Помощь в написании студенческих работ
Антистрессовый сервис

Растворимый Fas при онкологических заболеваниях

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Материалы диссертации доложены на научно-практическом симпозиуме «Клиническая лаборатория на пороге XXI века: синтез традиций и новаций», (Москва, 12−14 октября 1999 года) — на VII Российском Национальном Конгрессе «Человек и лекарство» (Москва, 10−14 апреля 2000 года) — на 2-ом съезде онкологов стран СНГ (Киев, 23−26 мая 2000 года) — на 7th Biennial Meeting of the International Gynecological… Читать ещё >

Растворимый Fas при онкологических заболеваниях (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
  • ГЛАВА 1. Обзор данных литературы. Молекулярно-биологические 1 «» маркеры при онкологических заболеваниях
    • 1. 1. Fas/FasL система в норме и при патологии
    • 1. 2. VEGF (фактор роста эндотелия сосудов)
    • 1. 3. Интерлейкин
    • 1. 4. Активатор плазминогена урокиназного типа (иРА)
    • 1. 5. Рецепторы эстрогенов в опухолях молочной железы
  • ГЛАВА 2. Материалы и методы исследований
  • ГЛАВА 3. Разработка сэндвич-ИФА для количественного определения sFas в сыворотке крови на основе моноклональных антител и характеристика тест-системы
  • ГЛАВА 4. sFas, IL-6, VEGF в сыворотке крови и содержание рецепторов эстрогенов в опухолях при новообразованиях молочной железы
  • ГЛАВА 5. Растворимый Fas, VEGF и активность щелочной фосфатазы в сыворотке крови больных новообразованиями скелета
  • ГЛАВА 6. sFas, VEGF и IL-6 в сыворотке крови больных новообразованиями яичников
  • ГЛАВА 7. sFas, VEGF и IL-6 в сыворотке крови больных раком тела матки
  • ГЛАВА 8. sFas и VEGF в сыворотке крови больных колоректальным раком
  • ГЛАВА 9. sFas в сыворотке крови и иРА в опухолевой ткани при новообразованиях щитовидной железы
  • ГЛАВА 10. sFas, VEGF и IL-6 в сыворотке крови больных новообразованиями надпочечников

Актуальность проблемы. Апоптоз, или программированная клеточная гибель — исключительно важный механизм элиминации опасных для организма клеток, к числу которых относятся вирус-инфицированные, опухолевые клетки, а также клетки, закончившие свой жизненный цикл. Это очень сложный механизм, на различных этапах которого задействованы многочисленные факторы и рецепторы клеточной гибели, а также ряд адапторных белков, приводящий, в конечном итоге, к активации внутриклеточных протеаз и самоуничтожению опасной для организма клетки. Любые сбои в этом многоступенчатом процессе приводят к развитию серьезных патологий, таких как болезнь Альцгеймера, множественный рассеянный склероз, амиотрофный латеральный склероз, некоторые лимфопролиферативные нарушения, а также к возникновению и росту злокачественных опухолей. Основной характеристикой этих новообразований является их способность к неограниченному росту и устойчивость к действию факторов, регулирующих процессы пролиферации и дифференцировки и клеточной гибели.

Одним из ключевых рецепторов, запускающих программу самоуничтожения клетки, является Fas. Fas/APO-l/CD95 — трансмембранный гликопротеин, относящийся к семейству рецепторов фактора некроза опухоли (Itoh и соавт., 1991; Oehm и соавт., 1992). Fas продуцируется почти всеми тканями организма, его экспрессия выявлена в тимусе, почках, печени, сердце, легких, он также экспонирован на поверхности активированных лимфоцитов, натуральных киллеров, вирус-инфицированных и опухолевых клеток (Nagata and Golstein, 1995).

Индукция Fas-опосредованного апоптоза в клетке происходит после взаимодействия Fas с лигандом (FasL). Механизм Fas-опосредованного апоптоза хорошо изучен: идентифицированы основные белки, участвующие в передаче апоптотического сигнала от активированного Fas, установлены их структура и функции. Показано, что взаимодействие Fas с FasL приводит к активации каспазы-8 или каспазы-2 через адапторные белки FADD/MORT-1 или RIP и RAIDD. FLICE-ингибирующий белок FLIP блокирует активацию каспазы-8, таким образом, ингибируя апоптоз. На конечном этапе происходит протеолиз жизненно важных для клетки белков, таких как поли (АДФ-рибо-зил)полимераза, ламин и других, что приводит к функциональным и морфологическим изменениям цитоплазмы и ядра клетки, типичным для апоптоза.

