Помощь в написании студенческих работ
Антистрессовый сервис

Роль глутаматных рецепторов и Na/K-насоса в регуляции окислительного стресса

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Для того чтобы убедиться, что в нейрональных клетках 5-дневных животных экспрессируются и глутаматные рецепторы и Na/K-АТФаза, мы проанализировали уровень матричной РНК кодирующей соответствующие белки. Анализ показал, что в нейрональных клетках мозжечка присутствует матричная РНК, кодирующая большинство ионотропных, и метаботропных глутаматных рецепторов (за исключением каинатных рецепторов II… Читать ещё >

Роль глутаматных рецепторов и Na/K-насоса в регуляции окислительного стресса (реферат, курсовая, диплом, контрольная)

Содержание

  • ПРИНЯТЫЕ СОКРАЩЕНИЯ
  • РАЗДЕЛ I. РОЛЬ АКТИВНЫХ ФОРМ КИСЛОРОДА В АДАПТАЦИИ К ОКИСЛИТЕЛЬНОМУ СТРЕССУ
    • 1. 1. СИГНАЛЬНАЯ ФУНКЦИЯ СВОБОДНЫХ РАДИКАЛОВ В
  • ВОЗБУДИМЫХ ТКАНЯХ
    • I. II. ГЛУТАМАТНЫЕ РЕЦЕПТОРЫ И РЕГУЛЯЦИЯ ОКИСЛИТЕЛЬНОГО СТРЕССА В МОЗГЕ
    • I. III. МИШЕНИ ОКИСЛИТЕЛЬНОГО СТРЕССА В ЖИВОЙ КЛЕТКЕ
  • РАЗДЕЛ II. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • II. I. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
      • 11. 1. 1. Животные
      • 11. 1. 2. Протокол введения исследуемых соединений
      • 11. 1. 3. Физиологические методы исследования
      • 11. 1. 4. Выделение нейронов из мозжечка мышей и крыс
      • 11. 1. 5. Определение концентрации белка
      • 11. 1. 6. Определение ферментативных активностей
      • 11. 1. 7. Определение концентрации биогенных аминов
      • 11. 1. 8. Определение окисленности белков
      • 11. 1. 9. Хемилюминесцентный анализ АФК
      • 11. 1. 10. Измерение уровня Fen-индуцированной хемилюминесценции
    • I. LL11. Определение уровня мРНК к Na/K-A ТФазе и глутаматным рецепторам
    • II. 1.12. Статистическая обработка результатов
    • II. II. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ
    • II. II. 1. Продукция свободных радикалов нейронами грызунов
      • 11. 11. 2. Влияние МРТР на биохимические характеристики мозга грызунов
      • 11. 11. 3. Влияние МРТР на физиологические параметры животных
      • 11. 11. 4. Экспрессия глутаматных рецепторов и Na-mpacnopmepa в возбудимых тканях грызунов
      • 11. 11. 5. Взаимное влияние Na/K-АТФазы и глутаматных рецепторов
  • РАЗДЕЛ III.
  • ЗАКЛЮЧЕНИЕ
  • РАЗДЕЛ IV. ВЫВОДЫ
  • РАЗДЕЛУ. БЛАГОДАРНОСТИ
  • РАЗДЕЛ VI. СПИСОК ЛИТЕРАТУРЫ
  • ПРИНЯТЫЕ СОКРАЩЕНИЯ Сокращения, принятые в тексте диссертации для обозначения радикальных продуктов и химических групп, соответствуют рекомендации Комиссии по биохимической номенклатуре IUPAC
  • Другие сокращения, используемые в диссертации
  • ACPD — 1-аминоциклопентан-1,3-дикарбоновая кислота
  • АМРА — а-амино-3-гидрокси-5-метил-4-изооксазолпропионовая кислота
  • DHPG — 3,4-дигидроксифенилгликоль
  • DNP — динитрофенилгидразин dNTP — смесь дезоксинуклеотидов АТФ, ГТФ, ЦТФ, ТТФ
  • GAPDH — глицеральдегид-3 фосфат дегидрогеназа

GPCR — G-protein coupled receptors, рецепторы сопряженные с Gбелками mGluI (II, III) — глутаматные рецепторы 1,11,III групп соответственно M-MLV-RT — обратная транскриптаза вируса саркомы Молони грызунов.

МРТР — 1-метил-4-фенил-1,2,3,6-тетрагидропиридин NMDA — N-метил-О-аспартат OD — оптическая плотность

SAM (P/R) — Senescence Accelerated Mice (Prone/Resistant), линия мышей с ускоренным старением (склонные/устойчивые)

АТФ — аденозинтрифосфорная кислота

АФК — активные формы кислорода

ДОБА — диоксибензиламин кДНК — кодирующая дезоксирибонуклеиновая кислота МАО А, В — моноаминооксидаза А, В соответственно МДА — малоновый диальдегид мРНК — матричная рибонуклеиновая кислота мтДНК — митохондриальная дезоксирибонуклеиновая кислота

НСТ — нитросиний тетразолий

ОТ-ПЦР — полимеразная цепная реакция с обратной транскрипцией

ПОЛ — перекисное окисление липидов

ПЦР — полимеразная цепная реакция

СОД — супероксиддисмутаза

СОШ — стандартная ошибка среднего

ТАЕ — трис-ацетат-ЭДТА буфер

ТХУ — трихлоруксусная кислота

ФМА — форбол 12-миристат 13-ацетат

ЭДТА — этилендиаминтетрауксусная кислота

Окислительный стресс, являющийся следствием дисбаланса про-и антиоксидантных систем клетки и отражающийся в избыточном образовании в клетке активных форм кислорода (АФК), может являться причиной повреждения различных структур: ДНК, белков и липидов, и может приводить к клеточной смерти. Окислительный стресс сопровождает многие нейродегенеративные заболевания, по этой причине АФК принято считать вестниками клеточной смерти.

