Помощь в написании студенческих работ
Антистрессовый сервис

Развитие иммунной системы в онтогенезе крыс: нейроэндокрино-иммунные взаимодействия

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Остается открытым вопрос о формировании и функционировании иммунной и нейроэндокринной систем у млекопитающих с интенсивными физиологическими и биохимическими перестройками организма, в частности, в отсутствие гипоталамического аргинин-вазопрессина у мутантных крыс Brattleboro. Известно, что у крыс Brattleboro развиваются существенные морфофункциональные отклонения в системе иммунитета: ускорение… Читать ещё >

Развитие иммунной системы в онтогенезе крыс: нейроэндокрино-иммунные взаимодействия (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Влияние нейроэндокриниой системы на функционирование иммунной системы
      • 1. 1. 1. Нейропептиды гипоталамуса
      • 1. 1. 2. Гормоны гипофиза
      • 1. 1. 3. Гормоны надпочечников
      • 1. 1. 4. Тиреоидные гормоны
      • 1. 1. 5. Половые гормоны
      • 1. 1. 6. Нейромедиаторы
    • 1. 2. Влияние нейроэндокриниой системы на развитие иммунной системы
      • 1. 2. 1. Развитие иммунной системы у крыс
      • 1. 2. 2. Перинатальное программирование
      • 1. 2. 3. Морфогенетическая роль гормонов и нейромедиаторов
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
  • ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Динамика уровня естественного апоптоза и пролиферации клеток тимуса и селезенки в пренатальном и раннем постнатальном онтогенезе крыс и влияние гипоталамо-гипофизарной системы и тимических пептидов на эти процессы.

3.1.1. Возрастная динамика уровня апоптоза и пролиферации в тимусе и селезенке крыс.

3.1.2. Влияние гипоталамо-гипофизарной системы на уровень апоптоза и пролиферации в тимусе и селезенке в пренатальном периоде развития.

3.1.3. Влияние тимических пептидов на уровень апоптоза тимоцитов in vitro.

3.2. Динамика содержания иммунных протеасом в тимусе в перинатальном онтогенезе крыс.

3.3. Особенности миграции Т-лимфоцитов в белую пульпу селезенки в раннем постнатальном онтогенезе.

3.4. Роль аргинин-вазопрессина в развитии и функционировании иммунной системы у крыс.

3.4.1. Пролиферативный ответ Т-клеток тимуса и селезенки у крыс Brattleboro с наследственным дефицитом гипоталамического аргинин-вазопрессина.

3.4.2. Молекулярные механизмы усиления противоопухолевого иммунитета у крыс Brattleboro с наследственным дефицитом гипоталамического аргинин-вазопрессина.

3.5. Роль серотонина в развитии и функционировании иммунной системы.

3.5.1. Морфогенетическое влияние пренатального дефицита серотонина на иммунитет.

3.5.2. Влияние серотонина in vitro на пролиферативный ответ Т-клеток, индуцированный Кон А.

3.6. Морфогенетическое влияние пренатального дефицита катехоламинов на иммунитет.

ВЫВОДЫ.

Актуальность проблемы Актуальность исследования взаимодействий нейроэндокринной и иммунной систем в онтогенезе определяется их ключевой ролью в поддержании гомеостаза и интеграции развивающегося организма.

Формирование отдельных структурно-функциональных элементов иммунной системы и становление специфических взаимодействий между ними не являются процессами, строго детерминированными генетически. Они характеризуются высокой функциональной лабильностью и чувствительностью ко многим регуляторным факторами, что открывает возможности для коррекции нарушений процесса развития. Исследования в этой области позволят расширить представление о механизмах развития иммунной системы и будут способствовать пониманию причин как врожденных, так и приобретенных патологий, связанных с нарушением нейроэндокрино-иммунных взаимодействий.

Согласно современным представлениям, нейромедиаторы и нейрогормоны, участвующие в регуляции определенной функции в постнатальный период, могут влиять на формирование этой функции в ходе перинатального онтогенеза. И хотя регуляторное влияние медиаторов нейроэндокринной системы на иммунитет в постнатальном онтогенезе доказано многочисленными экспериментальными и клиническими данными (Besedovsky, del Rey, 1996; Kelley et al., 2007; Barnard et al., 2008), их роль в развитии иммунной системы освещена лишь в единичных работах. Известно, что удаление в раннем онтогенезе надпочечников или щитовидной железы приводит к необратимому подавлению тимус-зависимых функций. Подобные изменения не развиваются, если операция проведена на половозрелых животных (Fabris, 1981; Fabris et al., 1995). Неонатальная блокада синтеза гонадотропин-рилизинг гормона или его рецепторов у крыс и приматов вызывает долгосрочное снижение количества лимфоцитов в тимусе, селезенке и крови, подавление гуморального и клеточного иммунитета (Morale et al., 1991; Gould et al., 1998). В то же время установлено, что гонадотропин-рилизинг гормон включается в регуляцию иммунного ответа уже в пренатальном онтогенезе (Zakharova et al., 2000).

Остается открытым вопрос о формировании и функционировании иммунной и нейроэндокринной систем у млекопитающих с интенсивными физиологическими и биохимическими перестройками организма, в частности, в отсутствие гипоталамического аргинин-вазопрессина у мутантных крыс Brattleboro. Известно, что у крыс Brattleboro развиваются существенные морфофункциональные отклонения в системе иммунитета: ускорение возрастной инволюции тимуса и селезенки, подавление антителогенеза, подавление функциональной активности макрофагов (Захарова и др. 2001; Хегай и др., 2003). С другой стороны, в отсутствие аргинин-вазопрессина отмечено усиление активности естественных клеток-киллеров (Yirmiya et al., 1989). В то же время формирование и функционирование Т-системы иммунитета у этих крыс остается неизученным.

