Помощь в написании студенческих работ
Антистрессовый сервис

Новые биологически активные аналоги полиаминов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Однако является ли наблюдаемое замедление роста клеток следствием дефицита спермина и спермидина, либо оно вызвано отдаленными полиамин-независимыми последствиями индукции SSAT, до сих пор не было известно. Для решения этого вопроса необходимо найти способ поддержания жизнеспособности клеток с индуцированной SSAT, например, с помощью метаболически устойчивых аналогов полиаминов, способных… Читать ещё >

Новые биологически активные аналоги полиаминов (реферат, курсовая, диплом, контрольная)

Содержание

  • Список использованных сокращений
  • 1. Введение
  • 2. Обзор литературы
    • 2. 1. Методы избирательной защиты первичных и вторичных аминогрупп в полиаминах
    • 2. 2. Синтез полиаминов и их аналогов
      • 2. 2. 1. Методы алкилирования
      • 2. 2. 2. Методы восстановления
      • 2. 2. 3. Присоединение по Михаэлю
      • 2. 2. 4. Реакция Мицунобу
      • 2. 2. 5. Твердофазный синтез полиаминов
    • 2. 3. Регуляция активности ферментов катаболизма полиаминов
      • 2. 3. 1. Спермидин/спермин-УУ'-ацетилтрансфераза
      • 2. 3. 2. Полиаминоксидаза
  • 3. Результаты и обсуждение
    • 3. 1. Метаболически устойчивые аналоги полиаминов
      • 3. 1. 1. Синтез рацемических а-метилполиаминов
      • 3. 1. 2. Получение ^-ацетил-а-метилспермидина
      • 3. 1. 3. Оптические изомеры а-метилполиаминов
    • 3. 2. Новый изостерный зарядодефицитный аналог спермина (SpmTrien)
      • 3. 2. 1. Дизайн структуры SpmTrien и его биохимически значимых производных
      • 3. 2. 2. Синтез SpmTrien
      • 3. 2. 3. Синтез ацетильных производных SpmTrien
      • 3. 2. 4. Синтез бис-этил SpmTrien
    • 3. 3. Исследование субстратных свойств а-метилполиаминов по отношению к ферментам катаболизма полиаминов in vitro
    • 3. 4. Биологические эффекты и метаболизм а-метилполиаминов in vivo
    • 3. 5. Взаимодействие SpmTrien с ДНК в модельных системах
      • 3. 5. 1. Конденсация ДНК под действием SpmTrien
      • 3. 5. 2. Комплексообразующие свойства SpmTrien
  • 4. Экспериментальная часть
    • 4. 1. Синтез аналогов полиаминов
      • 4. 1. 1. Синтезы рацемических aMeSpd, aMeSpm, a, a'-Me2Spm и Ac-aMeSpd
      • 4. 1. 2. Синтезы оптических изомеров aMeSpd, aMeSpm и a, a'-Me2Spm
      • 4. 1. 3. Синтезы SpmTrien, его бис-этильного и моно-ацетильных производных
    • 4. 2. Защита ДНК от свободно-радикальных повреждений при помощи SpmTrien
    • 4. 3. Взаимодействие SpmTrien с молекулярными конструкциями ДНК
    • 4. 4. Конденсация ДНК под действием SpmTrien в нейтральной и слабокислой среде
  • 5. Выводы

Биогенные полиамины — спермин, спермидин и их предшественник путресцин присутствуют в значительных количествах в животных клетках всех типов и необходимы для их нормального роста. При физиологическом значении рН полиамины существуют в форме поликатионов. Спермидин и спермин взаимодействуют с ДНК, РНК и нуклеопротеидами, служат регуляторами активности топоизомераз, рестриктаз, а также ферментов биосинтеза ДНК и РНК, а спермидин, являясь субстратом дезоксигипузинсинтетазы, необходим для модификации фактора инициации трансляции е1Р-5А, присутствующего у всех эукариот. Кроме того, полиамины участвуют в регуляции транспорта Са2+ митохондриями, являются модуляторами ЫМОА рецептора и эффекторами транспорта К+. Недавно было показано, что полиамины регулируют процесс полимеризации тубулина и участвуют в процессах апоптоза. Разнообразие и жизненная важность клеточных функций позволяют рассматривать спермин и спермидин в качестве низкомолекулярных регуляторов клеточного метаболизма. Вместе с тем, системы метаболизма и активного транспорта, а также функции полиаминов на молекулярном уровне изучены недостаточно.

Одной из отличительных особенностей опухолевых клеток по сравнению с нормальными, является повышенное содержание в них полиаминов. Соответственно, специфические ингибиторы биосинтеза спермидина и спермина и индукторы ферментов их катаболизма обладают выраженной противоопухолевой активностью [1,2]. Кроме того, истощение внутриклеточного пула полиаминов замедляет размножение паразитов, например, малярийного плазмодия и вирусов, в том числе и вируса иммунодефицита человека, что является ещё одним фактором, подчёркивающим актуальность исследований в этой области.