Однако в последнее время стало понятно, что активные формы кислорода принимают участие и в нормальной жизнедеятельности клетки в качестве сигнальных молекул. Так, реакции образования супероксид-аниона и гипохлорита клетками иммунной системы используется организмом при защите от инфекций и опухолевых процессов. Свободные радикалы, возникающие в цитозоле клетки в ответ на ее стимуляцию факторами роста, участвуют в регуляции процесса пролиферации. Образование простагландинов, тромбоксанов и лейкотриенов требует участие супероксид аниона, взаимодействующего с другим компонентом этой системы, арахидоновой кислотой — соединением, высвобождающимся из мембранных фосфолипидов в ходе индуцируемого АФК перекисного окисления липидов (ПОЛ). Недавно показано, что АФК, наряду с другими факторами, способны активировать такой транскрипционный фактор, как NF-кВ, что приводит к экспрессии различных белков.

Для исследования окислительного стресса применяются различные экспериментальные подходы, позволяющие выяснить молекулярные механизмы этого процесса как in vitro, так и in vivo. В настоящей работе мы использовали линию животных с ускоренным процессом старения SAMP1 (Senescence Accelerated Mice Prone, Strain 1), выведенную путем близкородственных скрещиваний из линии AKR/J. Характерной особенностью этой линии является то, что животные нормально развиваются до 4-х месячного возраста, после чего наступает фаза ускоренного накопления старческих признаков, обусловленных повышенной продукцией АФК. Истинным контролем к данной линии является линия SAMR1 (Resistant), также выведенная из линии AKR/J (Takeda, 1994).

Для моделирования окислительного стресса in vitro мы использовали N-метил-О-аспартат, NMDA, — соединение, активирующее одноименную группу ионотропных глутаматных рецепторов. Инкубируя выделенные из мозжечка нейроны мышей линии SAMP1 и крыс с различными концентрациями NMDA, мы наблюдали доз ои время-зависимое увеличение продукции АФК.

Достаточно давно известно, что центральный фермент ионного гомеостаза, Ыа/К-АТФаза, также может принимать участие в процессах окислительного стресса, однако в литературе отсутствует систематическое исследование роли Ыа/К-АТФазы в этом процессе и ее функциональной связи с другими клеточными системами, принимающими участие в реализации окислительного стресса.

Целью настоящей работы явилось установление связи между глутаматными рецепторами, окислительным стрессом и Na/K-АТФазой.

Следующие задачи были сформулированы для достижения этой цели: 1) оценить продукцию АФК в клетках мозжечка двух исследуемых линий животных- 2) оценить влияние глутаматных рецепторов и Ыа/К-АТФазы на развитие окислительного стресса- 3) оценить влияние АФК на физиологические и биохимических параметры животных- 4) охарактеризовать взаимодействие между глутаматными рецепторами и Ыа/К-АТФазой.

РАЗДЕЛ IV. ВЫВОДЫ.

1. В нейронах мышей линии SAMP1 обнаружен повышенный уровень активных форм кислорода, коррелирующий с пониженной активностью супероксиддисмутазы и повышенной активностью моноаминооксидазы В.

2. Na/K-АТФаза контролирует генерацию активных форм кислорода в нейрональных клетках, и окислительный стресс нарушает этот контроль.

3. Окислительный стресс, индуцируемый МРТР, вызывает окислительную модификацию липидов и белков головного мозга, приводя к нарушениям физиологического поведения животных.

4. Экспрессия Na/K-АТФазы и глутаматных рецепторов в мозге грызунов проявляется на самых ранних этапах постнатального развития, обеспечивая взаимодействие этих белков в процессе контроля за окислительным стрессом.

5. Экспрессия Na/K-АТФазы в кардиомиоцитах крысы находится под контролем АФК, причем наиболее чувствительна к этому контролю альфа 2 изоформа фермента.

6. Обнаружено взаимодействие между глутаматными рецепторами NMDA-класса и Ыа/К-АТФазой, выражающееся во взаимном контроле их функционального состояния.

7. Активация NDMA-рецепторов приводит к дозозависимому увеличению уровня АФК в нейрональной клетке. Положительный вклад в увеличении продукции АФК вносит также NMDA-зависимое ингибирование Na/K-АТФазы.

РАЗДЕЛУ. БЛАГОДАРНОСТИ.

Я бы хотел выразить благодарность моему научному руководителю профессору Александру Александровичу Болдыреву за внимание, помощь, предоставленную возможность работать и терпение. Без его участия настоящая работа не могла бы быть выполнена.

Я также благодарен сотрудникам лаборатории нейрохимии Института неврологии РАМН: Татьяне Николаевне Федоровой и Сергею Львовичу Стволинскому, а также сотрудникам кафедры биохимии Московского государственного университета им. М. В. Ломоносова: Елене Романовне Булыгиной, Ольге Владимировне Тюлиной и Томасу Аадоевичу Лейнсоо за ценные советы при обсуждении результатов и полезную дискуссию при подготовке этой диссертационной работы. Моя особая благодарность — коллегам из Гиссенского Университета — профессору В. Шонеру и профессору Г. Шайнер-Бобису за гостеприимство и руководство в овладении методами молекулярной биологии.

Огромное спасибо всем сотрудникам кафедр физиологии человека и животных и биохимии Биологического факультета МГУ им. М. В. Ломоносова за помощь в выборе жизненного пути и полученную радость от работы.

РАЗДЕЛ III.

ЗАКЛЮЧЕНИЕ

.