Цель и задачи исследования

.

Целью настоящей работы являлось изучение особенностей развития Т-системы иммунитета и влияния медиаторов нейроэндокринной системы на эти процессы в перинатальном онтогенезе крыс. Для достижения указанной цели были поставлены следующие задачи:

1. Изучить влияние гипоталамо-гипофизарной системы и тимических пептидов на основные механизмы регуляции численности клеточных популяций тимуса и селезенки, такие как апоптоз и пролиферация.

2. Исследовать в тимусе в перинатальном периоде развития динамику экспрессии иммунных протеасом как показателя становления отрицательной селекции Т-лимфоцитов.

3. Изучить в раннем онтогенезе особенности миграции Т-лимфоцитов из тимуса в белую пульпу селезенки для их созревания.

4. Оценить пролиферативный ответ Т-клеток тимуса и селезенки, индуцированный митогеном, у крыс Brattleboro с наследственным дефицитом гипоталамического аргинин-вазопрессина.

5. Изучить молекулярные механизмы усиления противоопухолевого иммунитета у крыс Brattleboro: экспрессию основных молекул главного комплекса гистосовместимости класса I и иммунных протеасом в динамике роста опухоли Walker 256.

6. Исследовать влияние дефицита моноаминов в пренатальном периоде развития на формирование Ти B-клеточного иммунитета.

Научная новизна и практическая значимость работы.

Впервые показано, что моноамины могут являться морфогенами в критичесикий период развития иммунной системы. Было установлено, что пренатальный дефицит серотонина приводит к достоверному повышению пролиферативного ответа Т-лимфоцитов тимуса и селезенки на митоген у половозрелых животных, а также к десятикратному увеличению количества антителообразующих клеток селезенки в ответ на иммунизацию тимус-зависимым антигеномпренатальный дефицит катехоламинов вызывает подавление пролиферативного ответа на митоген Т-лимфоцитов тимуса и селезенки половозрелых животных.

Изучена возрастная динамика спонтанного апоптоза и пролиферации лимфоцитов тимуса и селезенки и впервые выявлена роль гипоталамо-гипофизарной системы в регуляции этих процессов. Показано, что выключение гипоталамуса у плодов крыс in utero приводит к усилению пролиферации клеток селезенки, а одновременное выключение гипоталамуса и гипофиза приводит к увеличению уровня пролиферации в тимусе и снижению уровня апоптоза в селезенке.

Впервые исследована динамика экспрессии иммунных протеасом в тимусе в перинатальном онтогенезе у крыс и проведен гистологический анализ их распределения. Было показано, что иммунные протеасомы начинают экспрессироваться в тимусе уже с 18-го дня пренатального периода развития и к 21-му дню достигают уровня, характерного для взрослых животных. Полученные данные позволили сделать заключение о том, что становление отрицательной селекции лимфоцитов в тимусе может происходить уже в конце пренатального периода развития.

Получены новые данные об особенностях первичной миграции Т-лимфоцитов из тимуса в развивающуюся селезенку в раннем онтогенезе. Было обнаружено, что у животных в неонатальном периоде развития, в отличие от половозрелых, Т-лимфоциты, покидающие тимус, первично заселяют красную пульпу селезенки и только потом мигрируют в соответствующие зоны белой пульпы.

Обнаружены отклонения в Т-системе иммунитета у крыс Brattleboro с отсутствием гипоталамического аргинин-вазопрессина, а именно, снижение пролиферативного ответа Т-лимфоцитов на митоген в 2 раза в тимусе и в 2−4 раза в селезенке на протяжении всего постнатального периода развития. Кроме того, были выявлены новые механизмы усиления противоопухолевого иммунитета у крыс Brattleboro: в опухоли Walker 256, развивающейся у крыс Brattleboro с дефицитом аргинин-вазопрессина, восстанавливается экспрессия молекул главного комплекса гистосовместимости класса I и образуется уникальный пул протеасом, приводящие к ее регрессии.

Результаты выполненной работы могут найти практическое применение в медицине при разработке подходов к лечению патологий у беременных женщин, в частности в вопросах о возможности применения тех или иных лекарственных средств на определенных сроках беременности и их безопасности для плода. Полученные данные могут быть использованы в экспериментальной и клинической иммунологии при изучении патогенеза иммунодефицитных состояний, связанных с нарушениями секреции нейромедиаторов и нейрогормонов. Кроме того, понимание механизмов морфогенетического влияния нейромедиаторов на развитие иммунной системы открывает новые возможности для коррекции врожденных нарушений системы иммунитета на ранних этапах онтогенеза.

Результаты исследования могут быть использованы при чтении курсов лекций по физиологии развития, иммунологии, а также учитываться при проведении биомедицинских исследований.

Апробация работы.

Материалы диссертационной работы были представлены на Иммунологическом Форуме с международным участием (Санкт-Петербург, 2008), VI симпозиуме «Химия протеолитических ферментов» (Москва, 2007), 11-й международной Пущинской школе-конференции молодых ученых «Биология — наука 21 века» (Пущино, 2007), 5-м Симпозиуме с международным участием «Физиология иммунной системы. Перспективные подходы к диагностике и терапии иммунопатологий и аллергических заболеваний» (Москва, 2006), Конференциях молодых ученых Института биологии развития им. Н. К. Кольцова РАН (Москва, 2005, 2006, 2007, 2008), XV школе «Актуальные проблемы биологии развития» (Звенигород, 2008), VI European Congress of Reproductive Immunology (Moskow, 2008).

Публикации.

По материалам диссертации опубликовано 20 печатных работ. Статей в журналах — 8, из них статей в журналах, соответствующих Перечню ВАК — 7, тезисов докладов в материалах конференций — 12.

выводы.