Исторически первые работы в области химического регулирования метаболизма полиаминов были направлены на создание ингибиторов ферментов биосинтеза спермидина и спермина. Впоследствии оказалось, что этого недостаточно для полного истощения пула полиаминов в клетке, поскольку клетки оснащены системами активного транспорта путресцина, спермидина и спермина. Поэтому в последние годы центр тяжести исследований сместился в сторону активации катаболизма полиаминов, ключевым ферментом которого является спермидин/спермин-Д/'1-ацетилтрансфераза (SSAT). Были найдены вещества (в основном, терминально быс-алкилированные производные спермидина, спермина и их гомологов), способные вызывать повышение клеточной активности SSAT в десятки и даже сотни раз, что приводит к резкому понижению внутриклеточной концентрации полиаминов. В этом случае транспортируемые в клетку из внешней среды спермидин и спермин быстро утилизируются и потому не способны поддерживать рост.

Однако является ли наблюдаемое замедление роста клеток следствием дефицита спермина и спермидина, либо оно вызвано отдаленными полиамин-независимыми последствиями индукции SSAT, до сих пор не было известно. Для решения этого вопроса необходимо найти способ поддержания жизнеспособности клеток с индуцированной SSAT, например, с помощью метаболически устойчивых аналогов полиаминов, способных выполнять основные клеточные функции спермидина и спермина. В общем смысле, значение подобных веществ велико еще и потому, что регуляция биохимических процессов подразумевает не только возможности вызывать необходимый ответ клетки или организма, но и наличие способов обращать эффект, в том числе и с помощью химических соединений. Это позволяет оценить избирательность исходного воздействия и свидетельствует об адекватности наших представлений о том или ином биохимическом процессе.

Все клетки оснащены системой активного транспорта полиаминов, которая, по всей видимости, играет важную роль в регуляции гомеостаза полиаминов in vivo. Однако её локализация, строение и механизм переноса путресцина, спермидина и спермина через клеточную мембрану до сих пор окончательно не установлены. Возможности использования радиоактивно меченых полиаминов для изучения кинетических характеристик их транспорта, механизма ингибирования их переноса по принципу обратной связи, потоков обмена между внутри и внеклеточным пулами полиаминов, а также процессов распределения экзогенных полиаминов в отдельных органах и тканях сильно ограничены из-за их достаточно быстрого взаимопревращения в клетке. Данное ограничение может быть устранено с использованием метаболически устойчивых миметиков полиаминов, аналогично тому, как это было сделано при изучении систем активного транспорта глюкозы и a-аминокислот с введением в практику метаболически стабильных З-О-метил-О-глкжозы и а-метилаланина, соответственно. Таким образом, метаболически устойчивые миметики полиаминов могут стать полезным инструментом исследования системы активного транспорта путресцина, спермидина и спермина.

Соответственно, первой задачей данной работы была разработка удобных способов получения ранее малодоступных рацемических а-метилполиаминов, о которых известно, что они являются плохими субстратами SSAT и способны выполнять некоторые функции полиаминов in vitro. Синтез неизвестных ранее оптических изомеров а-метилполиаминов и изучение возможностей их использования в качестве метаболически устойчивых миметиков спермидина и спермина in vitro и in vivo являлся второй задачей настоящей работы.

Биологические эффекты полиаминов и их аналогов определяются геометрией молекулы и положительным зарядом протонированных аминогрупп. В то время как зависимость биологических эффектов аналогов спермина и спермидина от их строения исследовалась весьма подробно, вклад зарядовой составляющей остается малоизученным. Заряд о дефицитные аналоги полиаминов оказались полезным инструментом в подобных исследованиях.

Рациональным подходом к созданию веществ этого типа является понижение основности аминогрупп при минимальном искажении геометрии молекулы. Учитывая данное ограничение, существует не много способов конструирования таких структур. Поэтому третьей задачей настоящей работы являлся дизайн и синтез оригинального заря до дефицитного аналога Брт и его биохимически значимых производных.

2. Обзор литературы.

Полиамины и их аналоги имеют, как правило, достаточно простую структуру, тем не менее, их синтез весьма сложен и трудоёмок. Это связано с монотонностью структуры целевых соединений и с необходимостью избирательной функционализации первичных и вторичных аминогрупп в одной молекуле. Кроме того, высокая полярность конечных и многих промежуточных соединений создаёт дополнительные проблемы при их выделении и очистке. Однако в связи с перспективностью использования аналогов полиаминов для лечения различных заболеваний, в том числе и для химиотерапии рака, за последние 20 лет были разработаны эффективные подходы к получению разнообразных соединений полиаминной природы.

5. Выводы.

1. А) Предложены удобные схемы синтеза биологически активных рацемических а-метилспермидина, а-метилспермина и а, сс'-диметилспермина, позволяющие получать эти соединения в количествах, достаточных для проведения экспериментов на лабораторных животных.

Б) Исходя из ® — и (5)-аланинолов, синтезированы неизвестные ранее ® — и (5)-а-метилспермидины, ® — и (5)-а-метилспермины, (R, R)-, (5,S) — и (Л, 5)-а, а'-диметилспермины.