В настоящей работе мы проводили исследование основных механизмов развития и регуляции окислительного стресса в возбудимых тканях. В качестве основного объекта исследования мы использовали мышей линии SAMP1, характеризующихся ускоренным старением по сравнению с контрольной линией SAMR1. Ускоренное старение мышей линии SAMP1, проявляющееся в возрасте 4−6 месяцев, характеризуется потерей двигательной активности, алопецией, лордокифозом, системным амилоидозом и прочими возрастными нарушениями. Ускоренное старение мышей этой линии может быть обусловлено дисбалансом работы прои антиоксидантных систем клетки, проявляющимся в повышенном уровне продукции АФК. Это обстоятельство делает эту линию мышей удобной при изучении механизмов окислительного стресса. В опытах in vitro мы использовали нейрональные клетки мышей линии SAMP1 и контрольной к ней линии SAMR1. Нейрональные клетки были выбраны как наиболее чувствительные к действию АФК структуры, в которых можно значительно раньше наблюдать изменения метаболических процессов по сравнению с другими тканями. Хемилюминесцентным методом у мышей обеих линий (SAMP1 и SAMR1) нами был измерен стационарный и индуцированный ФМА и NMDA уровень АФК и показано, что нейрональные клетки, выделенные из мозжечка 12-дневных мышей SAMP1, характеризуются достоверно более высоким уровнем АФК, чем нейроны, выделенные из мозжечка контрольных животных. Таким образом, мы показали, что повышение продукции АФК в нейрональных клетках SAMP1 наблюдается на более ранней стадии онтогенеза, чем те, при которых у этих животных можно найти.

86 отклонения в поведении или обучаемости — накопление старческих признаков у мышей этой линии наблюдается только с 4-месячного возраста, и в возрасте 12 дней животные исследуемых групп по морфологическим признакам неразличимы между собой. Другими словами, увеличение стационарного и индуцируемого уровня АФК в тканях предшествует появлению видимых дефектов организма и может рассматриваться как одна из причин, вызывающих эти дефекты.

При инкубации нейрональных клеток с различными концентрациями специфического ингибитора Na/K-АТФазы уабаина мы наблюдали, что в нейрональных клетках SAMP1, для которых характерен изначально повышенный уровень АФК, внесение уабаина не приводило к существенному росту АФК, в то время как в случае с нейронами SAMR1 наблюдалось повышение продукции АФК в интервалах концентрации уабаина до 10 мкМ включительно, а при большей концентрации уабаина (1 мМ) обнаруживалось некоторое снижение уровня АФК. Этот факт свидетельствует об участии Na/K-АТФазы в процессах регуляции уровня АФК в нейрональных клетках.

Мы также анализировали влияние NMDA-рецепторов на уровень АФК в нейрональных клетках мышей линии SAMP1. Обнаружилось, что инкубация клеток с агонистом NMDA-рецепторов N-метил-О-аспартатом приводит к увеличению уровня АФК в нейрональных клетках как SAMR1, так и SAMP1, причем у последних этот эффект был более выражен, вероятно, из-за сниженного уровня антиоксидантной защиты.

Для того чтобы убедиться, что в нейрональных клетках 5-дневных животных экспрессируются и глутаматные рецепторы и Na/K-АТФаза, мы проанализировали уровень матричной РНК кодирующей соответствующие белки. Анализ показал, что в нейрональных клетках мозжечка присутствует матричная РНК, кодирующая большинство ионотропных, и метаботропных глутаматных рецепторов (за исключением каинатных рецепторов II класса). В нейрональных клетках присутствует также матричная РНК к альфа-1, альфа-2, и альфа-3 субъединицам Na/K-АТФазы, причем количество матричной РНК, кодирующей альфа-3 (сигнальную) субъединицу, обнаруживается в количестве большем, чем мРНК к альфа-1 и альфа-2 субъединицам Na/K-АТФазы. Существенных различий в характере экспрессии Na/K-АТФазы в мозжечке между 5-, 9- и 11-дневными животными мы не выявили.

Классические исследования о вовлечении Na/K-АТФазы в сигнальные пути проводились на кардиомиоцитах крысы (Kometiani et al, 1998, Xie et al, 1999). Этот же объект мы использовали для того, чтобы продемонстрировать влияние окислительного стресса на уровень экспрессии Na/K-АТФазы. Для индукции окислительного стресса мы использовали изопреналин, являющийся агонистом бета-адренорецепторов, поскольку известно, что системное введение изопреналина вызывает рост АФК в кардиомиоцитах (Zhang et al, 2005). Выяснилось, что в ответ на системное введение изопреналина в кардиомиоцитах крысы наблюдается снижение количества матричной РНК, кодирующей альфа-2 субъединицу Na/K-АТФазы, при этом уровень мРНК к альфа-1 субъединице остается неизменным. Матричная РНК, кодирующая альфа-3 субъединицу Na/K-АТФазы, также была обнаружена в сердечной ткани, однако ее количество было очень небольшим. Вероятно, сигнальная функция этой субъединицы проявляется преимущественно в проводящей системе сердца (волокна Пуркинье).

Таким образом, нами показано, что в нейрональных клетках мозжечка грызунов исследованного нами возраста экспрессируются и глутаматные рецепторы, и Na/K-АТФаза, и эти белки принимают непосредственное участие в развитии и регуляции окислительного стресса, причем ионотропные глутаматные рецепторы влияют на активность Na/K-АТФазы посредством АФК. Показано также, что помимо прямого влияния на активность Na/K-АТФазы, АФК также контролируют экспрессию альфа-2 субъединицы этого белка в кардиомиоцитах крысы.

