологического общества им. И. П. Павлова. Ростов-на-Дону, 1998 и Екатеринбург, 2001; конференции «Механизмы адаптивного поведения». С. Петербург, 1999; XXX Всероссийском совещании по проблемам высшей нервной деятельности, посвященном 150-летию И. П. Павлова. С.-Петербург, 2000; International Workshop: «Basal Ganglia and Thalamus in Health and Movement Disorders.» Moscow, 2000; XIV International Congress of Neuropathology «Brain Pathology», Birmingham, 2000; IV и V международных конференциях по функциональной нейроморфологии. С.-Петербург, 2002 и 2006; International Symposium Neuron Differentiation and Plasticity — Regulation by Intercellular Signals. 2003; на конференции «Биологические аспекты экологии человека». Архангельск, 2004; конференции «Нейрохимия: Фундаментальные и прикладные аспекты». Москва, 2005; Четвертой Российской конференции «Гипоксия: Механизмы, адаптация, коррекция». Москва, 2005; I съезде физиологов СНГ. Сочи, 2005; Международном симпозиуме «Механизмы адаптивного поведения». Санкт-Петербург, 2005; 11th meeting of Czech and Slovak Neurochemical Society, «Molecular basis of neurological and psychiatric disorders». Martin, 2006.

Структура и объем диссертации

Диссертация состоит из введения, обзора литературы, описания методики исследования, изложения экспериментальных данных, обсуждения полученных результатов, выводов и списка литературы, содержащего 359 источников. Работа, изложенная на 179 страницах машинописного текста, включает 49 рисунков и 3 таблицы.

ВЫВОДЫ.

1. У потомства (группы ГЕ13,5 и ГЕ18,5) самок крыс, перенесших трехчасовую нормобарическую гипоксию (7% Ог) во время беременности на 13,5-е или 18,5-е сутки, при сравнении с потомством контрольных животных выявлено отставание в физиологическом развитии и формировании двигательного поведения в раннем постнатальном онтогенезе. Показано, что наиболее значительные изменения в течение первого месяца постнатального развития возникают в результате гипоксического воздействия на 13,5-е сутки внутриутробного развития. Обнаруженные различия в выполнении движений крысами контрольной и экспериментальных групп нивелируются по мере взросления.

2. В отличие от чисто моторных, когнитивные нарушения после пренатальной гипоксии наблюдаются как у молодых (3−4 недельных, группа ГЕИ, 5), так и у взрослых (3−4 месячных, группы ГЕИ, 5 и ГЕ18,5) крыс. Вне зависимости от срока гипоксического воздействия (Е13,5 или Е 18,5) у взрослых животных выявлено ухудшение процесса обучения инструментальному рефлексу, нарушение долговременной и кратковременной памяти.

3. Активация холинергической системы сенсомоторной коры карбахолом приводит к разнонаправленному изменению врожденной двигательной активности (локомоции) и приобретенных инструментальных движений передней конечности разной степени сложности — обычных быстрых и выученных медленных.

4. При введении агониста (карбахол) или антагониста (скополамин) холинергической передачи в разные отделы стриатума обнаружены изменения в выполнении медленных пищедобывающих движений, имеющих дополнительные тактильную и тоническую компоненты. При этом дорзальный стриатум вовлечен, в основном, в процесс обучения новым медленным движениям, а вентральный стриатум участвует в регуляции медленных хорошо выученных движений. Эти данные позволяют предположить, что модификация холинергической системы сенсомоторной коры и/или стриатума может являться одним из механизмов нарушения выполнения врожденных и приобретенных движений, наблюдаемых после пренатальной гипоксии.

5. В экспериментах с введением в кору мозга ингибитора а-секретазы предшественника амилоидного пептида — батимастата, показано участие а-секретазы в процессах запоминания экспериментальной задачи как у взрослых крыс, а также у молодых животных в раннем постнатальном периоде, когда происходит интенсивное развитие нейронных сетей неокортекса.

6. В экспериментах с введением фосфорамидона выявлено участие в процессах запоминания у взрослых крыс таких амилоид-деградирующих ферментов, как нейропептидазы — неприлизин и эндотелин-конвертирующий фермент. Можно предположить, что одним из механизмов нарушения когнитивных функций мозга после пренатальной гипоксии является изменение метаболизма амилоидного пептида и его предшественника.

ЗАКЛЮЧЕНИЕ

.

На основании полученных данных можно заключить, что наиболее значимым для физиологического развития животных и становления в раннем онтогенезе врожденных форм двигательного поведения является период, когда в мозге эмбрионов преобладают процессы пролиферации и миграции клеток (выбранный нами срок гипоксии — Е13,5), т. е. начало третьего триместра беременности. Тогда как для нормального развития когнитивных процессов мозга важными являются периоды пролиферации и миграции нейробластов (Е13,5), а также их созревания и дифференцировки (Е18,5). Неблагоприятные условия эмбрионального развития во время этих периодов приводят к необратимому нарушению механизмов кратковременной и долговременной памяти у экспериментальных животных. В отличие от чисто моторных, когнитивные нарушения, возникшие в результате пренатальной гипоксии, сохраняются и у взрослых животных. Причины подобных нарушений развития моторики и когнитивных функций мозга, полученных в наших экспериментах, могут корениться в изменениях биохимических характеристик и структурной организации нервной ткани сенсомоторной коры, стриатума и гиппокампа.

Известно, что растворимая форма АХЭ, неприлизин и крупные растворимые белки sAPPa и sAPPp, образующиеся в результате действия а-и p-секретаз, играют важную роль в процессах пролиферации, миграции и созревания нервных клеток, в установлении межклеточных контактов и развитии нервной ткани. Недостаток этих биологически активных веществ, обнаруживаемый после пренатальной гипоксии на определенных сроках онтогенетического развития, может вызывать нарушения определенных структур мозга и проявляться в наблюдавшихся изменениях поведения животных. Показательно, что менее выраженные последствия пренатальной гипоксии на Е18,5 (по сравнению с гипоксией на Е13,5) в развитии двигательного поведения крыс, выявленные в настоящей работе, коррелируют с менее значительными биохимическими сдвигами, обнаруженными после гипоксии на этом сроке.

В работе показано, что холинергическая система в сенсомоторной коре принимает участие в регуляции как врожденной двигательной активности, так и выполнения инструментальных движений разной степени сложности, а холинергическая система в стриатуме участвует только в выполнении медленных пищедобывающих движений. Поэтому более низкие показатели при обучении, выполнении и сохранении инструментальных движений с длительным давлением, наблюдавшиеся у животных, перенесших гипоксическое воздействие, могут быть связаны с их чисто физической неспособностью давить в течение длительного времени на поршень или с неспособностью запоминать новый тип движения.

Пренатальная гипоксия вызывает как нарушение сохранности выработанного инструментального движения после длительного перерыва, так и снижение кратковременной рабочей памяти в радиальном лабиринте у взрослых крыс, что доказывает влияние гипоксического воздействия на когнитивные функции мозга. Принимая во внимание эти данные, а также данные о снижении активности а-секретазы и амилоид-деградирующих ферментов, наблюдаемой после пренатальной гипоксии или после i.e. введении игибиторов этих ферментов, приводящем к нарушению процесса запоминания, можно предположить, что недостаток кислорода в мозге, наблюдаемый во время пренатальной гипоксии, вызывает возрастание риска возникновения когнитивных нарушений.

Таким образом, пренатальная гипоксия на определенных этапах онтогенеза, нарушая деятельность коры и стриатума, исследованных в нашей работе, изменяет двигательное поведение в первый месяц постнатального развития и нарушает когнитивные функции у молодых и взрослых животных.