2. а-Метилполиамины способны выполнять ключевые функции спермидина и спермина in vivo в условиях многократной индукции спермидин/спермин-ЛГ1-ацетилтрансферазы, при этом а-метильный заместитель обеспечивает катаболическую стабильность а-метилспермидина, но не а-метилспермина и а, а'-диметилспермина.

3. Предложен новый подход к созданию зарядодефицитных аналогов спермина, состоящий в сокращении расстояния между аминогруппами до двух метиленовых звеньев и синтезирован неизвестный ранее изостерный аналог спермина — 1,12-диамино-3,6,9-триазадодекан. Наличие триэтилентетраминового фрагмента приводит к выраженным комплексообразующим свойствам по отношению к ионам Си2+.

4. А) Для исследования особенностей спермидин/спермин-А^-ацетилтрансферазной и полиаминоксидазной реакций синтезированы неизвестные ранееЛг'-ацетил-1,12-диамино-3,6,9-триазадодекан и А/^-ацетил-^П-диамино-ЗДЭ-триазадодекан, представляющие собой продукты ферментативного ацетилирования 1,12-диамино-3,6,9-триазадодекана и являющиеся изостерными зарядодефицитными аналогами Л^-ацетилспермина — природного субстрата полиаминоксидазы.

Б) Показано, что способность 1,12-диамино-3,6,9-триазадодекана конденсировать ДНК зависит от рН среды и от присутствия ионов переходных металлов. Такая комбинация свойств не характерна ни для одного из известных аналогов спермина. В) Установлено, что 1,12-диамино-3,6,9-триазадодекан ~ в 100 раз эффективнее, чем изостерный ему спермин, защищает ДНК от повреждений свободными радикалами в условиях реакции Фентона.