Неэффективная работа Fas-системы определяется нарушениями в экспрессии, структуре, и функционировании белков, опосредующих Fas-зависимый апоптоз. Мутации белков, задействованных в передаче Fas-зависимого апопто-тического сигнала, были выявлены при таких заболеваниях как злокачественные опухоли, СПИД, тиреоидиты, гепатиты, миокардиты и др. Другой причиной неэффективной работы Fas-системы, определяющей устойчивость различных типов клеток к Fas-зависимому апоптозу, является повышенная продукция растворимого Fas (sFas) этими клетками. Растворимый Fas дистантно ингиби-рует действие FasL, позволяя клеткам-продуцентам растворимого Fas уйти от противоопухолевой защиты организма. С помощью молекулярно-биологи-ческих методов было показано, что sFas является продуктом альтернативного сплайсинга полноразмерной мРНК Fas (Cheng и соавт., 1994; Cascino и соавт.,.

1995). Идентифицировано несколько растворимых изоформ Fas, среди которых преобладает одна — FasdelTM, или FasExooDel, остальные изоформы продуцируются в незначительных количествах (Cascino и соавт., 1995; Cascino и соавт.,.

1996).

Актуальность настоящего исследования определяется необходимостью разработки тест-системы для измерения концентрации растворимого Fas в сыворотке крови больных новообразованиями различного морфогенеза и локализации и определения его значения при онкологических заболеваниях. Цель исследования — Разработка и характеристика сэндвич-ИФА для определения концентрации растворимого Fas в сыворотке крови, изучение связи показателей sFas с основными клиническими, морфологическими и некоторыми биохимическими характеристиками опухолевых процессов и его значения в прогнозе онкологических заболеваний.

Задачи исследования:

1. Охарактеризовать разработанный нами сэндвич-ИФА для количественного определения sFas в сыворотке крови человека — оценить предел детекции тест-системы и воспроизводимость результатов анализа. Дать иммунохимическую характеристику моноклональных антител (МА), на основе которых разработан сэндвич-ИФА.

2. С помощью пептидного фагового дисплея определить структуру эпитопов для МА к полноразмерному Fas человека, на основе которых разработан сэндвич-ИФА, с целью выявления спектра изоформ sFas, которые должна детектировать разработанная тест-система.

3. Определить концентрацию sFas в сыворотке крови онкологических больных с наиболее часто выявляемыми опухолями (новообразования молочной железы, яичников, эндометрия, костей, толстой кишки, надпочечников и щитовидной железы) и провести анализ показателей sFas в зависимости от основных клинических, морфологических и биохимических критериев опухолевых процессов и определить его значение в прогнозе заболеваний.

4. Изучить корреляцию показателей sFas в сыворотке крови онкологических больных с показателями наиболее важных патогенетических факторов: активатора процесса неоангиогенеза в опухоли — VEGF, провоспалительного цитокина, ингибитора Fas-зависимого апоптоза — IL-6, уровня содержания рецепторов эстрогенов в опухоли при раке молочной железы, общей активности щелочной фосфатазы в сыворотке крови при новообразованиях костей, уровня содержания активатора плазминогена (иРА) в ткани опухолей щитовидной железы.

Научная новизна. Разработана и охарактеризована оригинальная отечественная тест-система, не уступающая аналогичным тест-системам для количественного определения растворимого Fas в сыворотке крови человека, описанным в литературе.

С помощью разработанной тест-системы впервые на большом клиническом материале определена концентрация и проведен анализ показателей растворимого Fas в сыворотке крови больных новообразованиями различного морфогенеза и локализации в сравнении с соответствующими показателями практически здоровых людей. Впервые определены связь показателей sFas с основными клиническими, морфологическими и некоторыми биохимическими характеристиками опухолевых процессов и его значение в прогнозе заболевания при раке яичников, раке тела матки, раке коры надпочечников и остеосаркоме, а также предиктивное значение sFas в оценке эффективности неоадъювантной лучевой терапии при колоректальном раке.

Практическая значимость исследования состоит в разработке иммуноферментной тест-системы для количественного определения растворимого Fas в сыворотке крови человека, а также в установлении значения этого белка как фактора прогноза при раке яичников, раке тела матки, раке коры надпочечников и остеосаркоме, а также его предиктивного значения в оценке эффективности неоадъювантной лучевой терапии при раке толстой кишки.

Основные положения, выносимые на защиту:

1. Разработанная тест-система — сэндвич-ИФА на основе МА SA-7 и SA-8 может применяться для количественного определения sFas в сыворотке и плазме крови человека и других биологических жидкостях. Присутствие sFasL и других компонентов сыворотки крови не влияет на результаты количественного определения sFas. Разработанная нами тест-система должна детектировать основную изоформу sFas — FasExooDel и три минорных изоформы sFas — FasExo4Del, FasExo4,6Del и FasExo4,7Del.

2. Концентрация и частота выявления sFas в сыворотке крови больных новообразованиями различного морфогенеза и локализации достоверно превышают соответствующие показатели практически здоровых людей контрольной группы.

3. Показатели sFas в сыворотке крови связаны с основными клиническими характеристиками заболевания (стадия опухолевого процесса, размер опухолевого узла, степень дифференцировки опухоли и характер ее роста) при раке яичников, раке тела матки, раке толстой кишки и адренокортикальном раке.

