Регуляторные модули в эукариотах: предсказание, анализ структуры и консервативности
Диссертация
Актуальным является разработка алгоритмов, позволяющих выявлять закономерности расположения ССТФ, характерные для набора сходно функционирующих регуляторных модулей, и использовать информацию о выявленной структуре для повышения качества предсказаний регуляторных модулей в геномах эукариот. Предсказание регуляторных модуней, характеризующихся сходной структурой, позволит выявлять ко-регулируемые… Читать ещё >
Список литературы
- Aerts, S., Van Loo, P., Thijs, G., Moreau, Y., De Moor, В., 2003. Computational detection of cis-regulatory modules. Bioinformatics, 19(Suppl. 2), ii5-iil4.
- Anderson, G.M., Freytag, S.O., 1991. Synergistic activation of a human promoter in vivo by transcription factor Spl. Mol. Cell. Biol., 11, 1935−1943.
- Asai, K., Hayamizu, S., Handa, K., 1993. Prediction of Protein Secondary Structure by the Hidden Markov Model. Comput Appl Biosci 9, 141−146.
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. et al., 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25−29.
- Ashraf, S.I., Ip, Y.T., 1998. Transcriptional control: repression by local chromatin modification. Curr. Biol. 8, R683−686.
- Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble, W.S., 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202−208.
- Bailey, T.L., Noble, W.S., 2003. Searching for statistically significant regulatory modules. Bioinformatics 19 Suppl 2, U16−25.
- Barski, A., Zhao, K., 2009. Genomic location analysis by ChlP-Seq. J. Cell. Biochem. 107, 11−18.
- Baum, L.E., Petrie, Т., Soules, G., Weiss, N., 1970. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41(1), 164−171.
- Beissbarth, Т., Speed, T.P., 2004. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics, 20, 1464−1465.
- Berezikov, E., Guryev, V., Plasterk, R.H.A., Cuppen, E., 2004. CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting. Genome Res. 14, 170−178.
- Berg, O.G., von Hippel, P.H., 1985. Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14, 131−160.
- Berman, B.P., Nibu, Y., Pfeiffer, B.D., Tomancak, P., Celniker, S.E., Levine, M., Rubin,
- G.M., Eisen, M.B., 2002. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc. Natl. Acad. Sci. U.S.A 99, 757−762.
- Birney, E., 2007. Evolutionary genomics: come fly with us. Nature 450, 184−185.
- Brent, M.R., 2005. Genome annotation past, present, and future: how to define an ORF at each locus. Genome Res. 15, 1777−1786.
- Brower, V., 2011. Epigenetics: Unravelling the cancer code. Nature 471, S12−13.
- Brunak, S., Engelbrecht, J., Knudsen, S., 1991. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 220, 49−65.
- Bulyk, M.L., Johnson, P.L.F., Church, G.M., 2002. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res. 30, 1255−1261.
- Chan, B.Y., Kibler, D., 2005. Using hexamers to predict cis-regulatory motifs in Drosophila. BMC Bioinformatics 6, 262.
- Chaya, D., Zaret, K.S., 2004. Sequential chromatin immunoprecipitation from animal tissues. Meth. Enzymol. 376, 361−372.
- Chen, J., 2009. Serial analysis of binding elements for transcription factors. Methods Mol. Biol. 567, 113−132.
- Chytil, M., Peterson, B.R., Erlanson, D.A., Verdine, G.L., 1998. The orientation of the AP-1 heterodimer on DNA strongly affects transcriptional potency. Proc. Natl. Acad. Sci. U.S.A. 95,14 076−14 081.
- Cook, PR., 2003. Nongenic transcription, gene regulation and action at a distance. J. Cell. Sci. 116, 4483−4491.
- Dermitzakis, E.T., Clark, A.G., 2002. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol. Biol. Evol. 19, 1114−1121.
- Devonshire, A.S., Elaswarapu, R., Foy, C.A., 2010. Evaluation of external RNA controls for the standardisation of gene expression biomarker measurements. BMC Genomics 11, 662.
- Deyell, R.J., Attiyeh, E.F., 2011. Advances in the understanding of constitutional and somatic genomic alterations in neuroblastoma. Cancer Genet 204, 113−121.