Показать весь текст

Список литературы

  1. И.А. Физиологические механизмы и закономерности индивидуального развития: основы негэнтропийной теории онтогенеза. М.: Наука. 1982.270 с.
  2. В.Н. Нейроэндокринология пола. М.: Наука. 1981.222 с.
  3. К.В. Конвергенция кортико- и рубро-спинальных влияний на мотонейронах шейного отдела спинного мозга II Нейрофизиология. 1971. Т.З. №.6. С. 599−608.
  4. К.В. Нейробиология локомоций. М.: Наука, 1991.199 с.
  5. В.П. Нейротрансмиттеры и экстрапирамидная патология II М.: Медицина, 1988.176. с.
  6. А.С., Таиров О. П. Мозг и организация движений. Концептуальные модели. Л.: Наука. 1978.140 с.
  7. А.С., Полякова О. Н., Александров А. А. Эффект «социального стресса» во время беременности на уровень тревожности потомства II Журн. Высш. Нервн. Деят. 2000. Т.50, № 2. С.281−286.
  8. Я., Бурешова О., Хьюстон Дж.П. Методики и основные эксперименты по изучению мозга и поведения. М.: Высшая школа, 1991.399 с.
  9. А.В. Ранний онтогенез моторного аппарата теплокровных. Л.: Наука. 1983.165 с.
  10. Л.А. Адаптивное поведение и эффекты стресса в ювинильном, препубертатном и пубертатном периодах развития. Автореферат докторской диссертации. 2005.
  11. Д.С. Формирование конечного мозга крыс после нарушения эмбрионального развития, вызванного пренатальной гипоксией. Автореферат кандидатской диссертации. 2007.
  12. Л.А., Зотова Е. Г., Воробьев В. М. Формирование условных рефлексов на комплексный сигнал в онтогенезе в условиях альтернативного выбора II Журн. Высш. нервн. Деят. 1995. Т.45, № 2. С.289−296.
  13. Войно-Ясенецкий А. В. Первичные ритмы возбуждения в онтогенезе. Л.: Наука. 1974.147 с.
  14. А.А. Очерки по физиологии нервной системы в раннем онтогенезе. Л.: Медицина. 1968.312 с.
  15. О.А. Нейротрофические и ростовые факторы мозга: регуляторная специфика и терапевтический потенциал II Успехи Физиол. Наук. 2005. Т.36, № 2. С.22−40.
  16. П.А. Динамика реактивности корковых нейронов к повторяющемуся изолированному действию L-глутамата и ацетилхолина II Журн. высш. нервн. деят., 1994. Т.44. №.1. С. 135−142.
  17. Н.И. Динамика роста мозга и его отделов в постнатальном онтогенезе у некоторых лабораторных животных. В кн.: Биология лабораторных животных. М. 1971.
  18. Н.И. О периодах развития структур головного могза в онтогенезе крысы //Журн. эвол. биохим. физиол. 1981. Т.17, № 3. С.287−292.
  19. Н.М., Потапов Д. О., Туманова Н. Л. Влияние пренатальной гипоксии на развитие крыс в постнатальном онтогенезе II Вестник молодых ученых. 2002. № 4. Серия: Науки о жизни. № 1. С.9−15.
  20. К.Н., Чуева И. В., Макаров Ф. Н., Бич Т.Г., Рохер Ф. Е. Нарушения процессов обучения и памяти у обезьян в модели болезни Альцгеймера: роль ассоциативных областей коры мозга II Рос. физиол. журнал им. И. М. Сеченова. 2005, Т.91, № 8. С.857−871.
  21. Н.В., Ратушняк А. С., Егорушкин И. В. Вляние экзогенных ганглиозидов на динамику развития длительной посттетанической потенциации II Журн. высш. нервн. деят. 1992. Т.42. С.729−733.
  22. Ю.М. Нормальная и патологическая морфология нейрона. Л.: Медицина, 1965.
  23. И.А., Браха В., Буреш Я. Влияние неостриатума на движения с разной степенью сенсорного контроля. В сб.:"Стриарная система и поведения в норме и патологии". Л. 1988. С. 32−34.
  24. И.А., Наливаева Н. Н., Дубровская Н. М. Влияние экзогенных ганглиозидов на формирование у крыс инструментальных движений с тактильным контролем //Журн. высш. нервн. деят. 1993. Т.43, № 3. С.1129−1136.
  25. И.А. Формирование центральных механизмов регуляции двигательных функций млекопитающих в зависимости от условий эмбрионального развития II Журнал, эвол. биохим. физиол. 2002. Т.38. № 5. С.478−484.
  26. И.А., Дубровская Н. М., Туманова Н. Л. Постнатальное физиологическое развитие крыс после острой пренатальной гипоксии II Рос. физиол. журнал им. И. М. Сеченова. 2003, а. Т.89, № 5. С.522−532.
  27. И.А., Туманова Н. Л., Дубровская Н. М., Федосеева К. Н. Нарушение формирования старой и новой коры при изменении условий эмбрионального развития II Журн. эвол. биохим. физиол. 2003, б. Т.39, № 6. С.608−618.
  28. И.А., Дубровская Н. М., Кочкина Е. Г., Наливаева Н. Н., Плеснева С. А. Роль условий эмбрионального развития в формировании механизмов обучения в онтогенезе млекопитающих// Рос. физиол. журн. 2004. № 8. Т. 90. С. 173−174.
  29. Э.В., Коросов А. В. Основы биометрии. Издательство ПГУ, Петрозаводск, 1992.168 с.
  30. М.Е. Кортико-спинальные механизмы инструментальных двигательных реакций. М.: Наука. 1975.204 с.
  31. М.Е. Механизмы двигательного обучения. М.: Наука. 1991.136 с.
  32. В.Г., Отеллин В. А., Хожай Л. И., Косткин В. Б. Критические периоды развития головного мозга II Российский физиол. журн. им. И. М. Сеченова. 2000. Т.86. № 11. С.1418−1425.
  33. .Н. Развитие плода, новорожденного и ребенка в условиях действия вредных факторов II Вестн. Акад. Мед. Наук. 1966. Т.21, № 6, С.43−53.
  34. Р.И. Нейрохимические основы обучения и памяти. М.: Наука. 1981. 211с.
  35. Р.И. Нейрохимические основы обучения и памяти. Неробиология обучения и памяти. М.: Наука. 1990. С.174−191.
  36. А.З. Классификация гипоксических состояний II Патол. Физиол. Эксп. Тер. 1981. Т.4. С.3−10.
  37. Е.Г. Активность холинэстераз в сенсомоторной коре мозга крыс и в культуре клеток нейробластомы II Вестник молодых ученых. 2007. (в печ.).
  38. С.М., Наливаева Н. Н., Журавин И. А. Активность ацетилхолинестеразы разных фракций сенсомоторной коры в раннем онтогенезе крыс, перенесших пренатальную гипоксию II Ж. эвол. биохим. физиол. 2003. Т.39, № 2, с. 154−159.
  39. Л.М. Адаптационно-трофическое влияние шейных симпатических ганглиев в онтогенезе. Л.: Наука. 1984.170 с.
  40. В.И. Механизмы формирования реакций нейронов моторной коры у кошки, связанных с запуском условного рефлекса постановки конечности на опору: гипотеза II Журн. высш. нервн. деят. 1994. Т.44. № 6. С. 963−973.
  41. Е.В. Онтогенез коры больших полушарий II Москва. Наука. 1990. 184 С.
  42. Ю.С. Роль ацетилхолина в регуляции функциональных свойств нейронов моторной коры. В сб.: Нейрохимические основы обучения и памяти / Ред. Крутиков Р. И. М.: Наука. 1989. С. 47−68.
  43. .Ю. Участие фронтальных отделов коры в регуляции функций тормозных двигательных центров ствола мозга II Физиол. журн. им. И. М. Сеченова. 1991. Т. 77. № 1. С. 3−8.
  44. Н.Н., Клементьев Б. И., Плеснева С. А., Чекулаева У. Б., Журавин И. А. Влияние гипоксии на состояние клеточных мембран правого и левого полушарий мозга эмбрионов крыс II Ж. эвол. биох. физиол. 1998. Т.34, № 4. С.485−491.
  45. Н.Н. Роль гипоксии и ишемии мозга, а метаболизме амилоидного пептида и патогенезе болезни Альцгеймера. Автореф. Докторской диссертации. 2006.
  46. С.Н. Развивающийся мозг. Л.: Наука. 1978.222 с.
  47. В.А. Формирование патологий головного мозга в эмбриональный период// Природа. 2003. № 9. С. 1−7.
  48. В.А., Хожай Л. И., Гилерович Е. Г., Коржевский Д. Э., Гуцаева Д. Р., Демченко И. Т., Косткин В. Б., Григорьев И. П. Клеточные и тканевые реакции эмбрионального головного мозга животных на гипоксию II Докл. Акад. Наук. 2003. Т.393., № 5. С.703−705.
  49. В.А., Хожай Л. И., Коржевский Д. Э., Павлова Н. Г., Старорусская А. Н. Клинико-морфологическое исследование плацентарной недостаточности II Тезисы докладов конференции «Фундаментальные науки медицине» 2006, Москва С. 43−44.
  50. Отеллин В А, Хожай Л. И., Ордян Н. Э. Пренатальные стрессорные воздействия на развивающийся мозг. СПб.: Изд. «Десятка». 2007.240 с.