Показать весь текст

Список литературы

  1. Casero R.A., Woster P.M. II Terminally alkylated polyamine analogues as chemotherapeutic agents. J. Med. Chenu 2001. V. 44. P. 1−26.
  2. Seller N. II Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr. Drug Targets 2003. V. 4. P. 537−564.
  3. O^Sullivan M.C., Zhou Q. II Novel polyamine derivatives as potent competitive inhibitors of Trypanosoma cruzi trypanothione reductase. Bioorg. Med. Chem. Lett 1995. V. 5. P. 1957−1960.
  4. Khomutov A.R., Shvetsov A.S., Vepsalainen J.J., KritzynA.M. //Novel acid-free cleavage of N-(2-hydroxyarylidene) protected amines. Tetrahedron Lett. 2001. V. 42. P. 2887−2889.
  5. Bergeron R.J., Garlich J.R., Stolowich N.J. II Reagents for the stepwise functionalization of spermidine, homospermidine, and bis (3-aminopropyl)amine. J. Org. Chem. 1984. V. 49. P. 29 973 001.
  6. Favre-Reguillon A., Segat-Dioury F., Nait-Bouda L., Cosma C., Siaugue J.-M., FoosJ., Guy A. IIA Highly Chemoselective Protection and Activation of Primary Amines in Polyamine. Synlett 2000. V. 6. P. 868−870.
  7. Tice C.M., Ganem B. II The chemistry of naturally occurring polyamines. 6. Efficient syntheses of N1- and N8-acetylspermidine. J. Org. Chem. 1983. V. 48. P. 2106−2108.
  8. Nagarajan S" Ganem B. II Chemistry of naturally occurring polyamines. 9. Synthesis of spermidine and spermine photoaffinity labeling reagents. J. Org. Chem. 1985. V. 50. P. 5735−5737.
  9. Ramiandrasoa F., Milat M. IIA new regioselective synthesis of N1- and N8-monoacylated spermidines. Tetrahedron Lett. 1989. V. 30. P. 1365−1368.
  10. Jasys V.J., Kelbaugh P.R., Nason DM., Phillips D., Saccomano N.A., StrohJ.G., Volkmann R.A. II The total synthesis of argiotoxins 636, 659 and 673. Tetrahedron Lett. 1988. V. 29. P. 6223−6226.
  11. Edwards M.L., Prakash N.J., Stemerick D.M., Sunkara S.P., Bitonti A.J., Davis G.F., Dumont J.A., Bey P. // Polyamine analogs with antitumor activity. J. Med. Chem. 1990. V. 33. P. 1369−1375.
  12. Carboni B., BenalilA., Vaulter M. II Aliphatic amino azides as key building blocks for efficient polyamine syntheses. /. Org. Chem. 1993. V. 58. P. 3736−3741.
  13. Bergeron R.J., Muller R., Bussenius J., McManis J.S., Merriman R.L., Smith R.E., Yao H., Weimar W.R. II Synthesis and Evaluation of Hydroxylated Polyamine Analogues as Antiproliferatives. J. Med. Chem. 2000. V. 43. P. 224−235.
  14. Casara P., Danzin C., Metcalf B., Jung M. II Stereospecific synthesis of (2R, 5R)-hept-6-yne-2,5-diamine: a potent and selective enzyme-activated irreversible inhibitor of ornithine decarboxylase (ODC). J. Chem. Soc. 1985. P. 2201−2207.
  15. Lakanen J.R., Coward J.K., PeggA.E. II alpha-Methyl polyamines: metabolically stable spermidine and spermine mimics capable of supporting growth in cells depleted of polyamines. J. Med. Chem. 1992. V. 35. P. 724−734.
  16. Israel M" Zoll E.C., Muhammad N., Modest E.J. II Synthesis and antitumor evaluation of the presumed cytotoxic metabolites of spermine and N, N'-bis (3-aminopropyl)nonane-l, 9-diamine. J. Med. Chem. 1973. V. 16. P. 1−5.
  17. Edwards M.L., Stemerick D.M., Bitonti A.J., Dumont J.A., McCann P.P., Bey P., Sjoerdsma A. II Antimalarial polyamine analogs. J. Med. Chem. 1991. V. 34. P. 569−574.
  18. Levchine I., Pajan P., Borloo M" Bollaert W" HaemersA. II An Efficient Synthesis of Selectively Functionalized Spermidine. Synthesis 1994. V. 1. P. 37−39.
  19. Nagarajan S., Ganem B. II Chemistry of naturally occurring polyamines. 10. Nonmetabolizable derivatives of spermine and spermidine. J. Org. Chern. 1986. V. 51. P. 4856−4861.
  20. Nagarajan S., Ganem B. II Chemistry of naturally occurring polyamines. 11. Unsaturated spermidine and spermine derivatives. J. Org. Chem. 1987. V. 52. P. 5044−5046.
  21. Edwards M.L., Snyder R.D., Stemerick D.M. II Synthesis and DNA-binding properties of polyamine analogs. J. Med. Chem. 1991. V. 34. P. 2414−2420.
  22. Golding B.T., O * Sullivan M.C., Smith L.L. II Convenient routes to alkyl-substituted polyamines. Tetrahedron Lett. 1988. V. 29. P. 6651−6654.
  23. Bergeron R.J., McManis J.S., Weimar W.R., Schreir K.M., Gao F., Wu Q" Ortiz-Ocasio J., Vinson J.R.T., Luchetta G.R., Porter C. II The role of charge in polyamine analog recognition. J. Med. Chem. 1995. V. 38. P. 2278−2285.
  24. Hughes D.L. II In: Organic Reactions-, Wiley: New York. 1992. V. 42. P. 335.
  25. Edwards M.L., Stemerick D.M., McCarthy J.R. II Stereospecific synthesis of secondary amines by the Mitsunobu reaction. Tetrahedron Lett. 1990. V. 31. P. 3417−3420.