- Diamond, M.I., Miner, J.N., Yoshinaga, S.K., Yamamoto, K.R., 1990. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249, 1266−1272.
- Djuranovic, S., Nahvi, A., Green, R., 2011. A parsimonious model for gene regulation by miRNAs. Science 331, 550−553.
- Durbin, R., 1998. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press.
- Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818−822.
- Erives, A., Levine, M., 2004. Coordinate enhancers share common organizational features in the Drosophila genome. Proc. Natl. Acad. Sci. U.S.A 101, 3851−3856.
- Fariselli, P., Martelli, P.L., Casadio, R., 2005. A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins. BMC Bioinformatics 6 Suppl 4, S12.
- Farkas, G., Leibovitch, B.A., Elgin, S.C., 2000. Chromatin organization and transcriptional control of gene expression in Drosophila. Gene 253, 117−136.
- Fickett, J.W., 1996. Coordinate positioning of MEF2 and myogenin binding sites. Gene 172, GC19−32.
- Frazer, K.A., Sheehan, J.B., Stokowski, R.P., Chen, X., Hosseini, R., Cheng, J.F., Fodor, S.P., Cox, D.R., Patil, N., 2001. Evolutionarily conserved sequences on human chromosome 21.
- Genome Res. 11, 1651−1659.
- Fried, M., Crothers, D.M., 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505−6525.
- Frith, M.C., Hansen, U., Weng, Z., 2001. Detection of cis-element clusters in higher eukaryotic DNA. Bioinformatics 17, 878−889.
- Frith, M.C., Li, M.C., Weng, Z., 2003. Cluster-Buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res 31, 3666−3668.
- Frith, M.C., Spouge, J.L., Hansen, U., Weng, Z., 2002. Statistical significance of clusters of motifs represented by position specific scoring matrices in nucleotide sequences. Nucleic Acids Res. 30,3214−3224.
- Fu, W., Ray, P., Xing, E.P., 2009. DISCOVER: a feature-based discriminative method for motif search in complex genomes. Bioinformatics, 25(12), i321-i329.
- Gallo, S.M., Gerrard, D.T., Miner, D., Simich, M., Des Soye, B., Bergman, C.M., Halfon, M.S., 2011. REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res. 39, D118−123.
- Gershenzon, N.I., Stormo, G.D., Ioshikhes, I.P., 2005. Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites. Nucleic Acids Res. 33,2290−2301.
- Gerstein, M., Sonnhammer, E.L., Chothia, C., 1994. Volume changes in protein evolution. J. Mol. Biol 236, 1067−1078.
- Gondor, A., Ohlsson, R., 2009. Chromosome crosstalk in three dimensions. Nature 461, 212−217.
- Gorodkin, J., Staerfeldt, H.H., Lund, O., Brunak, S., 1999. MatrixPlot: visualizing sequence constraints. Bioinformatics 15, 769−770.
- Grayson, J., Bassel-Duby, R., Williams, R.S., 1998. Collaborative interactions between MEF-2 and Spl in muscle-specifc gene regulation. J. Cell. Biochem., 70, 366−375.
- Gross, D.S., Garrard, W.T., 1988. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159−197.
- Griinwald, D., Singer, R.H., Rout, M., 2011. Nuclear export dynamics of RNA-protein complexes. Nature 475, 333−341.
- Hager, G.L., McNally, J.G., Misteli, T., 2009. Transcription dynamics. Mol. Cell 35, 741 753.
- Halfon, M.S., Grad, Y., Church, G.M., Michelson, A.M., 2002. Computation-Based Discovery of Related Transcriptional Regulatory Modules and Motifs Using an Experimentally Validated Combinatorial Model. Genome Res 12, 1019−1028.
- Hallikas, O., Palin, K., Sinjushina, N., Rautiainen, R., Partanen, J., Ukkonen, E., Taipale, J., 2006. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124, 47−59.
- Hartzog, G.A., 2003. Transcription elongation by RNA polymerase II. Curr. Opin. Genet. Dev. 13, 119−126.