1. Дефицит серотонина в пренатальном периоде развития оказывает морфогенетическое влияние на формирование клеточного и гуморального иммунитета, в то время как дефицит катехоламинов — на формирование только клеточного иммунитета у крыс.

2. Численность клеточных популяций тимуса и селезенки в пренатальном периоде развития контролируется гипоталамо-гипофизарной системой. Выключение гипоталамуса у плодов крыс in utero приводит к усилению пролиферации клеток селезенки, а одновременное выключение гипоталамуса и гипофиза приводит к увеличению уровня пролиферации в тимусе и снижению уровня апоптоза в селезенке.

3. Экспрессия иммунных протеасом, участвующих в представлении собственных антигенов Т-лимфоцитам при их обучении, наблюдается в тимусе плодов уже на 18-й день и достигает характерного для взрослых животных уровня к 21-му дню эмбрионального развития.

4. У животных в неонатальном периоде развития, в отличие от половозрелых животных, Т-лимфоциты, покидающие тимус, первично заселяют красную пульпу селезенки и только потом мигрируют в соответствующие зоны белой пульпы.

5. У крыс Brattiebor о с наследственным дефицитом гипоталамического аргинин-вазопрессина наблюдается снижение пролиферативного ответа Т-лимфоцитов на митоген в 2 раза в тимусе и в 2−4 раза в селезенке на протяжении всего постнатального периода развития.

6. Усиление противоопухолевого иммунитета у крыс Brattiebor о может быть обусловлено повышением эффективности представления опухолевых антигенов за счет повышения содержания иммунных.