  26. Karigiannis G., Mamos P., Balayiannis G" Katsoulis I., Papaioannou D. II Simple Fragment Syntheses of All Four Isomers of the Spermine Alkaloid Kukoamine. Tetrahedron Lett. 1998. V. 39. P. 5117−5120.
  27. Byk G., Frederic M., Scherman D. II One Pot Synthesis of Unsymmetrically Functional? zed Polyamines by a Solid Phase Strategy Starting from their Symmetrical Polyamine Counterparts. Tetrahedron Lett 1997. V. 38. P. 3219−3221.
  28. McCann P.P., PeggA.E. // Ornithine decarboxylase as an enzyme target for therapy. Pharmac. Ther. 1992. V. 54. P. 195−215.
  29. Pegg A.E., McCann P.P. II S-Adenosylmethionine decarboxylase as an enzyme target for therapy. Pharmac. Ther. 1992. V. 56. P. 359−377.
  30. PeggA.E., Poulin R., Coward J.K. II Use of aminopropyltransferase inhibitors and of non-metabolizable analogs to study polyamine regulation and function. Int. J. Biochem. Cell Biol. 1995. V. 27. P. 425−442.
  31. Persson L., PeggA.E. II Studies of the induction of spermidine/spermine vV'-acetyltransferase using a specific antiserum. J. Biol. Chem. 1984. V. 259. P. 12 364−12 367.
  32. P.R., Ganis B., Bergeron R.J., Porter C. W. // Characterization of human spermidine/spermine N'-acetyltransferase purified from cultured melanoma cells. Arch. Biochem. Biophys. 1991. V. 284. P. 238−244.
  33. Delia Ragione F., PeggA.E. II Studies of the specificity and kinetics of rat liver spermidine/spermine iV'-acetyltransferase. Biochem. J. 1983. V. 213. P. 701−706.
  34. Lu L., Berkey K.A., Casero Jr, R.A. II RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine W'-acetyltransferase. J. Biol. Chem. 1996. V. 271. P. 18 920−18 924.
  35. Coleman C.S., Huang H., Pegg, A.E. II Structure and critical residues at the active site of spermidine/spermine-iV'-acetyltransferase. Biochem. J. 1996. V. 316. P. 697−701.
  36. Wallace H. M., Ball D.E., Coleman C.S. II In Polyamines in the Gastrointestinal Tract- Kluwer Academic Publishers: Dordrecht. 1992. P. 8−9.
  37. Wallace H.M., Mackarel A.J. II Regulation of polyamine acetylation and efflux in human cancer cells. Biochem. Soc. Trans. 1998. V. 26. P. 571−575.
  38. Coleman C.S., Wallace H.M. II Polyamine excretion from human cancer cells. Biochem. Soc. Trans. 1990. V. 18. P. 1228−1229.
  39. Casero Jr, R.A., Celano P., Ervin S.J., Applegren N.B., Wiest L., PeggA.E. II Isolation and characterization of a cDNA clone that codes for human spermidine/spermine Af'-acetyltransferase. J. Biol. Chem. 1991. V. 266. P. 10−14.
  40. Coleman C.S., PeggA.E. II Proteasomal degradation of spermidine/spermine JV'-acetyltransferase requires the carboxyl-terminal glutamic acid residues. J. Biol. Chem. 1997. V. 272. P. 12 164— 12 169.
  41. Coleman C.S., Chau V., PeggA.E. // Identification of a novel polyamineacetylase. FASEB Proc. 2001. abstr. A169.
  42. Matsui I., PeggA.E. II Increase in acetylation of spermidine in rat liver extracts brought about by treatment with carbon tetrachloride. Biochem. Biophys. Res. Commun. 1980. V. 92. P. 1009−1015.
  43. PeggA.E., Erwin B.G., Persson L. // Induction of spermidine/spermine Nl -acety 1 trans ferase by methylglyoxal bis (guanylhydrazone). Biochim. Biophys. Acta 1985. V. 842. P. 111−118.
  44. Wallace H.M., Nuttall M.E., Robinson F.C. II Acetylation of spermidine and methylglyoxal bis (guanylhydrazone) in baby-hamster kidney cells (BHK-21/C13). Biochem. J. 1988. V. 253. P. 223−227.
  45. Matsui I., PeggA.E. // Effect of inhibitors of protein synthesis on rat liver spermidine JV1-acetyltransferase. Biochim. Biophys. Acta 1981. V. 675. P. 373−378.
  46. Casero Jr, R.A., PeggA.E. // Spermidine/spermine A^-acetyltransferase the turning point in polyamine metabolism. FASEB J. 1993. V. 7. P. 653−661.
  47. Fogel-Petrovic M" ShappellN.W., Bergeron R.J., Porter C.W. II Polyamine and polyamine analog regulation of spermidine/spermine Nx -acety Itransferase in MALME-3M human melanoma cells. J. Biol. Chem. 1993. V. 268. P. 19 118−19 125.
  48. Wang Y., Devereux W., Stewart T.M., Casero Jr, R.A. II Characterization of the interaction between the transcription factors human polyamine modulated factor (PMF-1) and NF-E2-related factor 2
  49. Nrf-2) in the transcriptional regulation of the spermidine/spermine //-acety transferase (SSAT) gene. Biochem. J. 2001. V. 355. P. 45−49.
  50. Erwin B.G., Persson L., PeggA.E. // Differential inhibition of histone and polyamine acetylases by multisubstrate analogs. Biochemistry 1984. V. 23. P. 4250−4255.
  51. Libby P.R., Porter C.W. II Inhibition of enzymes of polyamine back-conversion by pentamidine and berenil. Biochem. Pharmacol. 1992. V. 44. P. 830−832.