- Hartzog, G.A., Kaplan, C.D., 2011. Competing for the clamp: promoting RNA polymerase processivity and managing the transition from initiation to elongation. Mol. Cell 43, 161−163.
- He, X., Ling, X., Sinha, S., 2009. Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution. PLoS Comput. Biol. 5, el 299.
- Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T., 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297−300.
- Hu, J., Hu, H., Li, X., 2008. MOPAT: a graph-based method to predict recurrent cis-regulatory modules from known motifs. Nucleic Acids Res 36, 4488−4497.
- Johansson, O., Alkema, W., Wasserman, W.W., Lagergren, J., 2003. Identification of functional clusters of transcription factor binding motifs in genome sequences: the MSCAN algorithm. Bioinformatics, 19(Suppl. 1), i 169—i 176.
- Keich, U., Pevzner, P.A., 2002. Finding motifs in the twilight zone. Bioinformatics. 18(10), 1374−1381.
- Kel-Margoulis, O.V., Ivanova, T.G., Wingender, E., Kel, A.E., 2002. Automatic annotation of genomic regulatory sequences by searching for composite clusters. Pac Symp1. Biocomput 187−198.
- Kel, A., Konovalova, T., Waleev, T., Cheremushkin, E., Kel-Margoulis, O., Wingender, E., 2006. Composite Module Analyst: a fitness-based tool for identification of transcription factor binding site combinations. Bioinformatics, 22, 1190−1197.
- King, O.D., Roth, F. R, 2003. A non-parametric model for transcription factor binding sites. Nucleic Acids Res. 31, el 16.
- Klepper, K., Sandve, G.K., Abul, O., Johansen, J., Drablos, F., 2008. Assessment of composite motif discovery methods. BMC Bioinformatics, 9, 123−123.
- Kolbe, D., Taylor, J., Elnitski, L., Eswara, P., Li, J., Miller, W., Hardison, R., Chiaromonte, F., 2004. Regulatory potential scores from genome-wide three-way alignments of human, mouse, and rat. Genome Res. 14, 700−707.
- Krivan, W., Wasserman, W.W., 2001. A predictive model for regulatory sequences directing liver-specific transcription. Genome Res. 11, 1559−1566.
- Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. Journal of Molecular Biology 305, 567−580.
- Krogh, A., Mian, I.S., Haussler, D., 1994. A Hidden Markov Model That Finds Genes in E. coli DNA. Nucl. Acids Res. 22, 4768−4778.
- Kulakovskiy, I.V., Makeev, V.J., 2010. Discovery of DNA motifs recognized by transcription factors through integration of different experimental sources. BIOPHYSICS 54, 667−674.
- Maas, S., 2010. Gene regulation through RNA editing. Discov Med 10, 379−386.
- Madsen, C.S., Regan, C.P., Owens, G.K., 1997. Interaction of CArG Elements and a GC-rich Repressor Element in Transcriptional Regulation of the Smooth Muscle Myosin Heavy Chain Gene in Vascular Smooth Muscle Cells. J. Biol. Chem., 272, 29 842-f 29 851.
- Maeda, T., Gupta, M.P., Stewart, A.F.R., 2002. TEF-1 and MEF2 transcription factors interact to regulate muscle-specifc promoters. Biochem. Biophys. Res. Commun, 294, 791−797.
- Makeev, V.J., Lifanov, A.P., Nazina, A.G., Papatsenko, D.A., 2003. Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcriptionregulatory information. Nucleic Acids Res 31, 6016−6026.
- Man, T.K., Stormo, G.D., 2001. Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Nucleic Acids Res. 29, 2471−2478.
- Mattick, J.S., Taft, R.J., Faulkner, G.J., 2010. A global view of genomic information-moving beyond the gene and the master regulator. Trends Genet. 26, 21−28.
- May, C., Brosseron, F., Chartowski, P., Schumbrutzki, C., Schoenebeck, B., Marcus, K., 2011. Instruments and methods in proteomics. Methods Mol. Biol. 696, 3−26.
- Moses, A.M., Chiang, D.Y., Kellis, M., Lander, E.S., Eisen, M.B., 2003. Position specific variation in the rate of evolution in transcription factor binding sites. BMC Evol. Biol. 3, 19.