4. Показатели sFas достоверно не различаются при злокачественных и доброкачественных новообразованиях молочной железы, костей, яичников и надпочечников, тогда как рак щитовидной железы характеризуется более высокими показателями sFas в сыворотке крови, чем доброкачественные и гиперпластические процессы щитовидной железы. Одновременно высокие уровни sFas, VEGF и IL-6 в сыворотке крови характерны для злокачественных новообразований.

5. Высокий уровень sFas в сыворотке крови является неблагоприятным фактором прогноза для больных остеогенной саркомой, раком яичников, раком тела матки и адренокортикальным раком.

6. Высокая концентрация sFas в сыворотке крови является неблагоприятным предиктивным фактором эффективности применения неоадъювантной лучевой терапии при колоректальном раке в пожилом возрасте.

Апробация работы.

Материалы диссертации доложены на научно-практическом симпозиуме «Клиническая лаборатория на пороге XXI века: синтез традиций и новаций», (Москва, 12−14 октября 1999 года) — на VII Российском Национальном Конгрессе «Человек и лекарство» (Москва, 10−14 апреля 2000 года) — на 2-ом съезде онкологов стран СНГ (Киев, 23−26 мая 2000 года) — на 7th Biennial Meeting of the International Gynecological Cancer Society (Rome, Italy, September 26−30, 1999) — на XI Российском Национальном Конгрессе «Человек и лекарство» (Москва, 19−23 апреля 2004 года) — на Конгрессе «Национальные дни лабораторной медицины России-2004» (Москва 20−22 октября 2004 г.) — на Российской научно-практической конференции «Современное состояние и перспективы развития экспериментальной и клинической онкологии» (Томск, 24−25 июня 2004 г.) — на XII Российском Национальном Конгрессе «Человек и лекарство» (Москва, 1822 апреля 2005 г.) — на I Всероссийской научно-практической конференции патологоанатомов «Актуальные вопросы патологической анатомии» (Орел, 31 мая-2 июня 2005 г.) — на X Российском онкологическом конгрессе (Москва, 2123 ноября 2006 г.) — на XIII Российском Национальном Конгрессе «Человек и лекарство» (Москва, 3−7 апреля 2006 г.). Диссертационная работа апробирована на совместной научной конференции лаборатории клинической биохимии, лаборатории клинической иммунологии, х/о опухолей молочной железы, х/о проктологии, х/о диагностики опухолей НИИ КО, лаборатории молекулярной эндокринологии НИИ канцерогенеза РОНЦ им. Н. Н. Блохина РАМНкафедры онкологии ФПДО МГМСУ, кафедры клинической биохимии и лабораторной диагностики ФПДО МГМСУлаборатории нейрохимии ФИБХ РАН 14 октября 2008 г.

Полученные результаты используются в практике лаборатории клинической биохимии НИИ клинической онкологии ГУ РОНЦ им. Н. Н. Блохина РАМН и в учебном процессе на кафедре клинической биохимии и лабораторной диагностики ФПДО ГОУ ВПО «Московский государственный медико-стоматологический университет Росздрава».

Публикации. По материалам диссертации опубликовано 41 работа в отечественных и зарубежных журналах.

Структура и объем диссертации

Диссертация состоит из введения, обзора литературы, экспериментальной части, включающей описание материалов и методов и 8 глав результатов собственных исследованийзаключения, выводов, списка цитируемой литературы. Общий объем диссертации 272 страницы машинописного текста.

Список литературы

включает 84 отечественных и 448 зарубежных авторов. Диссертация иллюстрирована 67 таблицами и 26 рисунками.

ВЫВОДЫ:

1. Впервые разработана оригинальная отечественная тест-система на основе МА SA-7 и SA-8, которая позволяет надежно определять концентрацию sFas в сыворотке и плазме крови человека. Предел детекции сэндвич-ИФА — 0.3 нг/мл sFas, диапазон линейности измерения концентрации составляет 0.3−10.0 нг/мл sFas, коэффициент вариации при определении концентрации sFas в сыворотке и плазме крови не превышает (3.7±0.7)%.

2. МА SA-7 (IgGl (K) — (5.8±-0.7)х108 М" 1) взаимодействует с эпитопом полноразмерного Fas человека, определяемым аминокислотными остатками 129−134, эпитоп для МА SA-8 (IgGl (K)-(4.0±0.6)xl07 М" 1) определяют аминокислотные остатки 94−99. Таким образом, разработанный сэндвич-ИФА на основе МА SA-7 и SA-8 должен детектировать основную изоформу растворимого Fas — FasExooDel и три минорных изоформы sFas: FasExo4Del, FasExo4,6Del и FasExo4,7Del.