Показать весь текст

Список литературы

  1. В.В. Интеграция иммунной и нервной систем. Новосибирск.: Наука. 1991. 168 с.
  2. Т.М., Шарова Н. П. Исключение иммунных протеасом из асцитной карциномы Krebs-II мыши. Изв. РАН. Сер. Биол. 2006. № 3. С. 275−283.
  3. A.A., Дейгин Е. В., Владимирская Е. И., Осипова Е. Ю., Захаров М. В. Влияние тимических пептидов на апоптоз клеток крови человека. Гематол. и трансфузиол. 2000. Т. 45. № 4. С. 9−10.
  4. Захарова J1.A., Карягина А. Ю., Попова H.A., Хегай И. И., Иванова JI.H. Гуморальный иммунный ответ в онтогенезе крыс Браттлеборо с наследственным дефектом синтеза вазопрессина. Докл. АН. 2001. Т. 376. № 2. С. 283−285.
  5. JI.A., Арион В. Я., Ермилова И. Ю. Функциональное значение гипоталамо-гипофизарной системы и тимуса в регуляции иммунитета в раннем онтогенезе млекопитающих. Аллергол. и иммунол. 2004 Т. 5. № 4. С. 542−547.
  6. Н.С., Румянцева О. Н., Прошлякова Е. В., Сергеенкова Г. П. Энцефалэктомия зародышей млекопитающих (крыса, кролик, морская свинка). Онтогенез. 1970. Т. 1. С. 612−615.
  7. А.А., Малюкова И. В., Прошлякова Е. В., Захарова Л. А. Гипоталамо-гипофизарная система контролирует развитие гуморального иммунного ответа у крыс в пренатальном онтогенезе. Онтогенез. 2002. Т.ЗЗ. № 2. С. 124−129.
  8. С.С., Чуич Н. А., Рябчиков О. П., Незлин P.C. Свойства и кинетика популяции В-лимфоцитов в онтогенезе крысы. Бюлл. Эксп. Биол. и Мед. 1977. Т. 84. № 10. С. 491−494.
  9. В.Х., Кветной И. М. Пептидные биорегуляторы ингибируют апоптоз. Бюлл. эксперим. биол. и мед. 2000. Т. 130. № 12. С. 657−659.
  10. И.И., Гуляева М. А., Попова Н. А. Захарова Л.А., Иванова Л. Н. Особенности системы иммунитета в онтогенезе у крыс с дефектом синтеза вазопрессина. Бюл. экспер. биол. и мед. 2003. Т. 136. № 11. С. 505−508.
  11. И.И., Попова Н. А., Захарова Л. А., Иванова Л. Н. Особенности роста опухоли Walker 256 у крыс с наследственным дефектом синтеза вазопрессина. Бюл. экспер. биол. и мед. 2006. Т. 142. № 3. С. 344−346.
  12. А.А. Основы иммунологии. М.: Медицина. 1999. 607 с.
  13. Aggio M.С., Giusto N.G., Bruzzo М.Т. The participation of spleen and bone marrow in mice erythropoiesis as a fonction of age. Acta Physiol. Lat. Am. 1972. V. 22. P. 1−5.
  14. Alaniz R.C., Thomas S.A., Perez-Melgosa M., Mueller K., Farr A.G., Palmiter R.D., Wilson C.B. Dopamine beta-hydroxylase deficiency impairs cellular immunity. Proc. Natl. Acad. Sci. USA. 1999.V. 96. N. 5. P. 22 742 278.
  15. Anderson G., Jenkinson E.J. Lymphostromal interactions in thymic development and function. 2001 Nat. Rev. Immunol. V. 1. N. 1. P. 31−40.
  16. Anderson G., Lenkinson W.E., Jones Т., Parnell S.M., Kinsella F.A., White A.J., Pongracz J.E., Rossi S.W., Jenkinson E.J. Establishment and functioning of intrathymic microenvironments. Imm. Rev. 2006. V. 209. P. 10−27.
  17. Arion V.Ya. Thymic Peptides as Immunoregulators, with Special Reference to Tactivin. Harwood Academic Publisher. 1989. T. 2. C. 1−57.
  18. Ashwell J.D., King L.B., Vacchio M.S. Cross-talk between the T cell antigen receptor and the glucocorticoid receptor regulates thymocyte development. Stem Cells. 1996. V. 14. N. 5. P. 490−500.
  19. Azad N., Emanuele N.V., Halloran M.M., Tentler J., Kelley M.R. Presence of luteinizing hormone-releasing hormone (LHRH) mRNA in rat spleen lymphocytes. Endocrinology. 1991. V. 128. N. 3. P. 1679−1681.
  20. Azad N., LaPaglia N., Agrawal L. Steiner J., Uddin S., Williams D.W., Lawrence A.M., Emanuele N.V. The role of gonadectomy and testosterone replacement on thymic luteinizing hormone-releasing hormone production. J. Endocrinol. 1998. V. 158. P. 229−235.
  21. Barker D.J. The fetal origins of adult disease. Fetal and Maternal Medicine Review. 1994. V. 6. P. 71−80.
  22. Barker D.J., Osmond C., Rodin I., Fall C.H., Winter P.D. Low weight gain in infancy and suicide in adult life. Br. Med. J. 1995. V. 311. N. 7014. P. 1203.
  23. Barker D.J. The developmental origins of chronic adult disease. Act. Paediatr. 2004. V. 93(Suppl). P. 26−33.
  24. Barnard A., Layton D., Hince M., Sakkal S., Bernard C., Chidgey A., Boyd R. Impact of the neuroendocrine system on thymus and bone marrow function. Neuroimmunomodulation. 2008. V. 15. P. 7−18.
  25. Batticane N., Morale M.C., Gallo F., Farinella Z., Marchetti B. Luteinizing hormone-releasing hormone signaling at the lymphocyte involves stimulation of interleukin-2 receptor expression. Endocrinology. 1991. V. 129. P. 277 286.
  26. Basu S., Dasgupta P. S. Dopamine, a neurotransmitter, influences the immune system. J. Neuroimmunol. 2000. V. 102. P. 113−124.
  27. Baumann C.A., Badamchian M., Goldstein A.L. Thymosin al is a time and dose-dependent antagonist of dexamethasone-induced apoptosis of murine thymocytes in vitro. Int. J. Immunopharmacol. 2000. V. 22. N. 12. P. 1057−1066.
  28. Baxter J.B., Blalock J.E., Weigent D.A. Expression of immunoreactive growth hormone in leukocytes in vivo. J. Neuroimmunol. 1991. V. 33. N. 1. P. 43−54.
  29. Beltramo M., Calas A., Chernigovskaya E., Thibault J., Ugrumov M. Long-lasting effect of catecholamine deficiency on differentiating vasopressin and oxytocin neurons in the rat supraoptic nucleus. Neuroscience. 1997. V. 79. N. 2. P. 555−561.
  30. Bergquist J., Tarkowski A., Ekman R., Ewing A. Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. 1994. Proc. Natl. Acad. Sci. USA. V. 91. P. 12 912−12 916.