В качестве фактора усиления окислительного стресса у исследованных животных мы использовали нейротоксин МРТР, индуцирующий окислительный стресс в мозге грызунов (Sriram et al, 1997) и вызывающий симптомы паркинсонизма у приматов и грызунов (Burns et al., 1983). Систематическое введение животным этого нейротоксина приводило к изменению их физиологических и биохимических параметров. Так, после введения МРТР у животных линии SAMP1 выявлялся кратковременный тремор, значительно снижалась масса тела и увеличивалась мышечная ригидность (по сравнению с SAMR1). Двигательная активность снижалась у животных обеих групп, но более выраженным это снижение было у SAMP1. Исходя из более явного изменения их физиологических параметров, можно предположить, что животные линии SAMP1 в большей степени подвержены действию МРТР, и эти изменения указывают на возникновение индуцируемых МРТР повреждений в области черной субстанции мозга (Sedelis et al, 2000).

Концентрация дофамина в стриатуме, измеренная нами методом высокоэффективной жидкостной хроматографии, была настолько низка у SAMP1, что введение МРТР существенно не влияло на нее, в то время как в группе SAMR1 мы наблюдали существенное снижение уровня дофамина (практически на порядок) — до той же величины, что и у SAMP1. Концентрация норадреналина в тканях мозга зависит от содержания дофамина, в связи с этим закономерно выглядит как исходно сниженная концентрация норадреналина у SAMP1, так и ее снижение у животных обеих экспериментальных групп после введения МРТР.

Активность МАО В, изначально повышенная у мышей линии SAMP1, еще более возрастала при введении МРТР, что, очевидно, сказывалось как на уровне дофамина, так и на степени превращения МРТР в МРР±радикал в исследуемых разделах мозга.

В мозге животных, получавших МРТР, наблюдалось увеличение уровня липидных гидроперекисей, ускорение окисления липидов и снижение их резистентности к окислению, что, по-видимому, связано с истощением антиоксидантной системы, которая должна предотвращать накопление окисленных продуктов. Эти изменения были демонстративно представлены в группе животных SAMP1, в то время как у SAMR1 количество липидных гидроперекисей в мозге не изменялось, а резистентность к окислению снижалась незначительно.

Вызванное МРТР снижение активности антиоксидантной системы удалось выявить и при измерении активности СОД. После введения МРТР активность СОД снижалась в обеих группах животных, что свидетельствует об истощении антиоксидантной системы, причем в случае SAMP1 эта система исходно характеризовалась меньшей эффективностью.

Дополнительным доказательством недостаточности антиоксидантной системы в мозге SAMP1 могут служить данные по количеству карбонильных групп белка в тканях мозга.

Введение

МРТР достоверно повышало концентрацию карбонильных групп и в гомогенате, и в митохондриях мозга SAMP1, но не SAMR1. Необходимо отметить, что концентрация карбонильных групп в митохондриальной фракции мозга была выше, чем в целом гомогенате, что, вероятно, связано с направленным действием МРТР в первую очередь на митохондрии — ведь именно митохондриальная МАО В осуществляет превращение МРТР в МРР±радикал.

В результате проделанной работы нам удалось показать, что окислительный стресс, вызываемый МРТР, оказывает существенное влияние как на биохимические, так и на физиологические параметры грызунов, причем мыши линии SAMP более подвержены действию этого индуктора окислительного стресса. Повышенная продукция АФК при окислительном стрессе может контролироваться как Na/K-АТФазой, так и глутаматными рецепторами, в частности NMDA-рецепторами. Кроме того, активность Na/K-АТФазы находится под опосредованным АФК контролем NMDA рецепторов. В кардиомиоцитах АФК также контролируют уровень мРНК кодирующей альфа-2 изоформу Na/K-АТФазы.

Настоящая работа дополняет известную картину развития окислительного стресса в возбудимых тканях, позволяя получить более полную картину механизмов, участвующих в повреждении возбудимых клеток при нарушениях снабжения кислородом этих клеток. Понимание молекулярных реакций, реализующихся в ходе окислительного стресса, является основой для выработки адекватных подходов для защиты мозга и сердца от окислительного стресса и его последствий.