3. Показатели sFas определены у 457 практически здоровых людей, (332 женщины и 125 мужчин) в возрасте от 17 до 78 лет, при этом частота выявления sFas равнялась 40%, концентрация sFas колебалась от 0.3 нг/мл до 1.2 нг/мл, средний уровень составил 0.9±0.3 нг/мл, медиана концентрации — 0.8 нг/мл. Показатели sFas достоверно не зависели от возраста и пола обследованных, а у женщин не зависели от репродуктивной функции, длительности постменопаузы и фазы менструального цикла.

4. Изучены показатели sFas в сыворотке крови у 1063 больных новообразованиями молочной железы, костей, яичников, матки, щитовидной железы, толстой кишки и надпочечников. Частота выявления и концентрация sFas в сыворотке крови во всех обследованных группах пациентов превышала соответствующие показатели контрольной группы (р=0.1). Так, в общей группе онкологических больных частота выявления sFas равнялась 78%, средняя концентрация — 6.7±1.4 нг/мл, медиана концентрации — 2.9 нг/мл. Показатели sFas у подавляющего числа больных достоверно не зависели от возраста, пола, сопутствующих заболеваний в анамнезе, а у женщин — от репродуктивной функции, длительности постменопаузы и фазы менструального цикла.

5. Высокий уровень sFas был связан с поздними стадиями болезни при раке яичников, тела матки, толстой кишки и коры надпочечников, с низкой степенью дифференцировки опухоли при раке яичников и тела матки, с наличием регионарных метастазов при колоректальном и адренокортикальном раке, а также с глубиной прорастания опухоли в ткань миометрия, стенку кишки и в окружающие ткани при раке тела матки и толстой кишки.

6. Показатели sFas зависели от гистогенеза опухолей при злокачественных и доброкачественных новообразованиях яичников, повышенную концентрацию sFas выявляли при больших размерах опухоли у больных раком яичников, раком тела матки, раком толстой кишки, аденомой и раком щитовидной железы, а также у пациентов с раком коры надпочечников.

7. Уровень Браэ в сыворотке крови более 1.2 нг/мл достоверно ухудшал показатели общей и безрецидивной выживаемости больных остеосаркомой и раком тела матки, а также был неблагоприятным предиктивным фактором ответа больных колоректальным раком пожилого возраста на неоадъювантную лучевую терапию. Уровень эБаз в сыворотке крови более 2 нг/мл определял неблагоприятный прогноз болезни у больных адренокортикальным раком. Уровень Брав в сыворотке крови более 5 нг/мл был связан с неблагоприятным прогнозом болезни для пациенток с папиллярной цистаденокарциномой и раком яичников с размером опухоли более 5 см.

8. Выявлена прямая корреляционная зависимость уровня Браэ от концентрации ключевого активатора процесса неоангиогенеза — УЕОБ у больных раком яичников (при концентрации 1Ь-6 более 4 пг/мл) (г=0.75- р=0.001) и раком тела матки (г=0.58- р=0.01), от концентрации мультифукционального цитокина — 1Ь-6 при раке тела матки (г=0.56- р=0.01) и адренокортикальном раке (г=0.78, р=0.023) и общей активностью щелочной фосфатазы в сыворотке крови при первичной остеосаркоме (г=0.75, р=0.049). Одновременно высокие уровни эРаБ, 1Ь-6 и УЕСР определяют высокий потенциал злокачественности новообразований.