- Moses, A.M., Chiang, D.Y., Pollard, D.A., Iyer, V.N., Eisen, M.B., 2004. MONKEY: identifying conserved transcription-factor binding sites in multiple alignments using a binding site-specific evolutionary model. Genome Biol. 5, R98.
- Moses, A.M., Pollard, D.A., Nix, D.A., Iyer, V.N., Li, X.-Y., Biggin, M.D., Eisen, M.B., 2006. Large-scale turnover of functional transcription factor binding sites in Drosophila. PLoS Comput. Biol 2, el30.
- Miihlemann, O., Eberle, A.B., Stalder, L., Zamudio Orozco, R., 2008. Recognition and elimination of nonsense mRNA. Biochim. Biophys. Acta 1779, 538−549.
- Navarro, P., Oldfield, A., Legoupi, J., Festuccia, N., Dubois, A., Attia, M., Schoorlemmer, J., Rougeulle, C., Chambers, I., Avner, P., 2010. Molecular coupling of Tsix regulation and pluripotency. Nature 468, 457−460.
- Nielsen, H., Brunak, S., Von Heijne, G., 1999. Machine Learning Approaches for the Prediction of Signal Peptides and Other Protein Sorting Signals. Protein Eng. 12, 3−9.
- Nishida, K., Frith, M.C., Nakai, K., 2009. Pseudocounts for transcription factor binding sites. Nucleic Acids Res. 37, 939−944.
- Noto, K., Craven, M., 2007. Learning probabilistic models of cis-regulatory modules that represent logical and spatial aspects. Bioinformatics 23, el56 -el62.
- O’Flanagan, R.A., Paillard, G., Lavery, R., Sengupta, A.M., 2005. Non-additivity in protein-DNA binding. Bioinformatics 21, 2254−2263.
- Papatsenko, D., Goltsev, Y., Levine, M., 2009. Organization of developmental enhancers in the Drosophila embryo. Nucleic Acids Res., 37, 5665−5677.
- Papatsenko, D.A., Makeev, V.J., Lifanov, A.P., Regnier, M., Nazina, A.G., Desplan, C., 2002. Extraction of functional binding sites from unique regulatory regions: the Drosophila early developmental enhancers. Genome Res. 12, 470−481.
- Paquet, E.R., Rey, G., Naef, F., 2008. Modeling an evolutionary conserved circadian cis-element. PLoS Comput. Biol. 4, e38.
- Parkinson, J., Blaxter, M., 2009. Expressed sequence tags: an overview. Methods Mol. Biol. 533, 1−12.
- Pierstorff, N., Bergman, C.M., Wiehe, T., 2006. Identifying cis-regulatory modules by combining comparative and compositional analysis of DNA. Bioinformatics 22, 2858−2864.
- Rabiner, L.R., 1989. A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE, 77, 257−286.
- Rajewsky, N., Vergassola, M., Gaul, U., Siggia, E.D., 2002. Computational detection of genomic cis-regulatory modules applied to body patterning in the early Drosophila embryo. BMC Bioinformatics 3, 30−30.
- Razin, A., 1998. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J. 17, 4905−4908.
- Remenyi, A., Scholer, H.R., Wilmanns, M., 2004. Combinatorial control of gene expression. Nat. Struct. Mol. Biol. 11, 812−15
- Remenyi, A., Tomilin, A., Scholer, H.R., Wilmanns, M., 2002. Differential activity by DNA-induced quarternary structures of POU transcription factors. Biochem. Pharmacol. 64, 979−984.
- Rivera-Pomar, R., Jackie, H., 1996. From gradients to stripes in 105 Drosophila embryogenesis: filling in the gaps. Trends Genet. TIG, 12, 478−483.
- Sandelin, A., Wasserman, W.W., 2004. Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinformatics. J. Mol. Biol. 338, 207−215.
- Sandelin, A., Wasserman, W.W., 2005. Prediction of nuclear hormone receptor response elements. Mol. Endocrinol. 19, 595−606.
- Sarafova, S., Siu, G., 2000. Precise arrangement of factor-binding sites is required for murine CD4 promoter function. Nucleic Acids Res. 28, 2664−2671.