  31. Bernabe J., Proshlyakova E., Sapronova A., Trembleau A., Calas A., Ugrumov M. Pharmacological model of catecholamine depletion in the hypothalamus of fetal and neonatal rats and its application. Cell. Mol. Neurobiol. 1996.V. 16. N. 6. P. 617−624.
  32. Besedovsky H.O., del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev. 1996. V. 17. N. 1. P. 64−102.
  33. Bhasin N., Kernick E., Luo X., Seidel H.E., Weiss E.R., Lauder J.M. Differential regulation of chondrogenic differentiation by the serotonin2B receptor and retinoic acid in the embryonic mouse hindlimb. Dev. Dyn. 2004. Y. 230. N. 2. P. 201−209.
  34. Brelinska R., Malinska A. Homing of hemopoietic precursor cells to the fetal rat thymus: intercellular contact-controlled cell migration and development of the thymic microenvironment. Cell. Tissue Res. 2005. V. 322. P. 393−405
  35. Bouchard B., Ormandy C.J., Di Santo J.P., Kelly P.A. Immune system development and funciton in prolactin receptor-deficient mice. J. Immunol. 1999. V. 163. P. 576−582.
  36. Burd L., Severud R., Kerbeshian J., Klug M.G. Prenatal and perinatal risk factors for autism. J Perinat Med. 1999. V. 27. N. 6. P. 441−450.
  37. Buznikov G.A., Shmukler Yu.B., Lauder J.M. Changes in the physiological roles of neurotransmitters during individual development. Neurosci. Behav. Physiol. 1999. V. 29. N. 1. P. 11−21.
  38. Carr L., Tuckera A., Fernandez-Botran R. The enhancement of T cell proliferation by L-dopa is mediated peripherally and does not involve interleukin-2. J. Neuroimmunol. 2003. V. 142. P. 166−169.
  39. Carreno P.C., Sacedon R., Jimenez E., Vicente A., Zapata A.G. Prolactin affects both survival and differentietion of T-cell progenitors. J. Neuroimmunol. 2005. V. 160. N. 1−2. P. 135−145.
  40. Castro J.E. Orchidectomy and immune response. Ann. R. Coll. Surg. Engl. 1976. V. 58. P. 359−367.
  41. Caudill C., Jayarapu K., Elenich L., Monaco J., Colbert R., Griffin T. T cells lacking immunoproteasome subunits MECL-1 and LMP7 hyperproliferate in response to polyclonal mitogens. J. Immunol. 2006. V. 176. N. 7. 4075−4082.
  42. Chrousos G.P. The hypothalamic-pituitary-adrenal axis and immunemediated inflammation. The New England J. Med. 1995. V. 332. N. 20. P. 1351−1362.
  43. Cloez-Tayarani I., Changeux J.P. Nicotine and serotonin in immune regulation and inflammatory processes: a perspective. J. Leukoc. Biol. 2007. V. 81. N. 3. P. 599−606.
  44. Cosgrove D., Chan S.H., Waltzinger C., Benoist C., and Mathis D. The thymic compartment responsible for positive selection of CD4+ T cells. Int. Immunol. 1992. V. 4. N. 6. P. 707−710.
  45. Csaba G., Kovacs P., Pallinger E. Immunologically demonstrable hormones and hormone-like molecules in rat white blood cells and mast cells. Cell. Biol. Int. 2004. V. 28. N. 6. P. 487−490.
  46. Csaba G., Kovacs P. Perinuclear localization of biogenic amines (serotonin and histamine) in rat immune cells. Cell. Biol. Int. 2006. V. 30. N. 11. P. 861 865.
  47. Csaba G., Pallinger E. Thyrotropic hormone (TSH) regulation of triiodothyronine (T (3)) concentration in immune cells. Inflamm. Res. 2009. V. 58. N. 3. P. 151−154.
  48. Cunningham A.J. A method of increased sensitivity for detecting single antibody-forming cells. Nature. 1965. V. 207. N. 5001. P. 1106−1107.
  49. Dardenne M., Smaniotto S., de Mello-Coelho V., Villa-Verde D.M., Savino W. Growth hormone modulates migration of developing T cells. Ann. NY Acad. Sci. 2009. V. 1153. P. 1−5.
  50. Dardenne M., Mello-Coelho V., Gagnerault M.C., Postel-Vinay M.C. Growth hormone receptors and immunocompetent cells. Ann. NY Acad. Sci. 1998. V. 840. P. 510−517.
  51. Del Rey A.E., Besedovsky H.O., Sorkin E., Da Prada M. Endogenous blood levels of corticosterone control the immunologic cell mass and B cell activity in mice. J. Immunol. 1984. V. 133. P. 572−575.
  52. DeMartino G.N., Gillette T.G. Proteasomes: machines for all reasons. Cell. 2007. V. 129. N. 4. P. 659−662.
  53. Donner K.J., Becker K.M., Hissong B.D. Comparison of multiple assays for kinetic detection of apoptosis in thymocytes exposed to dexamethasone or diethylstilbesterol. Cytometry. 1999. V. 35. N. 1. P. 80−90.
  54. Egerton M., Scollay R., Shortman K. Kinetics of mature T-cell development in the thymus. Proc. Natl. Acad. Sci. 1990. V. 87. P. 2579−2582.
  55. Elands J., Resink A., De Kloet E.R. Neurohypophyseal hormone receptors in the rat thymus, spleen, and lymphocytes. Endocrinology. 1990. V. 126. N. 5. P. 2703−2710.
  56. Elenkov I.J., Wilder R.L., Chrousos G.P., Vizi E.S. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 2000. V. 52. N. 4. P. 595−638.
  57. Fabris N. Ontogenetic and phylogenetic aspects of neuroendocrine-immune network. Develop. Comp. Immunol. 1981. V. 5. P. 49−60.
  58. Fabris N., Mocchegiani E., Provinciali M. Pituitary-thyroid axis and immune system: a reciprocal neuroendocrine-immune interaction. Horm. Res. 1995. V. 43. P. 29−38.
  59. Faraj B.A., Olkowski Z.L., Jackson R.T. Expression of a high-affinity serotonin transporter in human lymphocytes. Int. J. Immunopharmacol. 1994. V. 16. N. 7. P. 561−567.
  60. Fazzino F., Urbina M., Cedeno N., Lima L. Fluoxetine treatment to rats modifies serotonin transporter and cAMP in lymphocytes, CD4+ and CD8+ subpopulations and interleukins 2 and 4. Int. Immunopharmacol. 2009.V. 9. N. 4. P. 463−467.