  52. Libby P.R., Munson B.R., Fiel R.J., Poter C. W. II Cationic porphyrin derivatives as inhibitors of polyamine catabolism. Biochem. Pharm. 1995. V. 50. P. 1527−1530.
  53. Janrte J., Alhonen L., Pietila M, Keinanen T.A. II Genetic approaches to the cellular functions ofpolyamines in mammals. Eur. J. Biochem. 2004. V. 271. P. 877−894.
  54. Chen Y., Kramer D.L., Jell J., Vujcic S., Porter C. W. II Small interfering RNA suppression of polyamine analog-induced spermidine/spermine-A^'-acetyltransferase. Mol. Pharmacol. 2003. V. 64. 1153−1159.
  55. Alhonen L., Parkkinen J.J., Keinanen T., Sinervirta R., Herzig K.H., Janne J. II Activation of polyamine catabolism in transgenic rats induces acute pancreatitis. Proc. Natl Acad. Sci. USA 2000. V. 97. P. 8290−8295.
  56. S.M., Tabor C. W. // The pharmacology of spermine and spermidine. Distribution and excretion. /. Pharmacol. Exp. Ther. 1956. V. 116. P. 131−138.
  57. C., Folsch U.R., Cleffmann U., Nustede R., Crenzfeldt W. 11 Role of ornithine decarboxylase and polyamines in camostate (Foy-305)-induced pancreatic growth in rats. Digestion 1989. V. 43. P. 98−112.
  58. Alhonen L., Rasanen T.L., Sinervirta R., Parkkinen J.J., Korhonen V.P., Pietila M., Janne J. II Polyamines are required for the initiation of rat liver regeneration. Biochem. J. 2002. V. 362. P. 149−153.
  59. Kaasinen K., Koistinaho J., Alhonen L, Janne J. II Overexpression of spermidine/spermine Nl-acetyltransferase in transgenic mice protects the animals from kainate-induced toxicity. Eur. J. Neurosci. 2000. V. 12. P. 540−548.
  60. Kaasinen S.K., Grohn O.H., Keinanen T.A., Alhonen L., Janne J. II Overexpression of spermidine/spermine iV'-acetytransferase elevates the threshold to pentylenetetrazol-induced seizure activity in transgenic mice. 2003. Exp. Neurol. V. 183. P. 645−652.
  61. Holtta E. II Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 1977. V. 16. P. 91−100.
  62. Lindsay G.S., Wallace H.M. U Changes in polyamine catabolism in HL-60 human promyelogenous leukaemic cells in response to etoposide-induced apoptosis. Biochem. J. 1999. V. 337. P. 83−87.
  63. Lamond S., Wallace H.M. II Polyamine oxidase activity and growth in human cancer cells. Biochenu Soc. Trans. 1994. V. 22. P. 126−128.
  64. Wang Y., Devereux W., Woster P.M., Stewart T.M., Hacker A., CaseroJr, R.A. H Cloning and characterization of a human polyamine oxidase that fs inducible by polyamine analogue exposure. Cancer Res. 2001. V. 61. P. 5370−5373.
  65. Vujcic S., Diegelman P., Bacchi C.J., Kramer D.L., Porter C. W. II Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem. J. 2002. V. 367. P. 665−675.
  66. Vujcic S., Liang P., Diegelman P., Kramer D.L., Porter C.W. II Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion. Biochem. J. 2003. V. 370. P. 19−28.
  67. Murray-Stewart T" Wang Y., Devereux W., CaseroJr, R.A. II Cloning and characterization of multiple human polyamine oxidase splice variants that code for isoenzymes with different biochemical characteristics. Biochem. J. 2002. V. 368. P. 673−677.
  68. Bolkenius F.N., SeilerN. II Acetyl derivatives as intermediates in polyamine catabolism. Int. J. Biochem. 1981. V. 13. P. 287−292.
  69. Bey P., Bolkenius F.N., Seiler N., Casara. P. II N-(2,3-Butadienyl)-l, 4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase. J. Med. Chem. 1985. V. 28. P. 12.
  70. SeilerN., Sarhan S" Grauffel C" Jones R., Knodgen B" Moulinoux J.P. II Endogenous and exogenous polyamines in support of tumor growth. Cancer Res. 1990. V. 50. P. 5077−5083.
  71. Bolkenius F.N., Bey P., SeilerN. II Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role. Biochim. Biophys. Acta 1985. V. 838. P. 69−76.
  72. Sarhan S., Quemener V., Moulinoux J. P., Knodgen B., SeilerN. II On the degradation and elimination of spermine by the vertebrate organism. Int. J. Biochem. 1991. V. 23. P. 617−626.
  73. Dai H., Kramer D.L., Murti K.G., Porter C.W., Cleveland J.L. II The polyamine oxidase inhibitor MDL-72,527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects. Cancer Res. 1999. V. 59. P. 4944−4954.
  74. B., Holl V., Schneider Y., Carnesecchi S., Gosse F., Raul F., Seiler N. // Cytotoxic effects of the polyamine oxidase inactivator MDL 72 527 to two human colon carcinoma cell lines SW480 and SW620. Cell Biol. Toxicol. 2002. V. 18. P. 381−396.
  75. D.L. // In: Polyamines in Cancer: Basic Mechanisms and Clinical Applications-, R.G. Landes/Springer: New York. 1996. P. 151−189.