  51. А.Б., Шабалов Н. П. Гипоксически-ишемическая энцефалопатия новорождённых: руководство для врачей. СПб: Питер. 2001.224 С.
  52. Э.Ф. Развитие условных рефлексов у белых крыс в онтогенезе II Журн. высш. нервн. деят. 1956. Т.6, № 2. С. 312.
  53. З.Д. Биохимия развивающегося мозга М.: Медицина. 1972.312 С.
  54. Э.Н., Вавилов A.M. Развитие хвостатого ядра крыс в постнатальном онтогенезе и становление холинергической медиации в нем II Архив анат. гист. эмбр. 1975. Т.68. № 3. С.65−71
  55. В.В. Онтогенез мидиаторных систем мозга. М., 1991.144 с.
  56. К.Ю. Пролиферация клеток мозга позвоночных в условиях нормального развития мозга и при его травме. М.- Наука. 1981.149 с.
  57. Г. М., Сичинава Л. Г., Дживелегова Г. Д., Шалина Г. И. Перинатальные гипоксические поражения ЦНС у новорожденных II Вестник рос. акад. мед. наук. 1994. Т.1. С.20−23.
  58. М.О. Реакции нейронов мозга на гипоксию. Л., 1985.
  59. М.О., Семенов Д. Г., Тюлькова И. Е., Болехан Е. А. Молекулярно-клеточные механизмы протектирующего эффекта краткосрочной аноксии II Физиол. журн. им. И. М. Сеченова. 1994. Т.80, № 12. С.71−75.
  60. М.О. Мозг и адаптация. Молекулярно-клеточные механизмы. СПб.: Ин-т физиологии им И. П. Павлова. 1999.272 с.
  61. П.Г. Физиология (механика) развития (в 2 т.). Л.:Наука. 1978.279,263 с.
  62. Е.К. История развОтиО нервной системы позвоночнОо. 1959.128с.
  63. В.Е., Квашнин С. А. Онтогенез поведения. Серая крыса. М.: Наука. 1985. С.230−247.
  64. Н.Ф. Стриарная система и поведение. Л.: Наука. 1980.280 С.
  65. .Ф. Стриатум и сенсорная специализация нейронной сети. Л.: Наука, 1978.
  66. .Ф. Роль нейронной сети в функциональной эволюции конечного мозга млекопитающих//Журн. эвол. биохим. физиол. 2002. Т.38. № 5. С.469−477.
  67. А.Я., Филимонов В. Г., Караш Ю. М., Стрелков Р. Б. Биоритм кислородного напряжения в маточной и эмбриональной ткани II Бюл. эксп. биол. мед. 1981. Т.91, № 10. С.392−394.
  68. А.И. Эволюция нейронных систем надсегментарного моторного контроля (обзор) // Нейрофизиология. 1972. Т.4. С. 453−470.
  69. А.И. Механизмы синаптической передачи (избранные труды). СПб.: Наука, 1997. С. 329−346.
  70. К.Б. Существующие концепции нейрофармакологии и нейрохимии холинергической системы стриатаума и ее роль в регуляции дувижений II Журн. высш. нервн. деят. 1996. Т.46, № 4. С.656−673.
  71. Г. А. Эмбриология животных. Общая эмбриология, часть 1.1951.
  72. В.Т., Суворов Н. Ф. Базальные ганглии и поведение. СПб.: Наука. 2001. 278 с.
  73. Эфуни С.Н.и Шпектор В. А. Гипоксические состояния и их классификация II Анестезиол. реаниматол. 1981. Т.2. С.3−12.83. .Aigner T.G. Pharmacology of memory: cholinergic-glutamatergic interactions II Current Opinion in Neurobiology. 1995. V.5. P.155−160.
  74. Aitken P.G., Jing J., Young J., Somjen G.G. Ion channel involvement in hypoxia-induced spreading depression in hipp-campal slices //Brain Res. 1991. V. 541, N.1. P.7−11.
  75. Alberch J, Carman-Krzan M, Fabrazzo M, Wise ВС. Chronic treatment with scopolamine and physostigmine changes nerve growth factor (NGF) receptor density and NGF content in rat brain II Brain Res. 1991. V.542. P.233−240.
  76. Albin L.R. The pathophysiology of chorea/ballism and parkinsonism II Parkinsonism & Related Disorders. 1995. M.1, N.1. P.3−11.
  77. Algan 0., Rakic P. Radiation-induced area- and lamina-specific deletion of neurons in the primate visual cortex//J. Сотр. Neurol. 1997. V.381. P.335−352.
  78. Alexander, G.E., Crutcher, M.D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing //Trends Neurosci. 1990. V.13. P.267−271.
  79. Altman J, Sudarshan K. Postnatal development of locomotion in the laboratory rat II Anim Behav. 1975. V.23. P.896−920.
  80. Ang E.S., Gluncic V., Duque A., Schafer M.E., Rakic P. Prenatal exposure to ultrasound waves impacts neuronal migration in mice II Proc Natl Acad Sci USA. 2006. V.103, N.34. P.12 903−12 910.
  81. Antonelli I.R., Marra C., Giordano A., Calcagni M.L., Cappa A., Basso S., Pagliari G., Fuso L. Cognitive impairment in chronic abstructive pulmonary disease a neuropsychological and spect study //J. Neurol. 2003. V.250, N.3. P.325−332.
  82. Armand J., Olivier E., Edgley S.A., Lemon R.N. Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey//J. Neurosci. 1997. V. 17. N. 1. P. 251−266.
  83. Armstrong D.M., Bruce G., Hersh L.B., Gage F.H. Development of cholinergic neurons of the septal I diagonal band complex of the rat II Devel. Brain Res. 1987. V. 36. P. 249−256.
  84. Appleyard M.E. Secreted Acetylcholinesterase nonclassical aspects of a classical enzyme//Trends in Neurosci. 1992. V.15. P.485−490.
  85. Appleyard M.E. Noncholinergic funcions of AchE II Biochem. Soc. Trans. 1994. V.22. P.749−755.
  86. Ashton IK, Zapf J, Einschenk I, MacKenzie IZ. Insulin-like growth factors (IGF) 1 and 2 in human foetal plasma and relationship to gestational age and foetal size during midpregnancy//Acta Endocrinol. (Copenh). 1985. V.110, N.4. P.558−563.
  87. Bard P, Macht MB. The behavior of chronically decerebrate cat. In Neurological Basis of Behavior. Edited by Wolstenholme GEW, O’Connor CM. London: Churchill- 1958. P.55−71.
  88. Barker JL, Behar T, Li YX, Liu DY, Ma W, Marie D, Marie I, Schaffner AE, Serafini R, Smith SV, et al. GABAergic cells and signals in CNS development II Perspect Dev Neurobiol 1998. V.5. P.305−322.
  89. Barinaga M. Is apoptosis key in Alzheimer’s disease? II Science. 1998. V.81. P.1303−1304.
  90. Bayer SA, Altman J. Neocortical Development. New York: Raven Press, 1991.
  91. Bazan N.G., Palacios-Pelaez R., Lukiw E.J. Hypoxia signaling to genes: significance Alzheimer’s desease II Mol. Neurobiol. 2002. V.26, N.2−3. P.283−298.
  92. Beart P.M. Transmitters and receptors in the basal ganglia. In: The basal ganglia (Structure and function) I Eds. McKenzie J.S., Kemm R.E., Wilcock L.N. N.Y. Plenum press. 1984. P.261−296.
  93. Bekoff A., Lau B. Interlimb coordination in 20-day old tar fetuses II J. Exp. Zool. 1980. V.214. P.173−175.
  94. Blanck A., Hard E., Larsson K. Ontogenetic development of orienting behavior in the rat//J. Сотр. Psychol. 1967. V.63. P.327−328.
  95. Blaschke AJ, Weiner JA, Chun J. Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system II J Comp Neurol. 1998. V.396. P.39−50.
  96. Blass J.P. Brain metabolism and brain desease: is metabolic deficiency the proximate cause of Alzheimer dementia? II J. Neurosci. Res. 2001. V.66, N.5. P.851−856.
  97. R.S. & Woods P.S. The ontogeny of behavior in albino rat II Anim. Behav. 1964. V.12. P.427−441.
  98. Boutilier R.G. and St-Pierre J. Surviving hypoxia without really dying II Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2000. V.126, N.4. P.481 -490.
  99. Bracha V., Zhuravin I.A., Bures J. The reaching reaction in the rat: a part of the digging pattern?// Behav. Brain Res. 1990. V.36. P.53−64.
  100. Brierley J.B. Cerebral hypoxia. In: Greenfield’s Neuropathology. Blackwood W. and Corsellis A. (Eds.), London: Arnold. 1976. P. 43−85.
  101. Brooks C.M. Studies on the cerebral cortex II Am. J. Physiol. 1933. V.105, N.1. P.162−171.
  102. Brooks V.B. The neural basis of motor control. N.Y.: Oxford Univ. press. 1986.
  103. Bour A., Little S., Dodart J.C., Kelche C., Mathis C. A secreted form of the beta-amyloid precursor protein (sAPP695) improves spatial recognition memory in OF1 mice II Neurobiol. Learn. Mem. 2004. V.81. P.27−38.
  104. Boutilier R.G. and St-Pierre J. Surviving hypoxia without really dying II Сотр. Biochem. Physiol. Part A: Molecular & Integrative Physiology. 2000. V.126, N.4. P.481−490.