  61. Felten D.L., Felten S.Y., Bellinger D.L., Carlson S.L., Ackerman K.D., Madden K.S., Olschowki J.A., Livnat S. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol. Rev. 1987. V. 100. P. 225−260.
  62. Flierl M.A., Rittirsch D., Nadeau B.A., Sarma J.V., Day D.E., Lentsch A.B., Huber-Lang M.S., Ward P.A. Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS ONE. 2009. V. 4.N. 2. P. e4414.
  63. Fowden A.L., Forhead A.J. Endocrine mechanisms of intrauterine programming. Reproduction. 2004. V. 127. P. 515−526.
  64. Grasso G., Massai L., De Leo V., Muscettola M. The effect of LHRH and TRH on human interferon-gamma production in vivo and in vitro. Life Sci. 1998.V. 62. P. 2005−2014.
  65. Greene R.M., Garbarino M.P. Role of cyclic AMP, prostaglandins, and catecholamines during normal palate development. Curr. Top. Dev. Biol. 1984. V. 19. P. 65−79.
  66. Hu S.B., Zhao Z.S., Yhap C., Grinberg A., Huang S.P., Westphal H., Gold P. Vasopressin receptor la-mediated negative regulation of B cell receptor signaling. J. Neuroimmunol. 2003. V. 135. N. 1−2. P. 72−81.
  67. Izvolskaia M., Duittoz A.H., Tillet Y., Ugrumov M.V. The influence of catecholamine on the migration of gonadotropin-releasing hormone-producing neurons in the rat foetuses. Brain Struct. Funct. 2009. V. 213. N. 3. P. 289 300.
  68. Jackson J.C., Cross R.J., Walker R.F., Markesbery W.R., Brooks W.H., Roszman T.L. Influence of serotonin on the immune response. Immunology. 1985. V. 54. P. 505−512.
  69. Jackson J.C., Walker R.F., Brooks W.H., Roszman T.L. Specific uptake of serotonin by murine macrophages. Life Sci. 1988. V. 42. P. 1641−1650.
  70. Jacobson J.D., Crofford L.J., Sun L., Wilder R.L. Cyclical expression of GnRH and GnRH receptor mRNA in lymphoid organs. Neuroendocrinology. 1998.V. 67. N. 2. P. 117−125.
  71. Joel D.D., Chanana A.D., Cottier H., Cronkite E.P., Laissue J.A. Fate of thymocytes: studies with 1251-iododeoxyuridine and 3H-thymidine in mice. Cell Tis. Kinet. 1977. V. 10. P. 57−69.
  72. Johnson H.M., Torres B.A. Regulation of lymphokine production by arginine vasopressin and oxytocin: modulation of lymphocyte function by neurohypophyseal hormones. J. Immunol. 1985. V. 135. N. 2(Suppl). P. 773s-775s.
  73. Josefsson E., Bergquist J., Ekman R.J., Tarkowski A. Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology. 1996. V. 88. P. 140−146.
  74. Jost A. Experiences de decapitation de l’embryon de lapin. Comp. Rend. Acad. Sci. Colon. 1947. V. 225. P. 322−324.
  75. Kasson B.G., Hsueh A.J. Arginine vasopressin as an intragonadal hormone in Brattleboro rats: presence of a testicular vasopressin-like peptide and functional vasopressin receptors. Endocrinology. 1986. V. 118. N. 1. P. 23−31.
  76. Kelley K.W., Weigent D.A., Kooijman R. Protein Hormones and Immunity. Brain Behav Immun. 2007. V. 21. N. 4. P. 384−392.
  77. Kooijman R., Gerlo S., Coppens A., Hooghe-Peters E.L. Growth hormone and prolactin expression in the immune system. Ann. NY Acad. Sci. 2000. V. 917. P. 534−540.
  78. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. V. 227. N. 5259. P. 680−685.
  79. Langley-Evans S.C. Developmental programming of health and disease. Proc. Nutr. Soc. 2006. V. 65. P. 97−105.
  80. Lauder J.M., Bloom F.E. Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J. Comp. Neurol. 1974. V. 155. N. 4. P. 469−481.
  81. Lauder J.M., Wallace J.A., Krebs H. Roles for serotonin in neuroembryogenesis. Adv. Exp. Med. Biol. 1981. V. 133. P. 477−506.
  82. Lauder J.M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 1993. V. 16. N. 6. P. 233
  83. Leon-Ponte M., Ahern G.P., O’Connell P.J. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood. 2007. V. 109. N. 8. P. 3139−3146.
  84. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951. V. 193. N. l.P. 265−275.
  85. Lucas A. Programming by early nutrition in man. Ciba Foundation Symposium. 1991. V. 156. P. 38−50.
  86. Madden K.S., Felten D.L. Experimental basis for neural-immune interactions. Physiol. Rev. 1995. V. 75. N. 1. P. 77−106.
  87. Manley N.R. Thymus organogenesis and molecular mechanisms of thymic epithelial cell differentiation. Immunology. 2000. V. 12. P. 421−428.
  88. Marchetti B., Gallo F., Farinella Z., Tirolo C., Testa N., Romeo C., Morale M.C. Luteinizing hormone-releasing hormone is a primary signaling molecule in the neuroimmune network. Ann. NY Acad. Sci. 1998. V. 840. P. 205−248.
  89. Marino F., Cosentino M., Bombelli R., Ferrari M., Lecchini S., Frigo G. Endogenous catecholamine synthesis, metabolism storage, and uptake in human peripheral blood mononuclear cells. Exp. Hematol. 1999. V. 27. N. 3. P. 489−495.
  90. Markwick A.J., Lolait S.J., Funder J.W. Immunoreactive arginine vasopressin in the rat thymus. Endocrinology. 1986.V. 119. N. 4. P. 16 901 696.
  91. Mascanfroni I., Montesinos M. del M., Susperreguy S., Cervi L., Ilarregui J.M., Ramseyer V.D., Masini-Repiso A.M., Targovnik H.M., Rabinovich
  92. G.A., Pellizas C.G. Control of dendritic cell maturation and function by triiodothyronine. FASEB J. 2008. V. 22. N. 4. P. 1032−1042.
  93. McPhee D., Pye J., Shortman K. The differentiation of T lymphocytes. Y. Evidence for intrathymic death of most thymocytes. Thymus. 1979. V. l.P. 151−162.
  94. Meazza C., Pagani S., Travaglino P., Bozzola M. Effect of growth hormone (GH) on the immune system. Pediatr. Endocrinol. Rev. 2004. V. 1. Suppl. 3. P. 490−495.