  76. Wang Y., Murray-Stewart T., Devereux W., Hacker A., Frydman B., Woster P.M., Casero Jr, R.A. II Properties of purified recombinant human polyamine oxidase, PAOhl/SMO. Biochem. Biophys. Res. Commun. 2003. V. 304. P. 605−611.
  77. Porter C. W., Sufrin J.R. II Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res. 1986. V. 6. P. 525−542.
  78. Frydman B., Valasinas A. II Polyamine-based chemotherapy of cancer. Exp. Opin. Ther. Patents. 1999. V. 9. P. 1055−1068.
  79. Seiler N. II Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives. Curr. Drug Targets 2003. V. 4. P. 565−585.
  80. Ha H.C., Woster P.M., Yager J.D., Casero Jr, R.A. II The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc. Natl Acad. ScL USA 1997. V. 94. P. 11 557−11 562.
  81. Nagarajan S., Ganem B., PeggA.E. II Studies of non-metabolizable polyamines that support growth of SV-3T3 cells depleted of natural polyamines by exposure to alpha-difluoromethylornithine. Biochem J. 1988. V. 254. P. 373−378.
  82. Ask A., Persson L., Seller N., Heby O. II Antileukemic effects of non-metabolizable derivatives of spermidine and spermine. Cancer Lett. 1993. V. 69. P. 33−38.
  83. B.L., Voci L.M., Meyer L.M., Coward J.K. // Circular dichroism and NMR studies of metabolically stablealpha-methylpolyamines: spectral comparison with naturally occurring polyamines. Bioorg. Chem. 2000. V. 28. P. 395−408.
  84. Renault J., Lebranchu M., Anne Lecat A., Uriac P. II Solid-phase combinatorial synthesis of polyamine derivatives using aminoalcohol building blocks. Tetrahedron Lett. 2001. V. 42. P. 66 556 658.
  85. A.R., Vepsalainen J.J., Shvetsov A.S., Hyvonen T., Keinanen T.A., Pustobaev V.N., Eloranta T.O., Khomutov R.M. 11 Synthesis of hydroxylamine analogues of polyamines. Tetrahedron 1996. V. 52. P. 13 751−13 766.
  86. Hyvonen T., Keinanen T.A., Khomutov A.R., Khomutov R.M., Eloranta T.O. II Monitoring of the uptake and metabolism of aminooxy analogues of polyamines in cultured cells by high-performance liquid chromatography. J. Chromatogr. 1992. V. 574. P. 17−21.
  87. Bergeron R.J., Mutter R" Huang G" McManis J.S., Algee S.E., Yao H" Weimar W.R., WiegandJ. II Synthesis and evaluation of hydroxylated polyamine analogues as antiproliferatives. J. Med. Chem. 2001. V. 44. P. 2451−2459.
  88. Jauristi E.- Escalante J.- Lamatach B.- Seebach D. II Enantioselective synthesis of beta-amino acids. Preparation of the like stereoisomers of 2-methyl- and 2-benzyl-3-aminobutanoic acid. J. Org. Chenu 1992. V. 67. P. 2396−2398.
  89. Estermann H., Seebach D. II Diastereoselektive Alkylierung von 3-Aminobutansaure in der 2-Stellung. Helv. ChinuActa 1988. V. 71. P. 1824−1839.
  90. Furukawa M., Okawara T., Terawaki Y. II Studies on application of amino acid as medicinal agent. Reaction of amino acid ester with difunctional Grignard reagent. Chem. Pharm. Bull. 1977. V. 25. P.1319−1325.
  91. Davies S.G., Ichihara O. II Asymmetric synthesis of/?-beta-amino butanoic acid and S-beta-tyrosine: homochiral lithium amide equivalents for Michael additions to alpha, beta-unsaturated esters. Tetrahedron: Asymmetry 1991. V. 2. P. 183−186.
  92. Amoroso R., Cardillo G., Sabatino P., Tomasini C" Trere A. II Lewis acid-promoted 1,4-addition to chiral imide derivatives in the synthesis of .beta.-amino acids. J. Org. Chem. 1993. V. 58. P. 5615−5619.
  93. Mataunaga H., Sakamaki T., Nagaoka H., Yamada Y. II Enantioselective synthesis of ® — and (S> 4-(methoxycarbonyl)-methyl.-2-azetidinones from D-glyceraldehyde acetonide. Tetrahedron Lett. 1983. V. 24. P. 3009−3012.
  94. Liwschitz Y, Singeman A. 11 An asymmetric synthesis of Af-benzyl-D- aspartic acid. J. Chem. Soc. © 1966. P. 1200−1202.
  95. GedeyS., LiljebladA., Fulop F., Kanerva L.T. II Sequential resolution of ethyl 3-aminobutyrate with carboxylic acid esters by Candida Antarctica lipase B. Tetrahedron: Asymmetry 1999. V. 10. P. 2573−2581.
  96. Wang Y.-F., Izawa T., Kobayashi S" Ohno M. II Stereocontrolled synthesis of (+)-negamycin from an acyclic homoallylamine by 1,3-asymmetric induction. J. Am. Chem. Soc. 1982. V. 104. P. 64 656 466.
  97. Kozikowski A.P., Chen Y.-Y. II Intramolecular nitrile oxide cycloaddition (INOC) reactions in the indole series. Total synthesis of racemic and optically active paliclavine and 5-epi-paliclavine. J. Org. Chem. 1981. V. 46. P. 5248−5250.
  98. Yamamoto Y., Komatsu T., Maruyama K. II Enantiodivergent 1,2- and 1,3-asymmetric induction in alpha- and beta-alkoxyimines via metal tuning and stereodifferentiation. /. Chem. Soc., Chem. Commun. 1985. P. 814−815.