Показать весь текст

Список литературы

  1. А. А. Карнозин: биологическое значение и возможности применения в медицине. М.: Изд-во МГУ. — 1998. — 320 с.
  2. А. А. Карнозин и защита тканей от окислительного стресса. М.: Диалог-МГУ. — 1999. — 362с.
  3. А.А. Дискриминация между апоптозом и некрозом нейронов под влиянием окислительного стресса.// Биохимия. -2000.-Т.65.-стр. 981−990.
  4. А. А. Окислительный стресс и мозг. // Соросовский Образовательный Журнал. 2001. — Т. 7. — № 4. — с. 21−28.
  5. А. А., Курелла Е. Г., Павлова Т. Н., Стволинский C.JI., Федосова Н.У.// Биологические мембраны. М. — 1992. — с. 92−93.
  6. А.А., М.О.Юнева, Е. В. Сорокина, Г. Г. Крамаренко, Т. Н. Федорова, Г. Г. Коновалова, и В. З. Ланкин. Антиоксидантные системы в тканях мышей с ускоренным темпом старения (SAM, Senescence Accelerated Mice).// Биохимия. 2001. — Т. 66. — стр. 1157−1163.
  7. Е.Р., Ляпина Л. Ю., Болдырев А. А. Активация глутаматных рецепторов ингибирует Na/K-АТРэзу гранулярных клеток мозжечка.// Биохимия. 2002. — Т.67. — стр. 1209−1214.
  8. С. Г., Кузнецова С. М. Моноаминооксидаза мозга и ее ингибиторы в геронтологии. // Вопросы мед. Химии. -1988.-Т. 34.-Вып.4. -с. 2−9.
  9. Ю. А., Шерстнев М. П. Хемилюминесценция клеток животных.// Итоги науки и техники. Серия Биофизика. 1989. — т. 24.-с. 172.
  10. Ю. А. Свободные радикалы и антиоксиданты. // Вестник РАМН. 1998.- Т. 7. — с. 43−51.
  11. А., Середенин С. Мутагенез, скрининг и фармакологическая профилактика.// Медицина: М. -1999.
  12. Н. К., Ланкин В. 3., Меныцикова Е. Б. Окислительный стресс.// МАИК.- 2001. -343 с.
  13. Г. Н., Карабань И. Н., Магаева С. В., Карабань Н. В. Компенсаторные и восстановительные процессы при паркинсонизме.//Киев.- 1995. -139с.
  14. В. С., Мирошниченко И. И., Раевский, К. С. Различия в механизмах ауторецепторной регуляции биосинтеза и высвобождения дофамина в подкорковых структурах мозга крыс.// Нейрохимия. 1988. — Т. 7. -№ 1. — с. 3−9.
  15. В.З., Тихазе А. К., Лемешко В. В., Шерматов К., Калиман П. А., Вихерт A.M. Возрастные изменения активности супероксиддисмутазы и глутатионпероксидазы в цитозоле и митохондриях печени крыс.// Бюлл. Экспер. Биол. Мед. -1981. -Т. 92.-е. 310−311.
  16. В. 3., Тихазе А. К., Беленков Ю. Н. Свободнорадикальные процессы в норме и при патологических состояниях. // НИИ кардиологии им. Л. А. Мясникова, пособие для врачей. М., РКНПК МЗ РФ, 2001, 78, стр. 14-39.
  17. О.Д. Взаимодействие каталитической субъединицы Na, K-ATPa3bi с клеточными белками и другими эндогенными регуляторами.// Биохимия. 2001. — T.66.N0 10. — стр. 1122−1131.
  18. М.Ф., Стволинский С. Л. Влияние гистидинсодержащих дипептидов на тирозингидроксилазу мозга.// Бюл. эксп. биол. мед. 1996.-Т. 121.-№ 4. -с. 420−422.
  19. И. И., Кудрин В. С., Раевский К. С. Влияние карбидина, сульпирида и галоперидола на содержание моноаминов и их метаболитов в структурах головного мозга крыс.// Фармаколог, и Токсикол. 1988. — Т 2. — с. 26−29.
  20. Е.В., Бастрикова Н. А., Стволинский С. Л., Федорова Т. Н. Эффекты карнозина и селегилина при паркинсонизме, вызванном введением МРТР мышам линии SAM.// Нейрохимия. -2003. Т. 20. — стр. 133−138.
  21. Т. Н., Болдырев А. А. и Ганнушкина И. В. Перекисное окисление липидов при экспериментальной ишемии мозга.// Биохимия. 1999. — Т. 64. — стр. 94−98.
  22. Agarwal S., and Sohal R. S. Differential oxidative damage to mitochondrial proteins during aging.// Mech. Ageing Dev. 1995. — v. 85. — pp. 55−63.
  23. , А., Капо, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A. and Tonegawa, S. Deficient cerebellar long-term depression and impaired motor learning in mGluRl mutant mice.// Cell. 1994, v. 79.-pp. 377−388
  24. Akimova OA, Bagrov AY, Lopina OD, Kamernitsky AV, Tremblay J, Hamet P, Orlov SN. Cardiotonic steroids differentially affectintracellular Na+ and Na+.i/[K+]i-independent signaling in C7-MDCK cells.// J Biol Chem. 2005. — v.280. — pp. 832−839.
  25. Alper G., Girgin F.K., Ozgonul M., Mentes G., Ersoz В. MAO inhibitors and oxidant stress in aging brain tissue.// Eur. Neuropsychopharmacol. 1999. — v. 9. — pp. 247−252.
  26. Ames B.N., Shigenaga M.K., and Hagen Т. M. Oxidants, antioxidants, and degenerative diseases of aging.// Proc. Natl. Acad. Sci. USA. 1993. — v. 90. — pp. 7915−7922.
  27. Arrigo A.P., and Kretz-Remmy C. Regulation of mammalian gene expression by free radicals.// In: Molecular Biology of Free Radicals in Human Disease. Aruoma 0. and Halliwell B. (Eds.). — Oica International, Saint Lucia, London. — 1998. — pp. 183−223.
  28. Aruoma О. I. Free radicals, oxidants and antioxidants: trend towards the year 2000 and beyond.// In: Molecular Biology of Free Radicals in Human Disease. Aruoma O. and Halliwell B. (Eds.). — Oica International, Saint Lucia, London. — 1998. — pp. 1−28.
  29. Barja G., and Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brai of mammals.//FASEB J. 2000. — v. 14. — pp. 312−318.
  30. Basaga H. S. Biochemical aspects of free radicals.// Biochem. Cell Biol. 1990. — v. 68. — pp. 989−998.
  31. Bell RM, Burns DJ. Lipid activation of protein kinase С.// J Biol Chem. 1991.-v.266.-pp. 4661−4664.