  95. Metcalf D. The Thymus: Experimental and clinical studies. Eds. G.W.E. Wolstenholme, R. Porter. L.: Churchill. 1966. P. 242−263.
  96. Miller G.E., Rohleder N., Stetler C., Kirschbaum C. Clinical depression and regulation of the inflammatory response during acute stress. Psychosom. Med. 2005. V. 67. N. 5. P. 679−687.
  97. Misu Y., Goshima Y., Ueda H., Okamura H. Neurobiology of L-DOPAergic systems. Prog. Neurobiol. 1996. V. 49. N. 5. P. 415−454.
  98. Moore M.A.S. Embryologic and phylogenetic development of the hematopoietic system. Adv. Biosci. 1975. V. 16. P. 87−103.
  99. Moser M., De Smedt T., Sornasse T., Tielemans F., Chentoufi A.A., Muraille E., Van Mechelen M., Urbain J., Leo O. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur. J. Immunol. 1995. V. 25. P. 2818−2824.
  100. Mossner R., Lesch K. Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav. Imm. 1998. V. 12. P. 249−271.
  101. Mossner R., Daniel S., Schmitt A., Albert D., Lesch K.P. Modulation of serotonin transporter function by interleukin-4. Life Sci. 2001. V. 68. N. 8. P. 873−880.
  102. Naquet P., Naspetti M., Boyd R. Development, organization and function of the thymic medulla in normal, immunodeficient or autoimmune mice. Semin. Immunol. 1999. V. 11. N. 1. P. 47−55.
  103. Nedergaard J., Herron D., Jacobsson A., Rehnmark S., Cannon B. Norepinephrine as a morphogen?: its unique interaction with brown adipose tissue. Int. J. Dev. Biol. 1995. V. 39. N. 5. P. 827−837.
  104. Nussey S.S., Ang V.T., Jenkins J.S., Chowdrey H.S., Bisset G.W. Brattleboro rat adrenal contains vasopressin. Nature. 1984.V. 310. N. 5972. P. 64−66.
  105. O’Connell P.J., Wang X., Leon-Ponte M., Griffiths C., Pingle S.C., Ahern G.P. A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood. 2006. V. 107. N. 3.P. 1010−1017.
  106. Offen D., Ziv I., Gorodin S., Barzilai A., Malik Z., Melamed E. Dopamine-induced programmed cell death in mouse thymocytes. Biochem. Biophys. Acta. 1995. V. 1268. P. 171−178.
  107. Olsen N.J., Kovacs W.J. Gonadal Steroids and Immunity. Endocr. Rev. 1996. V. 17. N. 4. P. 369−384.
  108. Olsen N.J., Olson G., Viselli S.M., Gu X., Kovacs W.J. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology. 2001a. V. 142. N. 3. P. 1278−1283.
  109. Olsen N.J., Gu X., Kovacs W.J. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J. Clin. Invest. 2001b. V. 108. P. 1697−1704.
  110. Pallinger E., Csaba G. A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells. Immunology. 2007. V. 123. P. 584 589.
  111. Peleg D., Arbogast L.A., Peleg E., Ben-Jonathan N. Predominance of L-dopa in fetal plasma and the amniotic fluid during late gestation in the rat. Am. J. Obstet. Gynecol. 1984. V. 149. N. 8. P. 880−883.
  112. Petrovsky N. Towards a unified model of neuroendocrine-immune interaction. Imm. Cell Biol. 2001. V. 79. P. 350−357.
  113. Provinciali M., Fabris N. Models and mechanisms of neuroendocrine-immune interactions during ontogeny. Adv. Neuroimmunol. 1991. V. 1. P. 124−138.
  114. Raber J., Bloom F.E. IL-2 induces vasopressin release from the hypothalamus and the amygdala: role of nitric oxide-mediated signaling. J. Neurosci. 1994. V. 14. N. 10. P. 6187−6195.
  115. Razia S., Maegawa Y., Tamotsu S., Oishi T. Histological changes in immune and endocrine organs of quail embryos: exposure to estrogen and nonylphenol. Ecotoxicol. Environ. Saf. 2006. V. 65. P. 364−371.
  116. Ribeiro-Carvalho M.M., Smaniotto S., Neves-dos-Santos S., Mou
  117. Rock K.L., Goldberg A.L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 1999. V. 17. P. 739−779.
  118. Rundle S.E., Funder J.W. Ontogeny of corticotropin-releasing factor and arginine vasopressein in the rat. Neuroendocrinology. 1988. V. 47. N. 5. P. 374−378.
  119. Sacedon R., Vicente A., Varas A., Jimenez E., Munoz J.J., Zapata A.G. Role of glucocorticoids in early T-cell differentiation. Ann. NY Acad. Sci. 2000. V. 917. P. 732−740.
  120. Sakabe K., Seiki K., Sakai N., He W. Establishment of «crosstalk» between the thymus and brain at an early stage of fetal life in the rat. Med. Sci. Res. 1996. V. 24. P. 439−442.
  121. Schanoski A.S., Cavalcanti T.C., Campos C.B., Viera-Matos A.N., Rettori0., Guimaraes F. Walker 256 tumor MHC class I expression during the shift from A variant to the immunogenic AR variant. Cancer Lett. 2004. V. 211. N.1.P. 119−127.
  122. T., Urbina M., Lima L. 5-HT1A and beta-adrenergic receptors regulate proliferation of rat blood lymphocytes. Neuroimmunomodulation. 2004. V. 11. N. 5. P. 307−315.
  123. Shibasaki T., Hotta M., Sugihara H., Wakabayashi I. Brain vasopressin is involved in stress-induced suppression of immune function in the rat. Brain Res. 1998. V. 808. N. 1. P. 84−92.
  124. Shortman K., Scolly R. Death in the thymus. Nature. 1994. V. 372. P. 4445.
  125. Singal D.P., Ye M., Qiu X. Molecular basis for lack of expression of HLA class I antigens in human small-cell lung carcinoma cell lines. Int. J. Cancer. 1996. V. 68. N. 5. P. 629−636.
  126. Slominski A., Paus R. Are L-tyrosine and L-dopa hormone-like bioregulators? J. Theor. Biol. 1990. V. 143. P. 123−138.
  127. Soza A., Knuehl C., Groettrup M., Henklein P., Tanaka K., Kloetzel P. Expression and subcellular localization of mouse 20S proteasome activator complex PA28. FEBS Letters. 1997. V. 413. P. 27−34.