  105. Bures J., Buresova O., Krivanek J. Brain and behavior. Paradigms for research in neuronal mechanisms. Prague: Academia. 1988.304 p.
  106. Buresova, О & Bures, J. Radial maze as a tool for assessing the effect of drugs on the working memory of rats II Psychopharm. 1982. V.77, N.3. P.268−271.
  107. Burke RE, Baimbridge KG. Relative loss of the striatal striosome compartment, defined by calbindin-D28k immunostaining, following developmental hypoxic-ischemic injury II Neuroscience. 1993, V.56, N.2. P.305−315.
  108. Burke RE, Kholodilov NG. Programmed cell death: does it play a role in Parkinson’s disease?//Ann. Neurol 1998. V.44. P. S126-S133.
  109. Buznikov GA, Shmukler Y, Lauder JM. Changes in the physiological roles of neurotransmitters during individual development II Neurosci Behav Physiol. 1999. V.29 P.11−21.
  110. Caille I., Allinquant В., Dupont E., Bouillot C., Langer A., Muller U., Prochiantz A. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone II Devel. 2004. V.131. P.2173−2181.
  111. Campbell CG, Seidler FJ, Slotkin ТА. Chlorpyrifos interferes with cell development in rat brain regions// Brain Res Bull. 1997. V.43. P.179−189.
  112. Capsoni S., Ugolini G., Comparini et al., Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice IIPNAS USA. 2000. V.97, N.12. P.6826−6831.
  113. Caro J. Hypoxia regulation of gene transcription II High Alt. Med. Biol. 2001. V.2. P. 145−154.
  114. Chen G.J., Xu J., Lahousse S.A., Caggiano N.L., de la Monte S.M. Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection II J. Alzh Dis. 2003. V.5, N.3. P.209−228.
  115. Child C.M. The physiological significance of the cephalocaudal differential in vertebrate development // Anat Rec. 1925. V.31. P.369−383.
  116. Clarac F., Vinay L., Cazaletz J-R., Fady J-C., Jamon M. Role gravity in the development of p-sture and locomotion in the neonatal rat II Brain Res Rev. 1998. V.28. P.35−43.
  117. Choi ВН. The effects of methylmercury on the developing brain II Prog. Neurobiol. 1989. V.32. P.447−470.
  118. Choi D.W. Cerebral hypoxia: some new approaches and unanswered questions II J. Neurosci. 1990. V.10. P.2493−2501.
  119. Conti L., Cattaneo E. Controlling neural stem cell division within the adult subventricular zone: an APPealing job II Trends Neurosci. 2005. V.28. P.57−59.
  120. Cuadros MA, Navascues J. The origin and differentiation of microglial cells during development II Prog Neurobiol 1998. V.56. P.173−189.
  121. Cummings JL, Back C. The cholinergic hypothesis of neuropsychiatry symptoms in Alzheimer’s disease II Am. J. Geriatr. Psychiatry. 1998. V.6, N. 2. S64-S78.
  122. Cummings J.L. Alzheimer’s disease II N. Engl. Med. 2004. V.351, N.1. P.56−67.
  123. Das KP, Lassiter TL, Lau C, Barone S Jr. Alterations of rat brain DNA and neurotrophin levels by prenatal exposure to chlorpyrifos II Toxicol. Sci. 1999. Suppl.48. P.86.
  124. Deliagina TG, Beloozerova IN, Sirota MG, Swadlow H, Orlovsky GN. Activity of different classes of neurons in the rabbit motor cortex related to postural corrections II Soc. Neurosc. i Abstr. 2000. V.26. P.1484.
  125. Dickerson JW, Walmsley AL. The effect of undernutrition and subsequent rehabilitation on the growth and composition of the central nervous system of the rat II Brain. 1967. V.90,N.4. P.897−906.
  126. Dickerson J.W.T. & Merat A. The effect oh development on the gangliosides of rat brain II Biochem. 1971. V.125, N.2. P.40.
  127. Di Legge S. & Hachinski V. Prospects for prevention and treatment of vascular cognitive impairment II Curr. Opin. Invest. Drugs. 2003. V.4. P.1082−1087.
  128. Dinleyici E.C., Tekin N., Colak O., Aksit M.A. Cord blood IGF-1 and IGFBP-3 levels in asphyxiates term newborns II Neuroendocrinol Lett. 2006. V.27, N.6. P.745−747.
  129. Dobbing J. Vulnerable periods in developing brain. In: Applied neurochemystry. Oxford, Blackwell. 1968. P.287−316.
  130. J. & Sands J. Quantitative growth and development of human brain II Arch Dis Child. 1973 Oct-48(10):757−67.
  131. Doi Y., Kudo H., Nischino Т., Yamamoto O., Nagata Т., Nara S., Morta M., Fujimoto S. Enhanced expression of endothelin-1 and endothelin-converting enzyme-1 in acute hypoxic rat aorta. II Histol. Histopathol. 2002. V.17. P.97.
  132. Donatelle J.M. Growth of the corticospinal tract and development of placing reactions in the postnatal rat//J. Сотр. Neurol. 1977. V.175, N.2. P.207−232.
  133. Dong H., Csernansky C.A., Martin M.V., Bertchume A., Vallera D., Cernansky J.G. Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse model of Alzheimer’s disease II Psychopharm. 2005. V.181, N.1. P.145−152.
  134. Dubovicky M., Ujhazy E., Kovacovsky P., Navarova J., Jurani M. f Soltes L. Effect melatonin on neurobehavioral dysfunctions induced by intrauterine hypoxia in rats II Cent. Eur. J. Public. Health. 2004. V.12. S.23−25.
  135. Dunnett S.B., Whishaw I.Q., Jones G.H., Bunch S.T. Behavioural, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rats II Neurosci. 1987. V.20. N.2. P.653−669.
  136. Dwyer Т., Blizzard L., Morley R., Ponsonby A.L. Within pair association between birth weight and blood pressure at age 8 in twins from a cohort study II Brit. Med. J. 1999. V.319. P.1325−1329.
  137. Eckman E.A., Reed D.K., Eckman C.B. Degradation of the Alzheimer’s amyloid p peptide by endotelin-converting enzyme II J. Biol. Chem. 2001. V.276. P.24 540−24 548.
  138. Eckman E.A., Watson M. f Malow L., Sambamurti K., and Eckman C.B. Alzheimer’s disease (3-amyloid peptide is increased in mice deficient in endothelinconverting enzyme II J. Biol. Chem. 2003.278:2081−2084.
  139. Egashira N., Iwasaki K., Ishibashi M., Hatip-AI-Khatib I., Wolozin В., Mishima K., Irie K., Fujiwara M. Hypoxia enhances p-amyloid-induced apoptosis in rat cultured hippocampal neurons II Jpn. J. Pharmacol. 2002. V.90. P.321−327.
  140. El-Agnaf O.M., Mahil D.S., Patel B.P., Austen B.M. Oligomerization and toxity p-amyloid-42 implicated in Alzheimer’s desease II Biochem. Biophys. Res. Commun. 2000. V.273. P.1003−1007.
  141. Ellenbroek B.A., Van Den Hoven J. and Cools A.R. The nucleus accumbens and forelimb muscular rigidity in rats II Exp. Brain Res. 1988. V.72, N.2 P.299−304.
  142. Evarts E.V. Pyramidal tract activity associated with a conditioned hand movement in the monkey 111 Neurophys. 1966. V.29. N.6. P.1011−1027.
  143. Evarts E.V. Relation of pyramidal tract activity to force exerted during movement II J. Neurophys. 1968. V.31, N.1. P.14−27.
  144. Ferraro L., Tahganelli S., Beani L. Muscarinic (M2) mediated inhibition of the electrically evoked endogenous GABA release from guinea pig cerebral cortex slices II Polish J. Pharmacol. 1994. V. 46. P.308−309.
  145. Fibiger H.C. Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence II Trends Neurosci. 1991. V.14. P.220−223.
  146. Fifkova E., Marsalla J. Stereotaxic atlases for the cat, rabbit and rat. In: Bures J., Petran M., Zahar J. Electrophysiological methods in biological research. Prague: Academia. 1967.
  147. Filigramo G., Marchisio P.C. Acetylcholine system and neural development II Neurosci. Res. 1971. V.4. P.389−398.
  148. Fosslien E. Review: Mitochondrial medicine molecular pathology of defective oxidative phosphorylation II An. of Clin. & Lab. Sci. 2001. V.31, N.1. P.25−67.
  149. Fox M.W. Ontogeny behaviour and neurologic responses in the dog II Anim. Behav. 1964. V.12. P.301−310.