Показать весь текст

Список литературы

  1. Е. А., Трапезников Н. Н. Заболеваемость и смертность от злокачественных новообразований населения России и некоторых других стран СНГ в 2002 году. М. — 2002. — с. 356
  2. А.Т. Комплексные методы лечения больных остеогенной саркомой// Дисс. Докт. Мед. Наук. М. — 1984.
  3. JI.M. (под ред.) Гормоны, возраст и рак // Издательство «Наука». -Санкт-Петербург.-2005.-254с.
  4. JI.M. Онкоэндокринология (традиции, современность и перспективы).-Санкт-Петербург.-Издательство «Наука». -2004.-342с.
  5. А.Г. Диссеминированные формы рака яичников (лечение и факторы прогноза) // Дисс.докт.мед.наук.-М.-2002.
  6. Ю.Н. Компьютерная эхотомография с прицельной пункционной биопсией в диагностике пораженной щитовидной железы // Проблемы эндокринологии.-1991 .-т.З 7,№ 1 .-С. 12−14.
  7. A.A., Семиглазов В. Ф., Семиглазов В. В., Арзуманов A.C., Клетсель А. Е. Факторы прогноза при раке молочной железы // Современная онкология.-2005.-т.7, № 1.-с.4−9.
  8. Бомаш НЛО. Морфологическая диагностика заболеваний щитовидной железы // М.-Медицина.-1981.-176С.
  9. Е.А. Биохимический диагноз (Физиологическая роль и диагностическое значение биохимических компонентов крови и мочи. -Благовещенск. 1991. Ч. I — С. 92−104.
  10. Ю.Бронштейн М. Э. Рак щитовидной желез // Проблемы эндокринологии.-1997.-С.11−12.
  11. Е.А. Заболевания щитовидной железы // М.-1993.-223С.
  12. С.А., Анчуков В. Б. Ультразвуковая диагностика заболеваний щитовидной железы // Актуальные вопросы злокачественных новообразований и аутоиммунных процессов щитовидной железы // Челябинск.-1990.-С.27−30.
  13. В.М., Димова М. Н. Рак щитовидной железы под маской автономной аденомы // Актуальные проблемы хирургической эндокринологии.-М.-1990.-С. 15−16.
  14. П.С., Кузнецов Н. С., Чилингириди К. Е. и соавт. Интраоперационное ультразвуковое исследование в хирургическом лечении узловых поражений щитовидной железы // Современные аспекты хирургической эндокринологии.-Саранск.-1997.-С.55−56.
  15. И.Б. Ранний рак и узловые образования щитовидной железы. Клинико-морфологическое исследование. Автореф. Дис.канд.мед.наук.-М.-1980.-С.30.
  16. A.M. Эндокринная терапия и гормонозависимые опухоли // М.-Издательство «Триада». -2005.-238с.
  17. A.M., Стенина М. Б., Тюляндин С. А. и соавт. Возвращение алтретамина в практику лечения больных с диссеминированным ирецидивным раком яичников // Современная онкология.-2000.-т.2,№ 4.-с.113−115.
  18. Г. П. Молекулярные подходы к терапии рака // В материалах I Международной конференции «Молекулярная медицина и биобезопасность» (Москва, 26−28 октября 2004 г.).-М.-2004.-с.52−53.
  19. Е.С., Кушлинский Н. Е. Система активации плазминогена в оценке прогноза и гормоно-чувствительности рака молочной железы // Вестник ОНЦ.- 1999 № 2.- С.52−59.
  20. Е.С., Кушлинский Н. Е. Тканевые маркеры как факторы прогноза при раке молочной железы // Практическая онкология.-2002.-т.З, № 1.-с.38−44.
  21. Е.С., Щербаков A.M., Алиева С. К., Анурова O.A., Лактионов К. П., Кушлинский Н. Е. Фактор роста эндотелия сосудов в опухолях и сыворотке крови больных раком молочной железы // БЭБМ. — 2003. — т.135, № 1. с. 99−102.
  22. В.А., Кузнецов В. В., Козаченко В. П. и соавт. Комбинированное и комплексное лечение больных раком яичников // Пособие для врачей.- М.-2003.-40с.
  23. В.А., Топчиева C.B., Блюменберг А. Г. Опыт применения митотакса в комбинации с цисплатином в качестве химиотерапии I линии у больных раком яичников // Русский медицинский журнал («0нкология»).-2004.-том. 12, № 19.-е. 1094−1096.
  24. A.B., Ромашчишен А. Ф., Иванова Т. В. Клинико-морфологические особенности заболеваний щитовидной железы в детском и юношеском возрасте // Хирургия эндокринных желез.-С.-Пб.-1995.-С.52−54.
  25. М.И., Аксель Е. М. Злокачественные новообразования в России и странах СНГ в 2000г. // М.-2002.-281с.
  26. К.И. Злокачественные эпителиальные опухоли яичников // Современная онкология.-2000.-том 2, № 2.-с.51−55.
  27. И.Б., Татосян А. Г. Молекулярно-генетические исследования при раке молочной железы В кн. «Рак молочной железы» под ред. Н. Е. Кушлинского, С. М. Портного, К. П. Лактионова // Редакционно-издательский совет при Президиуме РАМН.-М.-2005.-С.27−38.
  28. С.М., Луценко C.B., Северин С. Е., Северин Е. С. Ингибиторы опухолевого ангиогенеза // Биохимия. 2003. — т.68, № 5. — С. 611−631.