  32. Bennett JA, Dingledine R. Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop.// Neuron. 1995. — v. 14(2) — pp. 373−384.
  33. Blanco G. Na, K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation.// Semin Nephrol. 2005. — v. 25. — pp. 292−303.
  34. Boldyrev A, Bulygina E, Makhro A. Glutamate receptors modulate oxidative stress in neuronal cells. A mini-review.// Neurotox Res. -2004.-v. 6.-pp.581−587.
  35. Boldyrev A, Kurella E. Mechanism of oxidative damage of dog kidney Na/K-ATPase.// Biochem Biophys Res Commun. 1996. — v. 15. — pp. 483−487.
  36. Boldyrev A., Song R., Lawrence D., and Carpenter D. Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species.// Neurosci. 1999. — v. 94. — pp. 571−577.
  37. Boveris A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria.// Methods Enzymol. 1984. -v. 105. — pp. 429−435.
  38. Brines ML, Robbins RJ. Cell-type specific expression of Na+, K (+)-ATPase catalytic subunits in cultured neurons and glia: evidence for polarized distribution in neurons.// Brain Res. 1993. — v. 17. — pp. 111.
  39. Britton DR, Britton KT. A sensitive open field measure of anxiolytic drug activity.// Pharmacol Biochem Behav. 1981. — v. 15. — pp. 577 582.
  40. Bulygina E., Gallant S., Kramarenko G., Stvolinsky S., Yuneva M., and Boldyrev A. Characterization of the Age Changes in Brain and Liver Enzymes of Senescence-Accelerated Mice (SAM).// J. Anti-Aging Med. 1999. — v. 2. — pp. 43−48.
  41. Buss H., Chan Т., Sluis K., Domigan M., and Winterbourn C. Protein Carbonyl measurement by a sensitive ELISA method.// Free Rad. Biol. Med. 1997. — v .23. — pp. 361−366.
  42. Cadenas E., and Davies K. J. Mitochondrial free radical generation, oxidative stress, and aging.// Free Rad. Biol. Med. 2000. — v. 29. -pp. 222−230.
  43. Cadet J. Free radicals and neurodegeneration.// Trends Neurosci. -1994.-v. 17.-pp. 192−193.
  44. Choi D. Antagonizing excitotoxicity: A therapeutic strategy for stroke?// Mount Sinai J Med. 1998. — v.65. — pp. 133−138.
  45. Choi WS, Yoon SY, Oh TH, Choi EJ, O’Malley KL, Oh YJ. Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP±induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK.// J Neurosci Res. 1999. v.57. — pp. 86−94.
  46. Chu Y, Kordower JH. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson’s disease?// Neurobiol Dis. -2007.-v.25. pp. 134−149
  47. Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH. Dopaminergic cell death induced by MPP (+), oxidant and specific neurotoxicants shares the common molecular mechanism.// J Neurochem. -2001. v.76. pp. 1010−1021.
  48. Colotla VA, Flores E, Oscos A, Meneses A, Tapia R. Effects of MPTP on locomotor activity in mice.// Neurotoxicol Teratol. 1990. -v.12.-pp. 405−407.
  49. Conn, P. J. and Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors.// Annu. Rev. Pharmacol. Toxicol. -1997.-v.37.-pp. 205−237.
  50. Costantino, C., Macchiarulo, A. and Pellicciari, R. Homology model of the closed, functionally active, form of the amino terminal domain of mGluRl.// Bioorg. Med. Chem. 2001. — v.9. — pp. 847−852.
  51. Cross C., Halliwell В., Borish E., Pryor W., Ames В., Saul R., McCord J., and Harman D. Oxygen radicals and human disease.// Ann. Intern. Med. 1987. — v. 107. — pp. 526−545.
  52. Desai VG, Feuers RJ, Hart RW, Ali SF. MPP (+)-induced neurotoxicity in mouse is age-dependent: evidenced by the selectiveinhibition of complexes of electron transport.// Brain Res. 1996. -v.9. — pp. 1−8.
  53. Dobrota D, Matejovicova M, Kurella EG, Boldyrev AA. Na/K-ATPase under oxidative stress: molecular mechanisms of injury.// Cell Mol Neurobiol. 1999. — v. 19. — pp. 141−149.
  54. Ebadi M, Srinivasan SK, Baxi MD. Oxidative stress and antioxidant therapy in Parkinson’s disease.// Prog Neurobiol. 1996. — v. 48. -pp. 1−19.
  55. Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, Chandel NS. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling.// Mol Cell Biol. 2005. — v.25. — pp. 4853−4862.
  56. Evans P. Free radicals in brain metabolism and pathology.// Brit. Med. Bull. 1993. — v. 49. — pp. 577−587.
  57. Feldman AM, Tsutsui H, Shimokawa H, Takeshita A. Overexpression of tumor necrosis factor-alpha increases production of hydroxyl radical in murine myocardium.// Am. J. Physiol. Heart Circ. Physiol. 2003. — v. 284. — pp. 449−555.
  58. File SE, Wardill AG. The reliability of the hole-board apparatus.// Psychopharmacologia. 1975. — v. 14. — pp. 47−51.
  59. Finkel Т., and Holbrook N. Oxidants, oxidative stress and the biology of ageing.// Nature. 2000. — v. 408. — pp. 239−247.
  60. Francesconi, A. and Duvoisin, R. M. Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation.// J. Biol. Chem. 1998. — v. 273. -pp. 5615−5624.
  61. Fridovich I. The reaction of xantine oxidase with molecular oxygen.// J. Biol. Chem. 1974. — v. 249. — pp. 4350−4353.
  62. Gereau, R. W. and Heinemann, S. F. (1998) Role of protein kinase С phosphorylation in rapid desensitization of metabotropic glutamate receptor 5.//Neuron. 1998,-v.20.-pp. 143−151.