  99. Mukaiyama T. II In: Organic Reactions- Wiley: New York. 1982. V. 28. Chapter 3.
  100. K.T., Hoefner G. // Chelat- und nicht-chelat-kontrollierte reduktionen von beta-amido-ketonen: Synthese nicht-racemischer 1,3-aminoalkohole mit pyrrolidinstruktur. Tetrahedron 1991. V. 47. P. 1895−1910.
  101. Tramontini M. II Stereoselective synthesis of diastereomeric amino alcohols from chiral aminocarbonyl compounds by reduction or by addition of organometallic reagents. Synthesis 1982. P. 605−644.
  102. Kokotos G. IIA convenient one-pot conversion of //-protected amino acids and peptides into alcohols. Synthesis 1990. P. 299−301.
  103. Kulkarni Y.S. II Serine derivatives in organic synthesis. Aldrichimica Acta 1999. V. 32. P. 18−27.
  104. Jejford C. W, Wang J. II An enantiospecific synthesis of beta-amino acids. Tetrahedron Lett. 1993. V. 34. P. 1111−1114.
  105. Bergeron R.J., Neims A.H., McManisJ.S., Hawthorne T.R., Vinson J.R., Bortell R., Ingeno M.J. И Synthetic polyamine analogs as antineoplastics. J. Med. Chem. 1988. V. 31. P. 1183−1190.
  106. Baillon J., Mamont P. S., Wagner J., Gerhart F., Lux P. II Fluorinated analogues of spermidine as substrates of spermine synthase. Eur. J. Biochem. 1988. V. 176. P. 237−242.
  107. A.P., Хомутов P.M. II Синтез аминооксианалогов путресцина и спермидина. Биоорган, химия 1989. Т. 15. С. 698−703.
  108. А.Р., Швецов А. С., Вепсалайнен Й&bdquo- Крамер Д. Л., Хивонен Т., Кейнанен Т. А., Эпоранта Т. О., Портер К. У., Хомутов P.M. II Новые аминооксианалоги биогенных полиаминов. Биоорган, химия 1996. Т. 22. С. 557−559.
  109. Т., Keinanen Т.А., Khomutov A.R., Khomutov R.M., Eloranta Т.О. И Aminooxy analogues of spermidine evidence the divergent role of the charged amino nitrogens in the cellular physiology of spermidine. LifeSci. 1995. V. 56. P. 349−360.
  110. Eloranta T.O., Khomutov A.R., Khomutov R.M., Hyvonen T. II Aminooxy analogues of spermidine as inhibitors of spermine synthase and substrates of hepatic polyamine acetylating activity. J. Biochem. (Tokyo). 1990. V. 108. P. 593−598.
  111. Lin P.K.T., Maguire N.M., Brown DM. II Synthesis of novel oxa-isosteres of spermidine and spermine. Tetrahedron Lett. 1994. V. 35. P. 3605−3608.
  112. Dixon H.B.F. 11 In: Orphan diseases and orphan drugs', Manchester University Press: Manchester. 1986. P. 23−32.
  113. Tanabe R., Kobayashi M, Sugawara M, Iseki K., Miyazaki K. II Uptake mechanism of trientine by rat intestinal brush-border membrane vesicles. J. Pharm. Pharmacol 1996. V. 48. P. 517−521.
  114. Schwarzenbach G. II Metallkomplexe mit Polyaminen III: Mit Triathylen-tetramin = trien. Helv. Chim. Acta. 1950. V. 33. P. 974−985.
  115. Dixon H.B.F., Gibbs K" Walshe J.M. II Preparation of triethylenetetramine dihydrochloride for the treatment of Wilson’s disease. Lancet 1972. i. P. 853−854.
  116. Tabor H" Tabor C. W. II In Methods in Enzymology, Academic Press: New York. 1983. V. 94. P. 420−421.
  117. W. 11 Trypsin activity is not involved in premature, intrapancreatic trypsinogen activation. Am. J. PhysioL Gastrointest. Liver Physiol 2002. V. 282. P. 367−374.
  118. На Н.С., Yager J.D., Woster P.A., Casero Jr, R.A. И Structural specificity of polyamines and polyamine analogs in the protection of DNA from strand breaks induced by reactive oxygen species. Biochem. Biophys. Res. Commun. 1998. V. 244. P. 298−303.
  119. На H.C., Sirisoma N.S., Kuppusamy P., ZweierJ.L., Woster P.M., Casero Jr, R.A. II The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl. Acad. Sci. USA 1998. V. 95. P.11 140−11 143.
  120. Ю.М., Соляное В.К, Нечипуренко Ю. Д., Скуридин С. Г., Захаров М. А., Спенер Ф., Палумбо М. II Молекулярные конструкции с регулируемыми свойствами на основе двуспиральных нуклеиновых кислот. Молекулярная биология 2003. Т. 37. С. 340−355.
  121. Stark P.A., Thrall B.D., Meadows G.G., Abdel-Monem М.М. И Synthesis and evaluation of novel spermidine derivatives as targeted cancer chemotherapeutic agents. J. Med. Chem. 1992. V. 35. P. 4264−4269.
  122. Maniatis Т., SambrookJ., Fritsch E.F. И In: Molecular cloning: a laboratory manual- Cold Spring Harbor Laboratory Press. 1989. P. 1.33−1.38, P. 1.40−1.44.
  123. В.И., Кац Е.И., Евдокимов Ю. М. И Молекулярный дизайн на основе полирибо-нуклеотидов, фиксированных в структуре жидкокристаллической дисперсии и «сшитых» полимерными хелатными мостиками. Молекулярная биология 2000. Т. 34. С. 661−668.
  124. Van Tamelen Е.Е., Brenner J.Е. II Structure of the anhydrobromonitrocamphanes. J. Am. Chem. Soc. 1957. V. 79. P. 3839−3846.
Заполнить форму текущей работой