  150. Fox M.W. Rflex ontogeny and behavioural development of the mouse II Anim. Behav. 1965. V.13. P.234−241.
  151. Garcia-Rill, E. The pedunculopontine nucleus II Prog. Neurobiol. 1991. V.36. P.363−389.
  152. Geisler H.C., Westerga J., Gramsbergen A. Development posture in the rat II Acta Neurobiol Exp (Warsz). 1993. V.53. P.517−523.
  153. Gleadle J.M. and Ratcliffe P.J. Hypoxia and the regulation of gene expression II Mol. Med. Today. 1998. V.4, N.3. P.122−129.
  154. Gleason EL, Spitzer NC. AMPA and NMDA receptors expressed by differentiating Xenopus spinal neurons IIJ Neurophysiol 1998. V.79. P.2986−2998.
  155. P.D. & Harding J.E. The physiology and pathophysiology of intrauterine growth retardation // Hormone Res. 1997. V.48, Suppl 1. P. 11−16.
  156. Giardino L, Zanni M, Pignataro O. DA1 and DA2 receptor regulation in the striatum of young and old rats after peripheral vestibular lesion II Brain Res. 1996. V.736, N.1−2. P.111−117.
  157. Godfrey K.M. Maternal regulation of fetal development and health in adult life II Eur. J. Obstetrics Gynecol. Reprod. Biol. 1998. V.78. P.141−150.
  158. Golan H., Huleihel M. The effect of prenatal hypoxia on brain development: short-and long-term consequences demonstraed in rodent models II Dev. Sci. 2006. V.9, N.4. P.338−349.
  159. Gramsbergen A. Posture and locomotion in the rat: independent or interdependent development?//Neurosci. Biobehav. Rev. 1998. V.22, N.4. P.547−553.
  160. Graseman H., Lu В., Jiao A., Boudreau J., Gerard N.P. II Appl. Phusiol. 1999. V.87. P.1266.
  161. Graybiel A.M. and Ragsdale C.W. Biochemical anatomy of the striatum. In: Chemical Neuroanatomy/ Ed. P.C.Empson. Raven Press. N.Y. 1983. P.427−504.
  162. Graybiel A.M. The basal ganglia II Trends Neurosci. 1995. V.18, N.1. P.60−62.
  163. G.C. & Halliday G.M. What is the dominant Ap species in human brain tissue? A review// Neurotox. Res. 2005. V.7. P.29−41.
  164. Grillner S. Locomotion in vertebrates: central mechanisms and reflex interaction II Physiol. Revs. 1975. V.55. N.2. P.247−304.
  165. Grillner S., Georgopoulos A.P., Jordan, L.M. Selection and initiation of motor behavior. MIT Press, Boston. 1997.
  166. Groves P.M. A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement// Brain Res. Rev. 1983. V.5. N.1. P.109−132.
  167. Gwag B.J., Won S.J., Kim D.Y. Excitotoxicity, oxidative stress, and apoptosis in ischemic neuronal death. In New Concepts in Cerebral Ischemia, ed. Lin R.C.S. CRC Press. 2002. V.13. P. 34
  168. Hansen A.J. Effect of anoxia on ion distribution in the brain II Physiol. Rev. 1985. V.65, N.1. P.101−148.
  169. Hashimoto M., Tanabe Y., Fujii Y., Kikuta Т., Shibata H., Shido 0. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid (5 infused rats II Nutr. Neurocsi. 2004. V. 57. P.549−555.
  170. Heimer L., Switzer R.D., Van Hoesen G.W. Ventral striatum and ventral pallidum. Components of the motor system? II Trends Neurosci. 1982. V.5, N.1 P.83−87.
  171. Hermans RH, McGivern RF, Chen W, Longo LD. Altered adult sexual behavior in the male rat following chronic prenatal hypoxia II Neurotoxicol. Teratol. 1993. V.15, N.6. P.353−363.
  172. Hikosaka 0., Takikawa Y., Kawgoe R. Role of the basal ganglia in the control of purposive saccadic eye movements II Physiol. Rev. 2000. V.80. P.954−978.
  173. M.V., & Turner A.J. Novel activity for endothelin-converting enzyme: hydrolysis of bradykinin II Biocem. J. 1997. V.327. P.23−26.
  174. Hoffman PL, Tabakoff B. To be or not to be: how ethanol can affect neuronal death during development//Alcohol Clin. Exp. Res. 1996. V.20. P.193−195.
  175. N.M. & Turner A.J. The search for a-secretase and its potentialas a therapeutic approach to Alzheimer’s desease II Curr. Med. Chem. 2002. V.9. P.1107−1119.
  176. Houser C.R., Crawford G.D., Salvaterza P.M., Vaughn J.E. Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses II Сотр. Neurol. 1985. V.234, N.1. P.17−35.
  177. Huang S.-T.J., Vo K.C.T., Lyell D.J., Faessen G.H., Tulac S., Tibshirani, Giaccia A.J., Giudice L.C. Developmental responce to hypoxia IIFASEB. 2004. V.18. P.1348−1365.
  178. Huisinga C.T., Oudejans C.B.M., Steiner R.A., Clifton D.K., Delemarre-van de Waal. Cha. Ex in the growth hormone axis after d Inoptosion II J. Endocrinology. 2001. V.168. P.273−281.
  179. Ilyutchenok R.Y., Dubrovina N.I. Memory retrieval enhancement by kappa opioid agonist and mu, delta antagonists II Pharmacol. Biochem. Behav. 1995 V.52, N.4. P.683−687.
  180. Ikonomovic M.D., Mufson E.J., Wuu J., Bennett D.A., DeKosky S.T. Reduction of choline acetyltransferase activity in primary visual cortex in mild to moderate Alzheimer’s disease//Arch. Neurol. 2005. V.62, N.3. P.425−430.
  181. Iwata N., Higuchi H. and Saido T.C. Metabolism of amyloid р-peptide and Alzheimer’s disease II Pharmacol. Ther. 2005. V.108. P. 129−148.
  182. Iwata N., Takaki Y., Fukami S., Tsubuki S., and Saido T.C. Region-specific reduction of Ар-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging //J Neurosci Res 2002. V.70. P.493−500.
  183. Iwata N., Tsubuki S., Takaki Y., Shirotani K., Lu В., Gerard N.P., Gerard C., Hama E., Lee H.J. and Saido T.C. () Metabolic regulation of brain Ap by neprilysin II Science. 2001. V.292. P.1550−1552.
  184. Jacobson M. Formation of dendrites and development of synaptic connections. In: Developmental Neurobiology. New York: Plenum Press.1991. P.223−284.
  185. Janak P.H., Martinez J.L. Only tyrosine-containing metabolites of Leu. enkephalin impair active avoidance conditioning in mice II Pharmacol. Biochem. Behav. 1990. V.37. P.655−659.
  186. B. & Coper H. The effect of prenatal exposure to hypoxia on the behaviour rats during their life spine// Pharmacoll. Biochem. Behav. 1994. V.48. P.863−873.
  187. Jansen E.M. and Low W.C. Quantitative analysis of contralateral hemisphere hypertrophy and sensorimotor performance in adult rat following unilateral neonatal ischemic-hypoxic brain injury// Brain Res. 1996. V.708. P.399 403.
  188. Johnston M.V., McKinney M., Coyle J.T. Neocortical cholinergic innervation: a description of extrinsic and intrinsic components in the rat II Exp. Brain. Res. 1981. V.43. P.159−172.
  189. Jonson J.D., Stevenson Т., Ahn К. Hydrolysis of peptide hormones by endotelin-converting enzyme-1. A comparison with neprilysin II J. Biol. Chem 1999. V.274. P.4053−4058.
  190. Joosten E.A., Gribnau A.A., Dederen P.J. An anterograde tracer study of the developing corticospinal in the rat: three components II Develop. Brain Res. 1987. V.36. P.121−132.
  191. Kaether C., Haass C.A. A lipid boundary separates APP and secretases and limits amyloid (3-peptide generation II J. Cell Biol. 2004. V.167. P.809−812.
  192. Kanemitsu H., Tomiyama Т., and Mori H. Human neprilysin is capable of degrading amyloid (3 peptide not only in the monomeric form but also the pathological oligomeric form // Neurosci. Lett. 2003.350:113−116.
  193. Kaye H., BuresovaO., Bures J. Hippocampal afterdischarge interfers with storage of spatial information in a working memory test II Physiol. Bohemoslov. 1984. V.33, N.2. P.205−213.
  194. Kernell D. The final common pathway in postural control developmental perspective II Neurosci Biobehav Rev. 1998. V.22. P.479−484.
  195. Kirby R.H. Acquisition? Extinction and retention of an avoidance response in rats as a function of age//J. Сотр. Physiol. Psychol. 1963. V.56. P.158−162.
  196. Klein R. Role of neurotrophins in mouse neuronal development II FASEB J. 1994. V.8. P.738−744.