  63. Green M. J., and Hill H.A.O. Chemistry of dioxygen.// Methods in Enzymology. 1984. — v. 105. — pp. 3−22.
  64. Greene JG and Greenamyre JT. Bioenergetics and gluamate excitotoxicity.// Prog Neurobiol. 1996. — v. 48. — pp. 613−634.
  65. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS.// Circulation. 2003. — v.21. — pp. 1912−1916.
  66. Grune Т., Reinheckel Т., and Davies K. J. Degradation of oxidized proteins in mammalian cells. // The FASEB J. 1997. — v. 11. — pp. 526−534.
  67. Halliwell В., and Gutteridge J. M. C. Free Radicals in Biology and Medicine. // Oxford University Press. 1999. — pp. 936.
  68. Halliwell В., and Gutteridge J. M. C. Oxygen toxicity, oxygen radicals, transition metals and disease.// Biochem. J. 1984. — v. 219. -pp. 1−14.
  69. Hampton MB, Kettle AJ, Winterbourn CC. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils.// Infect Immun. 1996. — v. 64. -pp. 3512−3517.
  70. Hermans E. and Challiss J. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family С G-protein-coupled receptors.// Biochem J. 2001. — v. 359. -pp. 465−484.
  71. Hollmann M, Heinemann S. Cloned glutamate receptors.// Annu Rev. Neurosci. 1994.-v. 17.-pp. 31−108
  72. Hollmann M, Maron C, Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluRl.// Neuron. 1994. — v.13 — pp. 1331−1343.
  73. Hosokawa M. A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice.// Mech Ageing Dev. 2002. — v.123. — pp. 1553−1561.
  74. Huang WH, Wang Y, Askari A, Zolotarjova N, Ganjeizadeh M. Different sensitivities of the Na+/K (+)-ATPase isoforms to oxidants.// Biochim Biophys Acta. 1994. — v.23. — pp. 108−114.
  75. Huang WH, Wang Y, Askari A. (Na+ + K+)-ATPase: inactivation and degradation induced by oxygen radicals.// Int J Biochem. 1992. — v.24. — pp. 621−626.
  76. Jansen M, Dannhardt G. Antagonists and agonists at the glycine site of the NMDA receptor for therapeutic interventions.// Eur J Med Chem. 2003. — v.38. — pp. 661−670.
  77. Jenner P., and Olanow C. W. Oxidative stress and the pathogenesis of Parkinson’s disease. // Neurology. 1996, — v. 47.- pp. 161−170.
  78. Juhaszova M, Blaustein MP. Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells.// Proc Natl Acad Sci. 1997. — v.94. -pp. 1800−1805.
  79. Kaplan P, Matejovicova M, Herijgers P, Flameng W. Effect of free radical scavengers on myocardial function and Na+, K±ATPase activity in stunned rabbit myocardium.// Scand Cardiovasc J. 2005. — v.39. — pp. 213−219.
  80. Kettle AJ, Gedye CA, Winterbourn CC. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide.// Biochem J. -1997.-v.15.-pp. 503−508.
  81. Kifle Y, Monnier J, Chesrown SE, Raizada MK, Nick HS. Regulation of the manganese superoxide dismutase and inducible nitric oxide synthase gene in rat neuronal and glial cells.// J. Neurochem. 1996. — v.66. — pp. 2128−2135.
  82. Knight JA. Review: Free radicals, antioxidants, and the immune system.// Ann Clin Lab Sci. 2000. — v.30. — pp. 145−158.
  83. Kometiani P, Liu L, Askari A. Digitalis-induced signaling by Na/K-ATPase in human breast cancer cells.// Mol Pharmacol. 2005. -v.67.-pp. 929−936.
  84. Kopin I. J. MPTP: an industrial chemical and contaminant of illcit narcotics stimulates a new era in research on Parkinson, s disease.// Environ Heath Perspect. 1987. — v. 75. — pp. 45−51.
  85. Lenaz G., Bovina C., Formiggini G., and Castelli G. P. Mitochondria, oxidative stress and antioxidant defences.// Acta Biochim Pol. 1999. — v. 46. — pp. 1−21.
  86. Lowry О. H., Rosebrough N. J., Farr A. L., and Randal R. J. Protein measurement with the Folin phenol reagent.// J. Biol. Chem. 1951. -v. 93.-pp. 265−275.
  87. Mackes JL, Willner J. NMDA antagonist MK-801 impairs acquisition of place strategies, but not their use.// Behav Brain Res. -2006.-v. 175.-pp. 112−118.
  88. Makanjuola R. O., Hill G., Dow R. C., Campbell G., and Ashcroft G. W. The effects of psychotropic drugs on exploratory and stereotyped behavior of rats studied on a hole-board.// Psychopharmacology. -1977.-v. 55.-№ 1.-pp. 67.
  89. Misra H., and Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.//J. Biol. Chem. 1972. — v. 247. — pp. 3170−3175.
  90. Mohammadi K., P. Kometiani, Z. Xie, and A. Askari, Role of Protein Kinase С in the Signal Pathways That Link Na/K-ATPase to ERK½.// J. Biol. Chem. 2001. — v.276. No. 45. — pp. 42 050−42 056.
  91. Moody TW, Merali Z, Crawley JN. The effects of anxiolytics and other agents on rat grooming behavior.// Ann N Y Acad Sci. 1988. -v.525. — pp. 281−290.
  92. Morrow J. and Roberts L.J. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidative stress.// Methods of Enzymology. 1999. — v. 300. — pp. 3−13.
  93. Nemoto S., Takeda K., Yu Z. X., Ferrans V. J., and Finkel T. Role of mitochondrial oxidants as regulators of cellular metabolism.// Mol. Cell. Biol.- 2000.-v. 20. pp. 731 1−7318.
  94. Newcomb T. G. and Loeb L. A. Mechanisms of mutagenicity of oxidatively-modified bases. In: Molecular Biology of Free Radicals in Human Disease. Aruoma O. and Halliwell B. (Eds.). — Oica International, Saint Lucia, London. — 1998. — pp. 139−166.