  29. Ф.Л. Новые подходы в молекулярной диагностике рака // В материалах II Международной конференции «Молекулярная медицина и биобезопасность» (Москва, 20−21 октября 2005 г.).-М.-2005.-с.156.
  30. В.П. Диагностика и лечение рака яичников // Гинекология.1999.-№ 2.-с.39−42.
  31. .П. Мишени действия онкогенов и опухолевых супрессоров: ключ к пониманию базовых механизмов канцерогенеза // Биохимия.2000.-t.65.-c.5−33.
  32. М.А. Молекулярные механизмы гормональной резистентности рака молочной железы В книге «Рак молочной железы» под ред. Н. Е. Кушлинского, С. М. Портного, К. П. Лактионова // Редакционно-издательский совет Президиума РАМН.-М.-2005.-С.354−360.
  33. Н.Е. // Возможности, неудачи и перспективы исследования опухолевых маркеров в современной онкологической клинике. Часть вторая (лекция) Заочная академия последипломного образования.-1999 -С.25−32.
  34. Н.Е., Бассалык Л. С., Кузьмина З. В. и соавт. Полипептидные факторы роста в плазме крови больных опухолями костей и их взаимосвязь с пептидными и стероидными гормонами // Вопр. Онкол. -1991.-Т.37, N6. с.676−683.
  35. Н.Е., Нечушкин М. И., Швецова Г. Н. Интерлейкин-6 в сыворотке крови больных новообразованиями молочной железы // Бюл. экспер. биол.-2001.-№ 5.-с.340−346.
  36. В.П. Опухоли молочных желез // Маммология.-2005.-№ 1.-с.14−22.
  37. A.B. Рак как программируемая гибель организма // Биохимия.-2005.-т.70, № 9.-с. 1277−1288.
  38. М.Р., Ганыпина И. П. Рациональная фармакотерапия рака молочной железы // Здравоохр. и мед. техн.-2004.-№ 9.-с.38−40.
  39. C.B., Киселев С. М., Фельдман Н. Б., Северин С. Е. Молекулярные механизмы ангиогенеза в физиологических и патологических процесса // В кн.: Введение в молекулярную медицину под ред. М. А. Пальцева.-М.-Медицина.-2004.-с.446−495.
  40. А.З. Рак щитовидной железы в эндемичных по зобу регионах // Вопросы онкологии.-М.-1986.-С.83−87.
  41. И.Б., Высоцкий М. М., Авалиани Х. Д. и соавт. Преимущества лапароскопического доступа в хирургическом лечении опухолей яичников // Эндоскопическая хирургия.-2004.-№ 5.-с.20−23.
  42. В.М. «Естественная история» роста рака молочной железы // Практическая онкология.-2002.-т.З, № 1.-с.6−14.
  43. O.E. Цитокинотерапия злокачественных опухолей интерлейкином-2 // Санкт-Петербург.-2002.-39с.
  44. O.E., Попова И. А., Козлов В. К., Карелин М. И. Современные тенденции иммунотерапии злокачественных опухолей // Издательство Санкт-Петербургского университета.-2001 .-88с.
  45. П.Г. Реактанты острой фазы воспаления // Санкт-Петербург.-Наука.-2001.-с. 17−19.
  46. A.A., Камилова Т. А., Цыган В. Н. Введение в молекулярную биологию канцерогенеза (под ред. акад. РАМН Шевченко Ю.Л.) // М.-Издательский дом «ГОЭТАР-МЕД». -2004.-222с.
  47. Е.Г., Баталова Г. Ю., Андреева Ю. Ю. Рецидивы опухолей яичников пограничной степени злокачественности // Российский онкологический журнал.-2005.-№ 1.-с.24−29.
  48. C.B., Бурлев В. А. Сосудисто-эндотелиальный фактор роста в патогенезе синдрома гиперстимуляции яичников // Акушерство и гинекология.-2004.-№ 2.-с. 11−13.
  49. М.А., Иванов A.A., Северин С. Е. Межклеточные взаимодействия. Издание второе, переработанное и дополненное // М.-Наука.-2003.-287с.
  50. А.И., Пропп P.M. Рак щитовидной железы // М., Медицина.-1984,-с. 319.
  51. Н.И. Место химиотерапии в системе лечения онкологических больных и выбор терапевтической тактики // Современная онкология.-2001.-т.З, № 2.-с.66−69.
  52. С.Б., Дворниченко В. В., Белобородов В. А. Опухоли щитовидной железы // Из-во Иркутского гос.мед.университета.-Иркутск.-1999.-с.318.
  53. Полищук JI.3., Несина И. П., Новак Е. Е. Рак яичников: генетические изменения и их связь с клиническими особенностями опухолевого процесса // Онкология.-2002.-№ 2.-с.73−77.
  54. Н.И. Выявляемость злокачественных опухолей в условиях диспансеризации и причины смерти больных // Дисс.канд.мед.наук.-М.-2001.
  55. С.Я., Габай B.JL, Коноплянников А. Г. Некроз — активная, управляемая форма программируемой клеточной гибели.// Биохимия, 2002.- Т.67, — № 4.- С.467−491.
  56. П.А. Патология кости: Пер. с англ. М. — Медицина. — 1993. — с. 368.
  57. В.Ф. и соавт. Новое в терапии рака молочной железы: неоадъювантная гормонотерапия // Современная онкология.-2001.-т.31, № 1.-с.23−26.
  58. С.Ю., Бухман А. И. Непрямая лимфография щитовидной и околощитовидных желез.-Кишинев.-1991 .-98С.