  197. A.R. & Beresov T.T. Alzheimer’s amyloid-p (Ap) in an essential synaptic protein, not neurotoxic jank // Acta Neurobiol. Exp. 2004. V.64. P.71−79.
  198. Krajnc D., Wemlinger T.A., Neff N.H., Hadjiconstantinou M. Neonatal hypoxia: early neurotransmitter responses and the consequences of treatment with GM1 ganglioside II J. Pharmacol. Exp. Ther. 1994. V.271, N.3. P. 1299−1305.
  199. Krnjevic K., Phillis J. W. Acetylcholine sensitive cells in the cerebral cortex II J. Physiol. 1963. V. 166. N.2. P.296−327.
  200. Krnjevic K, Leblond J. Changes in membrane currents of hippocampal neurons evoked by brief anoxia. Ill Neurophysiol. 1989. V.62, N.1. P.15−30.
  201. Kudo N., Furukawa F., Ocado N. Development of descending fibers to the rat embryonic spinal cord II Neurosci. Res. 1993. V.16, N.2. P.131−141.
  202. Kumar G.K. II Brain Res. 1997. V.748. P.39.
  203. Kuperstein F., Brand A., Yavin E. Amyloid Армо preconditions nonapoptotic signals in vivo and protects fetal rat brain from intrauterine ischemic stress II J. Neurochem. 2004. V.91. P.965−974.
  204. Kuypers H.G.J.M. Anatomy of the descending pathways. In: V.E.Brooks (Ed.), Handbook of Physiology, Section 1, The Nervous System, V.2, Motor Control. Washington: American Physiological Society. 1981.
  205. Lai Y.Y., Siegel J.M. Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation II J. Neurosci. 1990. V.10. P.2727−2734.
  206. Lashley K.S. II Brain. 1921. V.225. P.128−134.
  207. Lauder JM. Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal //Ann. N.Y. Acad. Sci. 1990. V.600. P.297−313.
  208. Lazarov O, Lee M, Peterson DA, and Sisodia SS () Evidence that synaptically released p-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice //J Neurosci 2002. V.22. P.9785−9793.
  209. Lidsky T.I., Manetto C., Schneider J.S. A consideration of sensory factors involved in motor functions of the basal ganglia//Brain Res. Rev. 1985. V.9. N.2. P.133−146.
  210. Linden D., Martinez J.L. Leu-enkephalin impairs memory of an appetitive maze response in mice// Behav. Neurosci. 1986. V.100, N.1. P.33−38.
  211. Lipton P. Ischemic cell death in brain neurons II Physiol. Rev. 1999. V.79. P. 14 311 568.
  212. Lichtenthaler S.F., Haass C. Amyloid at the cutting edge: activation of a-secretase prevents amyloidogenesis in an Alzheimer disease mouse model II J. Clin. Invest. 2004. V.113. P.1384−1387.
  213. Lovasic L., Bauschke H., Janus C. Warking memory impairment in a transgenic amyloid precursor protein TgCRND8 mouse model of Alzheimer’s disease II Genes Brain Behav. 2005. V.4, N.3. P.197−208.
  214. Lubics A., Reglodi D., Tamas A., Kiss P., Szalai M., Szalontay L., Lengvari I. Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury//Behav. Brain Res. 2005. V.157, N.1. P.157−165.
  215. Lysakovski A., Wainer B.H., Bruce G., Hersh L.B. An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex II Neurosci. 1989. V28.N.2. P.291−336.
  216. Markovska A., Buresova O., Bures J. An attempt to account for controversial estimates of working memory persistence in the radial maze II Behav. Neural. Biol. 1983. V.38, N.1. P.97−112.
  217. Massion J. Postural control system II Сип О pin Neurobiol. 1994. V.4, N.6. P.877−87
  218. К. & Yamaguchi Т. Abnormal air-righting in striatal rats II Japanese Journal of Phusiology. 2000. V.50, N.1. P.163−166.
  219. Matsumura M., Nambu A., Yamaji Y., Watanabe K., Imai H., Inase M., Tokuno H., Takada M. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey II Neurosci. 2000. V.98. P.97−110.
  220. Matsuyama K., Drew T. The organization of the projection from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer. Phaseolus vulgaris leucoagglutinin II J. Сотр. Neurol. 1997. V.389 P.617−641.
  221. Matsas R., Kenny A.J., Turner A.J. An immunohistochemical study of endopeptidase-24.11 («enkefalinase») in the pig nervous system II Neurosci. 1986. V.18. P.991−1012.
  222. Mattson V.P. Cellular action of p-amyloid precursor protein and soluble and fibrillogenic derovatives II Physiol. Rev. 1999. V.77. P.1081−1132.
  223. McCormic D., Prince D.A. Mechanisms of action of acetylcholine in the guinea-pjg cerebral cortex in vitro//J. Physiol. 1986. V.375. P. 169−194.
  224. Middleton, F.A., Strick, P.L. Basal ganglia and cerebellar loops: motor and cognitive circuits II Brain Res. Rev. 2000. V.31. P.236−250.
  225. Miller MW. Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex//Alcohol Clin Exp Res. 1996. V.20. P.139−143.
  226. Miller M.W. II J. Сотр. Neurol. 1981. V 287. P.326−338
  227. Mishra O.P. and Delivoria-Papadopoulos M. Cellular mechanisms of hypoxic injury in the developing brain II Brain Res. Bull. 1999. V.48. P.233 -238.
  228. Mission J.P., Takahashi Т., Caviness V.S.J. Ontogeny of radial and other astroglial cells in murine cerebral cortex II Glia. 1991. V.4. P.138−148.
  229. Mogenson J.G., Jones D.L., Yim C.Y. From motivation to action: functional interface between the limbic system and the motor system II Progr. Neurobiol. 1980. V.14, N.1. P.69−97.
  230. Mouri A., Zou L., Iwata N., Saido Т., Dayong Wang D., Wang MW., Nodaa Y., Nabeshima T. Inhibition of neprilysin by thiorphan (i.c.v.) causes an accumulation of amyloid (3 and impairment of learning and memory II Behav. Brain Res. 2006. V.168. P.83−91
  231. Muir G.D. Early ontogeny of locomotor behaviour: a comparison between altrical and precocial animals II Brain Res Bui. 2000. V.53, N.5. P.719−726.
  232. Mundy WR, Parran DK, Barone S Jr. Gestational exposure to methylmercury alters the developmental pattern of neurotrophin- and neurotransmitter-induced phosphoinositide (PI) hydrolysis // Neurotox. Res. 2000. V.1, N.4. P.271−283.
  233. Murer M.G., Boissiere F., Yan Q. et al. An immunohistochemical study of the distribution of brain-derived nourotrophic factor in the adult human brain, with particular reference to Alzheimer’s decease // Neurosci. 1999. V.88, N.4. P.1015−1032.
  234. Murer M.G., Yan Q., Rasmanvozari R. Brain-derived nourotrophic factor in the control human brain, and in Alzheimer’s decease Parkinson’s decease II Prog. Neurobiol. 2001. V.63, N.1. P.71−124.
  235. Nagashima K. A review of experimental methylmercury toxicity in rats: neuropathology and evidence for apoptosis II Toxicol. Pathol. 1997. V.25. P.624−631.
  236. Nalivaeva N.N., Fisk L., Canet Aviles R.M., Plesneva S.A., Zhuravin I A, Turner A.J. Effect of prenatal hypoxia on expression of amyloid precursor protein and metallopeptidases in the rat brain II Lett. Peptide Sci. 2004. V.10. P.455−462.
  237. Narayanan C.H., Fox M.W., Hamburger V. Prenatal development of spontaneous and evoked activity in the rat II Behav. 1971. V.40, N.1. P100−134.
  238. Nyakas C., Buwalda В., Luiten P.D.M. Hrly ia and brain development II Prog. Ne cobpal. 1996. V.49, N.1. P.1−51.
  239. Norton W.T., Aquino D.A., Hozumi I., Chiu F.C., Brosnan C.F. Quantitative aspects of reactive gliosis: a review// Neurochem. Res. 1992. V. 17. P.877−885.
  240. Oberto A, Marks N, Evans HL, Guidotti A. Lead (Pb+2) promotes apoptosis in newborn rat cerebellar neurons: pathological implications II J. Pharmacol. Exp. Ther. 1996. V.279. P.435−442.
  241. Oddo S., CaccamoA., Kitazawa M., Tseng BP., LaFerla F.M. Amyloid deposition precedes tangl formation in triple transgenic model of Alzheimer’s disease II Neurobiol. Aging. 2003. V.24. P.1063−1070.