- Schroeder, M.D., Pearce, M., Fak, J., Fan, H., Unnerstall, U., Emberly, E., Rajewsky, N., Siggia, E.D., Gaul, U., 2004. Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol. 2, E271.
- Simpson, P., 2002. Evolution of development in closely related species of flies and worms. Nat. Rev. Genet. 3, 907−917.
- Sinha, S., He, X., 2007. MORPH: Probabilistic Alignment Combined with Hidden Markov Models of cis-Regulatory Modules. PLoS Comput Biol 3, e216.
- Sinha, S., van Nimwegen, E., Siggia, E.D., 2003. A probabilistic method to detect regulatory modules. Bioinformatics 19 Suppl 1, I292−301.
- Small, S., Blair, A., Levine, M., 1992. Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J. 11, 4047−4057.
- Stanke, M., Schoffmann, O., Morgenstern, B., Waack, S., 2006. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7, 62.
- Stark, A., Lin, M.F., Kheradpour, P., Pedersen, J.S., Parts, L., Carlson, J.W., et al., 2007. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 450,219−232.
- Stormo, G.D., Schneider, T.D., Gold, L., Ehrenfeucht, A., 1982. Use of the «Perceptron» algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res. 10, 29 973 011.
- Tomancak, P., Berman, B. P, Beaton, A., Weiszmann, R., Kwan, E., Hartenstein, V., Celniker, S.E., Rubin, G.M., 2007. Global analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biol., 8, R145.
- Tranche, E, Ringeisen, F., Blumenfeld, M., Yaniv, M., Pontoglio, M., 1997. Analysis of the distribution of binding sites for a tissue-specific transcription factor in the vertebrate genome. J. Mol. Biol. 266, 231−245.
- Tweedie, S., Ashburner, M., Falls, K., Leyland, P., McQuilton, P., Marygold, S., Millburn, G., Osumi-Sutherland, D., Schroeder, A., Seal, R., Zhang, H., 2009. FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res., 37, D555-ID559.
- Wasserman, W.W., Fickett, J.W., 1998. Identification of regulatory regions which confer muscle-specific gene expression. J. Mol. Biol. 278, 167−181.
- Wasserman, W.W., Palumbo, M., Thompson, W., Fickett, J.W., Lawrence, C.E., 2000. Human-mouse genome comparisons to locate regulatory sites. Nat. Genet. 26, 225−228.
- Wheeler, D., 2007. Using GenBank. Methods Mol. Biol. 406, 23−59.
- Whiteld, T.W., Wang, J., Collins, P.J., Partridge, E.C., Aldred, S.F., Trinklein, N.D., Myers, R.M., Weng, Z., 2012. Functional analysis of transcription factor binding sites in human promoters. Genome Biol. 13, R50.
- Wilczynski, B., Dojer, N., Patelak, M., Tiuryn, J., 2009. Finding evolutionarily conserved cis-regulatory modules with a universal set of motifs. BMC Bioinformatics 10, 82.
- Won, K.J., Agarwal, S., Shen, L., Shoemaker, R., Ren, B., Wang, W., 2009. An integrated approach to identifying cis-regulatory modules in the human genome. PLoS One. 4(5), e5501.
- Wong, W.S.W., Nielsen, R., 2007. Finding cis-regulatory modules in Drosophila using phylogenetic hidden Markov models. Bioinformatics 23, 2031−2037.
- Wray, G.A., 2007. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206−216.
- Yuh, C.H., Bolouri, H., Davidson, E.H., 1998. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896−1902.
- Zhou, Q., Liu, J.S., 2004. Modeling within-motif dependence for transcription factor binding site predictions. Bioinformatics 20, 909−916.
- Zhou, Q., Wong, W.H., 2004. CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling. Proc. Natl. Acad. Sci. USA, 101(33), 12 114−9.
- Zhu, J., Zhang, M.Q., 1999. SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15, 607−611.
- Патрушев Л.И. Экспрессия генов. M.: «Наука», 2000. с. 829.
- Сингер М., Берг П. Гены и геномы. «Мир» т.2, 1998 г.