  59. П.А. Современные подходы к химиотерапии остеогенной саркомы// Дисс. Докт. Мед. Наук. Москва. — 1993.
  60. Ю.Н. Опухоли и опухолеподобные поражения скелета. (Опыт изучения 4899 наблюдений)// Вестник ОНЦ РАМН. 1998. — № 1. — С. 1318.
  61. .И. Цитокины как иммунобиологические препараты // Биопрепараты.-2004.-№ 4.-с.2−6.
  62. М.Н., Бабышкина H.H., Чердынцева Н. В. Цитокины и злокачественный рост // Сибирский онкологический журнал.-2003.-№ 2.-с.79.
  63. М.Б. Рак молочной железы: некоторые важные научные события и выводы последних лет // Практическая онкология.-2005.-т.6, № 1.-с.26−32.
  64. Е.В., Барышников А. Ю., Личиницер М. Р. Оценка ангиогенеза опухолей человека // Успехи современной биологии. 2000. — т. 120, N.6. -с. 599−604.
  65. Н.Н., Соловьев Ю. Н., Еремина Л. А., Амирасланов А. Т. Саркомы костей: (Клиника, диагностика, лечение). Ташкент, Медицина. — 1983.-314 с.
  66. Н.Н., Соловьев Ю. Н., Кушлинский Н. Е. и др. Прогресс и перспективы развития методов лечения сарком костей// Рос. Онкол. Журн. 1998, — № 3. — С. 21−25.
  67. И.Н., Никитин А. Ю. Рак яичников: морфогенез, патогенез, экспериментальное воспроизведение // Вопросы онкологии.-2004.-том. 50, № 4.-с.387−398.
  68. Е.В., Дбар Ж. Н., Степанова Е. В. Молекулярные механизмы опухолевого неоангиогенеза // Успехи современной биологии.-2004.-т.124, № 5.-с.480−488.
  69. Л.И., Полуцыганов А. В. Трудности и ошибки гистологической диагностики заболеваний щитовидной // Современные аспекты эндокринологии.-Самара.-1994.-С.248−251.
  70. Т.М., Щербаков С. Д., Голубева И. С., Савлучинская Л. А. Сравнительный анализ работы морфофункциональных зон в нормальном эпителии, фиброаденоме и раке молочной железы // Бюлл. Экспер. Биол.Мед.-2005.-т.140, № 8.-с.201−205.
  71. В. А. Биохимические и опухолевые маркеры, как прогностические факторы при лечении колоректального рака. Автореф.дисс. .канд.мед.наук.-М.-2001 .-27с.
  72. Abreu-Martin, М.Т., A. Vidrich, D.H. Lynch, & S.R. Targan (1995). Divergent induction of apoptosis and IL-8 secretion in HT-29 cells in response to TNF-a and ligation of Fas antigen. J. Immunol. 155, 4147−4154
  73. Adachi, M., S. Suematsu, T. Kondo et al. (1995). Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nature Genet. 11, 294−299.
  74. Adams, J.C., Thrombospondins: multifunctional regulators of cell interactions, Annu. Rev. Cell Dev. Biol. 17, 21−25, 2001.
  75. Allred D.C., Clark GM, Molina R, et al. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 1992- 23:974−979.
  76. Alnemri, E.S., D.J. Livingston, D.W. Nicolson et al. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, 171.
  77. Andreasen P.A., Georg B., Lund L. R. et al. // Plasminogen activator inhibitors: hormonally regulated serpins.-Mol.Cell Endocrinol.-1990.-Vol.68.-P.l-19.
  78. Androlewicz, M.J., J.L. Browning, and C.F. Ware (1992). Lymphotoxin is expressed as a heteromeric complex with a distinct 33-kDa glycoprotein on the surface of an activated human T cell hybridoma. J. Biol. Chem. 267, 25 422 547.
  79. Aragane Y., Kulms., Metze D., Wilkes., Poppelmann B., Luger T.A. Ultraviolet light induced apoptosis vis direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L.// J Cell Biol, 1998.- V.140.- P. 171−182.
  80. Archer T.K., M.G. Cordingley, R.G. Wolford, G.L. Hager. 1991. Transcription Factor Access Is Mediated by Accurately Positioned Nucleosomes on the Mouse Mammary Tumor Virus Promoter. Molecular and Cellular Biology. Vol.11 (2), p. 688−698.
  81. Asano M., Yukita, A., Suzuki H. Wide spectrum of antitumor activity of a neutralizing monoclonal antibody to human vascular endothelial growth factor // Jpn. J. Cancer Res. 1999. — Vol. 90, N. 1. — p. 93−100.
  82. Bacci G., Picci P., Ferrari S. Prognostic significance of serum alkaline phoshatase measurements in patients with osteosarcoma treated wiht adjuvant or neoadjuvant chemotherapy// Cancer. 1993. — V. 71, N 4. — P. 1224−1230.
  83. Bagchi M.K., S.Y. Tsai, M. Tsai, B.W. O’Malley. 1992. Ligand and DNA-dependent phosphorylation of human progesterone receptor in vitro. PNAS. V.89. pp. 2664−2668.
  84. Banner, D.W., A. D’Arcy, W. Janes et al. (1993). Crystal structure of the soluble human 55 kd TNF receptor-human TNF? complex: implication for TNF receptor activation. Cell 73, 431−445.