  242. O’Rourke NA, Dailey ME, Smith SJ, McConnell SK. Diverse migratory pathways in the developing cerebral cortex II Science. 1992. V.258. P.299−302.
  243. Owen A, Bird M. Acetylcholine as a regulator of neurite outgrowth and motility in cultured embryonic mouse spinal cord II Neuroreport 1995. V.6. P.2269−2272.
  244. A.M. & DeKosky S.T. Monoamine neurons in aging and Alzheimer’s disease II J. Neural. Transm. Gen. Sect. 1993. V.91. P.135−159.
  245. Parvathy S., Hussain I., Karran E.H., Turner A.J., Hooper N.M. Cleavage of Alzheimer’s amyloid precursor protein by alpha-secretase occurs at the surface of neuronal cells II Biochem. 1999. V.38. P.9728−9734.
  246. Parent A. and Nazrati L.-N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia- thalamocortical loop II Brain Res. Rev. 1995. V.20, N.1. P.91−127.
  247. Patin V., Vincent A., Lordi В., Caston J. Does prenatal stress affect the motoric development of rat pups? II Brain Res Dev Brain Res. 2004. V.149, N.2. P85−92.
  248. Patel AJ, Barochovsky 0, Lewis PD. Psychotropic drugs and brain development: effects on cell replication in vivo and in vitro// Neuropharm 1981. V.20. P.1243−1249.
  249. Peers С., Smith I.F., Boyle J.P., Pearson H.A. Remodeling of Ca2+ homeostasis in type I cortical astocytes by hypoxia: evidance for association with Alzheimer’s desease II Biol. Chem. 2004. V.385, N.3−4. P.285−289.
  250. Pepeu G, Giovannini M.G. Changes in acetylcholine extracellular levels during cognitive processes II Learning & Memory. 2007. P.21−27.
  251. Perret C. Neural control of locomotion in decorticate cat. In: Neural Control of Locomotion II Ed. R.M. Herman etal. New York-London: Plenum Press. 1976. P. 587−615.
  252. Peters T. Calcium in physiological and pathological cell function II Eur. Neurol. 1986. V.25. P.27−44.
  253. Petit T.L., LeBoutillier J.C. Effects of lead exposure during development on neocortical dendritic and synaptic structure II Exp. Neurol. 1979. V.64. P.482−492.
  254. Piantadosi CA, Zhang J, Levin ED, Folz RJ, Schmechel DE. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat II Exp. Neurol. 1997. V.147, N.1. P.103−114.
  255. Pighetti M., Tommaselli G.A., D’Elia A, Di Carlo C., Marano A., Di Carlo A., Nappi C., Maternal serum and umbilical cord blood leptin concentrations with fetal growth restriction II Obstet. Ginecol. 2003. V.102. P.535−543.
  256. J.A. & Tsang R.C. Biological mechanisms of environmentally induced causes of IUGRII Eur. J. Clin. Nutrition 1998. V.52. P. S21-S28.
  257. Price J. Glial cell lineage and development II Cur. Opin. Neurobiol. 1994. V.4. P.680−686.
  258. Qi Y. & Xue Q.M. Ganglioside levels in hypoxic brains from neonatal and premature infants//Mol. Chem. Neuropatol. 1991. V.14, N2. P.87−97
  259. Rahman H., Rosner H., Kortje K.H. et al. Ca2±Ganglioside interaction in neuronal differentiation and development. In: Biological function of gangliosides/ Eds L. Svenerholm et al. Progress in Brain Res. 1994. V.101. P. 127−145.
  260. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex II J. Сотр. Neurol. 1972. V.145. P.61−83.
  261. Rakic P, Caviness VSJ. Cortical development: view from neurological mutants two decades later II Neuron. 1995. V.4. P.1101−1104.
  262. D. & Barone S.J. Critical periods of vulnerability for the developing nervous system: tvidence from humans and animal models II Environ. Health Perspect. 2000. V.108. P.511−533.
  263. Richardson R., DeLong M. A. reappraisal of the functions of the nucleus basalis of Meynert//Trends Neurosci. 1988. V. 11, N.6. P.264−267.
  264. Ridley, R. M., Bowes, P. M., Baker, H. F. and Crow, T. J. An involvement of acetylcholine in object discrimination learning and memory in the marmoset II Neuropsychologia. 1984. V.22. P.253−263.
  265. G. & Arduini D. Fetal cardiac function in intrauterine growth retardation II Am. J. Obstetrics Gynecol 1991. V.165. P.876−882.
  266. Roeser C., Cassel J.C., Kelche C. Behavioral effects of GM1 ganglioside treatment and intrahippocampal septal grafts in rats with fimbria-fornix lesions II Exp. Brain Res. 1997. V.115, N.3. P.520−530.
  267. Rothenberg S.J., Poblano A., Garza-Morales S. Prenatal and perinatal low level lead exposure alters brainstem auditory evoked responses in infants II Neurotoxicol. 1994 V.15. P.695−699.
  268. Rodier P.M., Aschner M., Sager P.R. Mitotic arrest in the developing CNS after prenatal exposure to methylmercury II Neurobehav. Toxicol. Teratol. 1984. V.6. P.379−385.
  269. Roques B.P., Noble F., Dauge V., Fournie-Zaluski M.C., Beaumont A. Neutral endopeptidase 24.11: Structure, inhibition, and experimental and clinical pharmacology II Pharmacol. Rev. 1993. V.45. P.87−146.
  270. Rorke L.B., Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury//Brain pathology. 1992. V.2. P.211−221.
  271. Roy T.S., Andrews J.E., Seidler F.J., Slotkin T.A. Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of cultured rat embryos II Teratol. 1998. V.58. P.62−68.
  272. Sadiq H.F., Das U.G., Tracy T.F., Devaskar S.U. Intrauterine growth restriction differentially regulates perinatal brain and skeletal muscle glucose transporters II Brain Res. 1999. V.823 P.96−103.
  273. Saido T.C. and Nakahara H. Proteolytic degradation of A by neprilysin and other peptidases. In A (3 Metabolism and Alzheimer’s Disease (Saido T.C. eds) Landes Bioscience, Georgetown, TX.2003. P.61−80,
  274. Saito Т., Takaki Y., Iwata N., Trojanovski J., Saido T.C. Alzheimer’s disease, neuropeptides, neuropeptidase, and amyloid-p peptide metabolism II Sci. Aging Knowlege Environ. 2003. V.3. P. E1.
  275. Santucci D., Rankin J., Laviola G., Aloe L., Alleva E. Early exposure to aluminium affects eight-arm maze performance and hippocampal nerve growth factor levels in adult mice II Neurosci. Lett. 1994. V.166. P.89−92.
  276. Schwab M., Schaller R., Bauer R., Zwiener U. Morphofunctional effects of moderate forebrain ischemia combined with short-term hypoxia in rats-protective effects of Cerebrolysin. Exp. Toxicol. Pathol. 1997,49 (1−2): 29 37.
  277. Sedlacek J. Vysham neopallio pro vyvoj reflexni cinnosti u krys II Sbornik lekarsky. 1959. V.64. f.11−12. P.352−358.
  278. Sedlacek J. Notes on the characteristics of the temporary connection in chick embryos 111 Physiol. Bohemosloven. 1962. V.11, N.4. P.307−312.
  279. Sedlacek J. Problems in ontogenetic formation of the mechanism of temporary connection II Acta Univ. Carolina Med. 1963. V.4. P.265−319.
  280. Sheng J.G., Price D.L., and Koliatsos V.E. Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of A (3 amyloidosis IIJ Neurosci 2002 V.22. P.9794−9799.
  281. Selkoe DJ. Altered structural proteins in plaques and tangles: ehat do they tell us about the biology of Alzheimer’s disease? II Neurobiol. Aging. 1986. V.7. P.425−432.
  282. Semenza G.L. HIF-1 and machanisms of hypoxia sensing II Curr. Opin. Cell Biol. 2001. V.13. P.167−171.
  283. Sharma K.V., Koenigsberger C., Brimijoin S., Bigbee J.W. Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth II J.Neurisci. Res. 2001. V.64. P. 165−175.
  284. Shivers B.D., Hilbich C., Multhaup G., Salbaum M., Beyreuther K., Seeburg P.H. Alzheimer’s disease amyloidogenic glycoprotein: expression pattern in rat brain suggests a role in cell contact IIEMBO J. 1988. V.7. P.1365−1370.
  285. B.K. & Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglicemia, and spreading depression: a unifying hypothesis //J. Cereb. Blood FlowMetab. 1989. V.9, N.2. P.127−140.