  128. Staples J.E., Gasiewicz T.A., Fiore N.C., Lubahn D.B., Korach K.S., Silverstone A.E. Estrogen receptor alpha is necessary in thymic development and estradiol-induced thymic alterations. J. Immunol. 1999. V. 163. P. 41 684 174.
  129. Stefulj J., Jernej B., Cicin-Sain L., Rinner I., Schauenstein K. mRNA expression of serotonin receptors in cells of the immune tissues of the rat. Brain Behav. Immun. 2000. V. 14. N. 3. P. 219−224.
  130. Stefulj J., Cicin-Sain L., Schauenstein K., Jernej B. Serotonin and immune response: effect of the amine on in vitro proliferation of rat lymphocytes. Neuroimmunomodulation. 2001. V. 9. N. 2. P. 103−108.
  131. Sternberg E.M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 2006. V. 6. N. 4. P. 318−328.
  132. Suniara R.K., Jenkinson E.J., Owen J.J.T. An essential role for thymic mesenchyme in early T cell development. J. Exp. Med. 2000. V 191. N. 6. P. 1051−1056.
  133. Surh C.D., Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Ibid. 1994. V. 372. P. 100−103.
  134. Svennilson J., Aperia A. Dopamine in the developing kidney. Int. J. Dev. Biol. 1999. V. 43. N. 5. P. 441−443.
  135. Tanriverdi F., Silveira L.F.G., MacColl G.S., Bouloux P.M.G. The hypothalamic-pituitary-gonadal axis: immune function and autoimmunity. Journal of Endocrinology. 2003. V. 176. P. 293−304.
  136. Tomassoni D., Bronzetti E., Cantalamessa F., Mignini F., Ricci A., Sabbatini M., Tayebati S.K., Zaccheo D. Postnatal development of dopamine receptor expression in rat peripheral blood lymphocytes. Mech. Ageing Dev. 2002. V. 123. N. 5. P. 491−498.
  137. Tsao C.W., Lin Y.S., Cheng J.T. Effect of dopamine on immune cell proliferation in mice. Life Sci. 1997. V. 61. N. 24. P. 361−371.
  138. Tsao C.W., Lin Y.S., Cheng J.T. Inhibition of immune cell proliferation with haloperidol and relationship of tyrosine hydroxylase expression to immune cell growth. Life Sci. 1998. V. 62. N. 21. P. 335−344.
  139. Turnbull A.V., Rivier C.L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 1999. V. 79. N. l.P. 1−71.
  140. Ugrumov M.V., Trembleau A., Roche D., Calas A. Monoamine influence on neuropeptide gene expression during ontogenesis. Acta Biol. Hung. 1994. V. 45. N. 2−4. P. 441−450.
  141. Vacchio M.S., Lee J.Y.M., Ashwell J.D. Thymus-derived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation. J. Immunol. 1999. V. 163. P. 1327−1333.
  142. Van Den Heuvel R.L., Versele S.R.M., Schoeters G.E.R., Vanderborght O.L.J. Stromal stem cells (CFU-S) in yolk sac, liver, spleen and bone marrow of pre- and postnatal mice. British J. Hematol. 1987. V. 66. P. 15−20.
  143. Van der Sluis P.J., Boer G.J., Swaab D.F. Vasopressin and oxytocin in the developing rat brain as shown by isoelectric focusing of radioimmunoassayable peptides. Brain Res. 1986. V. 391. N. l.P. 85−90.
  144. Van Rees E.P., Dijkstra C.D., Sminia T. Ontogeny of the rat immune system: an immunohistochemical approach. Dev Comp Immunol. 1990. V. 14. N. l.P. 9−18.
  145. Veerman A.J. The postnatal development of the white pulp in the rat spleen and the onset of immunocompetence against a thymus-independent and a thymus-dependent antigen. Z. Immunitatsforsch. Exp. Klin. Immunol. 1975. V. 150. N. l.P. 45−59.
  146. Vicente A., Varas A., Sacedon R., Jimenez E., Munoz J.J., Zapata A.G. Appearance and maturation of T-cell subsets during rat thymus ontogeny. Dev.Imm. 1998. V. 5. P. 319−331.
  147. Viret C., Sant’Angelo D.B., He X., Ramaswamy H., Janeway C.A. Jr. A role for accessibility to self-peptide-self-MHC complexes in intrathymic negative selection. J. Immunol. 200l.V. 166. N. 7. P. 4429−4437.
  148. Viselli S.M., Olsen N.J., Shults K. Steizer G, Kovacs WJ. Immunochemical and flow cytometric analysis of androgen receptor expression in thymocytes. Mol. Cell Endocrinol. 1995. V. 109. P. 19−26.
  149. Webster J.I., Tonelli L., Sternberg E.M. Neuroendocrine regulation of immunity. Annu. Rev. Immunol. 2002. V. 20. P. 125−163.
  150. Weigent D.A., Blalock J.E. The production of growth hormone by subpopulations of rat mononuclear leukocytes. Cell Immunol. 1991. V. 135. N. l.P. 55−65.
  151. Welberg L.A., Seckl J.R. Prenatal stress, glucocorticoids and the programming of the brain. J. Neuroendocrinol. 2001. V. 13. P. 113−128.
  152. Welniak L.A., Sun R., Murphy W.J. The role of growth hormone in T-cell development and reconstitution. J. Leukoc. Biol. 2002. V. 71. N. 3. P. 381 387.
  153. Wick M. Inhibition of transformation by levodopa-carbidopa in lymphocytes derived from patients with melanoma. 1987. J. Invest. Derm. V. 88. P. 535−537.
  154. Yin J., Albert R.H., Tretiakova A.P., Jameson B.A. 5-HT (lB) receptors play a prominent role in the proliferation of T-lymphocytes. J. Neuroimmunol. 2006. V. 181. N. 1−2. P. 68−81.
  155. Yirmiya R., Shavit Y., Ben-Eliyahu S., Martin F.C., Weiner H., Liebeskind J.C. Natural killer cell activity in vasopressin-deficient rats (Brattleboro strain). Brain Res. 1989. V. 479. N. 1. P. 16−22.
  156. Yu-Lee L. Prolactin modulation of immune and inflammatory responses. Recent Prog. Horm. Res. 2002. V. 57. P. 435−455.
  157. Zacharchuk C.M., Mercep M., Chakraborti P.K., Simons S.S. Jr, Ashwell J.D. Programmed T lymphocyte death. Cell activation- and steroid-induced pathways are mutually antagonistic. J. Immunol. 1990. V. 145. N. 12. P. 4037−4045.
Заполнить форму текущей работой