  95. Peng L, Martin-Vasallo P, Sweadner KJ. Isoforms of Na/K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures.// J Neurosci. 1997. — v. 17. — pp. 3488−3502.
  96. Poewe W. H., and Wenning G. K. The natural history of Parkinson’s disease.// Ann. Neurol. 1998. — v. 44. — pp. S1-S9.
  97. Pryor W. A. Oxy-radicals and related species: Their formation, lifetime and reaction.// Annu. Rev. Physiol. 1986. — v. 48. — pp. 657 667.
  98. Raha S., and Robinson В. H. Mitochondria, oxygen free radicals, disease and aging.// Trends Biochem. Sci. 2000. — v. 25. — pp. 502 508.
  99. Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate.// Anal Biochem. 1969. — v.28. — pp. 436−445.
  100. Rathore N, John S, Kale M, Bhatnagar D. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues.// Pharmacol Res. 1998. — v.38. — pp. 297−303.
  101. Ray, K. and Hauschild, В. C. Cys-140 is critical for metabotropic glutamate receptor-1 dimerization.// J. Biol. Chem. 2000. — v.275 -pp. 34 245−34 251.
  102. Richter C. Biophysical consequence of lipid peroxidation in membranes.//Chem. Phys. Lipids. 1987. — v. 44. — pp. 175−189.
  103. Sabri A, Hughie HH, Lucchesi PA. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes.// Antioxid Redox Signal. 2003. — v.5. — pp. 731−740.
  104. Schoner W, Bauer N, Muller-Ehmsen J, Kramer U, Hambarchian N, Schwinger R, Moeller H, Kost H, Weitkamp C, Schweitzer T, Kirch U, Neu H, Grunbaum EG. Ouabain as a mammalian hormone.// Ann N Y Acad Sci. 2003. — v.986. — pp. 678−684.
  105. Sedelis M., Hofele K., Auburger G. W, Morgan S., Huston J. P., and Schwarting R. К. MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences.//Behav Genet.- 2000. v. 30. № 3. — pp. 171−182.
  106. Semsei I., Rao G., and Richardson A. Expression of superoxide dismutase and catalase in rat brain as a function of age.// Mech. Ageing Dev. 1991. — v. 58. — pp. 13−19.
  107. Shigenaga M. K., Hagen Т. M., and Ames B. N. Oxidative damage and mitochondrial decay in aging.// Proc. Natl. Acad. Sci. USA. -1994.-v. 91.-pp. 10 771−10 778.
  108. Shih J. C., and Thompson R. F. Monoamine oxidase in neuropsychiatry and behavior.// American Journal of Human Genetics. 1999.-v. 65.-pp. 593−598
  109. Shih J. C., Chen K., and Ridd M. J. Monoamine oxidase: from genes to behavior.// Annu. Rev. Neurisci. 1999.- v. 22.- pp. 197−217.
  110. Sies H. Oxidative Stress II. Oxidants and antioxidants.// Academic Press, London. 1991.
  111. V., and Hahn V. A behavioural study of the effect of pentadecapeptide BPC 157 in Parkinson’s disease models in mice and gastric lesions induced by l-methyl-4-phenyl-l, 2,3,6-tetrahydrophyridine.// J. Physiol. Paris. 1999. — v. 93. — pp. 505−512.
  112. Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J. and Weiss, S. Glutamate stimulates inositol phosphate formation in striatal neurones.// Nature. 1985. — v.317. — pp. 717−719.
  113. Slater T. F. Recent advances in biochemical pathology: toxic liver injury.// Pion Press. 1976. — pp. 1−283.
  114. Sriram K, Pai KS, Boyd MR, Ravindranath V. Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice.// Brain Res. 1997. — v.749. — pp. 44−52.
  115. Suzuki Y, Takagi Y, Nakamura R, Hashimoto K, Umemura K. Ability of NMDA and non-NMDA receptor antagonists to inhibit cerebral ischemic damage in aged rats.// Brain Res. 2003. — v.21. -pp. 116−120.
  116. Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): a novel murine model of senescence.// Exp Gerontol. 1997. -v.32.-pp. 105−109.
  117. Takeda Т., Hosokawa M., and Higuchi K. Senescence Accelerated Mice. A novel murine model of aging.// In: The SAM Model of Senescence (T. Takeda Ed.). Excerpta Medica, Amsterdam. — 1994. -pp. 15−23.
  118. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling.// Am. J. Physiol. Lung Cell. Mol. Physiol. 2000. — v.279. -pp. 1005−1028.
  119. Tu, J. C., Xiao, В., Yuan, J. P., Lanahan, A. A., Leoffert, K., Li, M., Linden, D. J. And Worley, P. F. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors.// Neuron. 1998. — v.21. -pp. 717−726.
  120. Turpaev KT. Reactive oxygen species and regulation of gene expression. //Biochemistry (Mosc). 2002. -v.67 No.3. — pp. 281−292.
  121. Vladimirov Y. A. Studies of antioxidants with chemiluminescence.// In: Proceedings of the International Symposium on Natural Antioxidants. Molecular Mechanisms and Health Effects. Packer L., Traber M.G., and Xin W. (Eds.). — 1996. — pp. 125−144.
  122. Wu HM, Chi KH, Lin WW. Proteasome inhibitors stimulate activator protein-1 pathway via reactive oxygen species production.// FEBS Lett. 2002. -v.526. — pp. 101−105.
  123. Xie Z, Kometiani P, Liu J, Li J, Shapiro JI, Askari A. Intracellular reactive oxygen species mediate the linkage of Na+/K±ATPase to hypertrophy and its marker genes in cardiac myocytes.// J. Biol. Chem. 1999. — v.274. — pp. 19 323−19 328.
  124. Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, Nagai Y, Fujisawa Y, Miyatake A, Abe Y. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats.// Cardiovasc Res. -2005.-v.65.-pp. 230−238.
Заполнить форму текущей работой