  286. Slawinska U., Kasicki S. Theta-like rhythm in depth EEG activity of hypothalamic area during spontaneous or electrically-induced locomotion in the rat // Brain Res. 1995. V.678. P.117−126.
  287. Slotkin ТА, Lappi SE, Seidler FJ. Impact of fetal nicotine exposure on development of rat brain regions: critical sensitive periods or effects of withdrawal? II Brain Res Bull. 1993. V.31. P.319−328.
  288. Smart I. Proliferative characteristics of the ependymal layer suring the earlu development of the mouse neonatal cortex: a pilot study based on recording the number, location and of cleavage of mitotic figures IIJ Anat 1973. V.116. P.67−91.
  289. Smith A.D. Bolam I.P. The neuronal network of the basal ganglia as revealed by the study of synaptic connections of identified neurons II Trends Neurosci. 1990. V.13, N.3. P.259−265.
  290. Smith С. M. and Swash M., Possible biochemical basis of memory disorder in Alzheimer disease//Ann Neurol., 1978,3,471−473.
  291. Souren L.E., Franssen E.H., Reisberg B. Neuromotor changes in Alzheimer’s disease: implications for patient care IIJ J. Geriatr. Psychiatry. Neurol. 1997. V.10. P. 93−98.
  292. Srter M., Bruno J.P. Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsuchiatric disorders II Trends neurosci. 1999. V.22. P.67−74.
  293. Stone T.W. Cholinergic mechamisms in the rat somatosensory cerebral cortex II J. Physiol. Lond. 1972. V. 225. N2. P.485−499.
  294. Sundstrom R, Karlsson B. Myelin basic protein in brains of rats with low dose lead encephalopathy//Arch Tyyicol. 1987. V.59. yy341−345.
  295. Swaminath P.V., Ragothaman M., Muthane U.B., Udupa S.A.H., Rao S.L., Govindappa S.S. Parkinsonism and Personality Changes Following an Acute Hypoxic Insult During Mountaineering II Movement Disorders. 2006. Vol.21, N.8. P.1296−1297.
  296. Szatko Vki M. & Attwell D. Triggering and execution of neuronap death in brain ischemia: two phases of glutamate release by different mechanisms II TINS. 1994. V.17, N.10. P.359−365.
  297. Takakusaki K., Satoh K., Harada H., Kashiwayanangi M. Role of basal ganglia -brainstem pathways in the control of motor behaviors II Neurosci. Res. 2004. V.50 P. 137 151.
  298. Tang Y., Shimizu. E. Dube G.R., Rampon C., Kerchner G.A., Zhuo M., Liu G., Nsien J.Z. Genetic enhancement of learning and memory in mice II Nature. 1999. V.401, N.2. P.63−69.
  299. Temple S. The development of neural stem cells II Nature. 2001. Vol.414, № 11. P.112−117.
  300. Thullier F., Lalonde R., Cousin X., Lestienne F. Neurobehavioral evaluation of lusher mutant mice during ontogeny II Dev. Brain Res. 1997. V.100. P.22−28.
  301. Tilney F. Behavior in its relation to the development of the brain II Bull. Neurol. Inst. N.Y.1933. V.3. P.252−358.
  302. Tremblay N., Warren R.A., Dykes R.W. Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. I. Cortical neurons excited by glutamate 111 Neurophysiol. 1990. V. 64, № 4. P. 1199−1211.
  303. A.J. & Tanzava K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX// FASEB J. 1997. V.11. P.355−364.
  304. Turner AJ, Fisk L, Nalivaeva NN Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration II Ann N Y Acad Sci. 2003 V.1035. P.1−20
  305. Turner P.R., O’Connor K., Tate W.P., Abraham W. C, Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory II Prog. Neurobiol. 2003. V.70. P.1−32.
  306. Turski L., Havemann U., Kuschinsky K. GABAergic mechanism in mediating muscular rigidity, catalepsy and postural asymmetry in rats: differences between dorsal and ventral striatum// Brain Res. 322 (1): 49−57.1984.
  307. Uylings HB, van Eden CG. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85:31−62 (1990).
  308. Valles S, Pitarch J, Renau-Piqueras J, Guerri C. Ethanol exposure affects glial fibrillary acidic protein gene expression and transcription during rat brain development IIJ Neurochem 1997. V.69. P.2484−2493.
  309. R. & Citron M. Ар-generation enzymes: recent advances in p- and y-secretases research II Neuron. 2000. V.27. P.419−422.
  310. Vernadakis A. Glia-neuron intercommunications and synaptic plasticity II Prog Neurobiol. 1996.V.49. P.185−214.
  311. Volpe J.J. Neurology of the newborn. Philadelphia, Saunders. 1995.
  312. Vrijmoed de Vries M., Cools A. Differential effects of striatal injections of dopaminergic, cholinergic and GABAergic drugs upon swimming behavior of rats II Brain Res. 364(1): 77−96.1986.
  313. Wen Y., Onyewuchi O., Yang Sh., Uiu R., Simpkins J.W. Increased p-secretase activity and expression in rats following transient cerebral ischemia II Brain Res. 2004. V.1009. P.1−8.
  314. Wen Y., Yang S., Liu R., Brun-Zinkernagel A.M., Koulen P., Simpkins J.W. Transient cerebral ischemia indoces aberrant neuronal cell cycle re-entry and Alzheimer’s diseaselike tauopathy in female rats II J. Biol. Chem. 2004. V.279, N.21. P.22 684−22 692.
  315. J. & Gamsbergen A. Development of locomotion in the rat: the significance of early movement// Early Hum Dev. 1993. V.34. P.89−100.
  316. E.M. & McCance R.A. The effect of finite periods of undernutrition at different ages on the composition and subsequent development of the rat II Proceedings of the Royal Society, London. 1963. V.185. P.329−342.
  317. E.M. & McCance R.A. The determinants of growth and form II Proceedings of the Royal Society, London. 1974. V.185. P.1−17.
  318. Whishaw I.Q., O’Connor W.T., Dunnett S.B. The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat II Brain. 1986. V. 109. N. 5. P. 805−843.
  319. Whishaw I.Q., Pellis S.M., Gorny B, Kolb В., Tetzlaff W. Proximal and distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract lesions II Behav. Brain Res. 1993. V. 56. N.1.P. 59−76.
  320. Windle W.F., BaxterR.E. Development of reflex mechanisms in the spinal cord of albino rat embrion II J. Сотр. Neurol. 1936. V.63, N.2. P.189−210.
  321. Wise S.P., Donoghue P.J. Motor cortex of rodent. In: Sensory-Motor Areas and Aspects of Cortical Connectivity. Jones E.G., Peters A. (Eds.), N.Y. & London: Plenum Press. 1986. V.5. P.243−270.
  322. Xie Y.Z., Zhang В., Yang X.M., Yin Z.Y., Bai J.W., Yang H.X. Protective effects of gangliosides on cerebral neuronal damage of rat during acute hypoxia II Space Med Med Eng. V.13, N.3. P.191−195.
  323. Xu M., Mizobe F., Yamamoto T. and Kato T. Differential effects of Mi and M2 -muscarinic drugs on striatal dopamine release and metabolism in freely moving rats II Brain Res. 1989. V.495 N.2. P.232−242.
  324. Yasuoka N. Nakajima W., Ishido A., Takada G. Neuroprotection of edaravone on hypoxic-ischemic brain injury in neonatal rats II Develop. Brain Res. 2004. Vol.151. P.129−139.
  325. Yasojima K., Akiyama H., McGeer E.G., and McGeer P.L. Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of (5-amyloid peptide// Neurosci Lett 2001. V.297. P.97−100.
  326. Zagon IS, McLaughlin PJ. Endogenous opioid systems regulate cell proliferation in the developing rat brain //Brain Res 1987. V.412. P.68−72.
  327. Zhuravin I.A. and Bures J. Changes of cortical and caudatal unit activity accompanying operant slowing of the extension phase of reaching in rats II Intern. J. Neurosci. 1988. V.39. P. 147−152.
  328. Zhuravin I.A. and Bures J. Activity of cortical and caudatal neurons accompanying instrumental prolongation of the extension phase of reaching in rats II Intern. J. Neurosci. 1989 V. 49. P. 213−220.
  329. A.Н.Ветошу и А. А. Попову за помощь в проведении эксперимента по созданию условий нормобарической гипоксической гипоксии для животных,
Заполнить форму текущей работой