  85. Barak, V., Kalickman, I., Nisman, B., Farbstein, H., Fridlender, Z. G., Baider, L., Kaplan, A., Stephanos, S., Peretz, T. Changes in cytokine production of breast cancer patients treated with interferons.// Cytokine. -1998.-V. 10 № 12.-P. 977−83.
  86. Barnhill R.L., Levy M.A. Regressing thin cutaneous malignant melanomas (<1.0 mm) are associated with angiogenesis // Am. J. Pathol. -1993.-Vol. 143.-p. 93−104.
  87. Battaglia F, Polizzi G, Scambia G, et al. Receptors for epidermal growth factor and steroid hormones in human breast cancer. Oncology (Huntingt) 1988- 45:424−427.
  88. M. 1989. Gene regulation by steroid hormones. Cell. Feb 10−56(3):335−44.
  89. M. 1991. Transcriptional control by nuclear receptors. FASEB J. V.5 P.2044−2051.
  90. Beatty, J.D., Beatty B.G. and Vlahos W.G. (1987). Measurement of monoclonal antibody by non-competitive enzyme immunoassay. J. Immunol. Methods 100, 173−179.
  91. Beg, A.A. and D. Baltimor (1996). An Essential Role for NF-kB in Preventing TNF-a-Induced Cell Death. Science 274, 782−784.
  92. Behrmann, I., Walczak, H., Krammer, P. Eur. J. Immunol. 24, 3057 (1994).
  93. Bellgrau, D., D. Gold, H. Selawry et al. (1995). A role for CD95 ligand in preventing graft rejection. Nature 377, 630−632.
  94. Bennett M., Macdonald K., Chan S.W., Luzio J.P., Simari R., Weissberg P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis.// Science, 1998.- V.282.- P. 290−293.
  95. Berger, F. G. The interleukin-6 gene: a susceptibility factor that may contribute to racial and ethnic disparities in breast cancer mortality.// Breast Cancer Res. Treat. 2004. — V.88 № 3. — P. 281−5.
  96. Bhat-Nakshatri, P., R. A. Campbell, et al. (2004). «Tumour necrosis factor and PI3-kinase control oestrogen receptor alpha protein level and its transrepression function.» Br J Cancer 90(4): 853−9.
  97. Bodmer, J. et al. Immunity 6, 79 (1997).
  98. Boise, L.H., A.J. Minn, P.J. Noel et al. (1995). CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity 3, 87−98.
  99. Boldin M., Mett I., Varfolomeev E. et al. (1995a). Self-association of the «Death Domains» of the p55 Tumor Necrosis Factor and Fas/APOl Prompts Signaling for TNF and Fas/APOl Effects. /. Biol. Client. 270, 387−391.
  100. Boldin, M., T.M. Goncharov, Y.V. Goltsev, and D. Wallach (1996).1.volvment of MACH, a Novel MORTl/FADD-Interacting Protease, in Fas/APO-1- and TNF Receptor-Induced Cell Death. Cell 85, 803−815.
  101. Boldin, M.P., E.E. Varfolomeev, Z. Pancer, I.L. Mett, J.H. Camonis, and D. Wallach (1995b). A novel protein that interacts with the death domain of Fas/APOl contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795−7798.
  102. Bosari S., Lee A.K., DeLeellis R.A., Wiley B.D., Heatley G.J., Silverman M.N. Microvessel quantitation and prognosis in invasive breast carcinoma // Human Pathol.-1992.-Vol.23.-p.755−761.
  103. Bouchet C., Spyratos F., Martin P.M. et al. // Prognostic value of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitors PAI-1 and PAI-2 in breast carcinomas.-BrJ.Cancer.-1994.-Vol.69.-P.398−405.
  104. Brem S.S., Zagzag D., Tsanaclis A.M.C., Gately S., Elkoubly M.P., Brien S.E. Inhibition of angiogenesis and tumor growth in the brain // Am. J. Pathol.-1990.-Vol.3.-p.l 121−1142.
  105. Brodeur, B.R., Tsang P. and Larose Y. (1984). Parameters affecting ascites tumor formation in mice and monoclonal antibody production. J. Immunol Methods 71, 265−272.
  106. Brojatsch, J., J. Naughton, M.M. Rolls, K. Zingler, and J.A.T. Young (1996). CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell 87, 845−855.
  107. Browder, T., Folkman, J., and Pirie-Shepherd, S., The hemostatic system as a regulator of angiogenesis, J. Biol. Chem. 275, 1521−1524, 2000.
  108. Burrows F.J., Thorpe P.E. Eradication of large solid tumours in mice with an immunotoxin directed against tumour vasculature // Proc. Natl. Acad. Sci. USA.-1993.-Vol.90.-p.8996−9000.
  109. Bussolino F., Serini G., Mitola S., Bazzoni G., and Dejana E. Dynamic modules and heterogeneity of function: a lesson from tyrosine kinase receptors in endothelial cells, EMBO Rep. 2, 763−767, 2001.
  110. Carmeliet P., Mechanisms of angiogenesis and arteriogenesis, 2000. Nature Med. 6, p. 389−395.
  111. Cascino I., Fiucci G., Papoff G., and Ruberti G. (1995). Three Functional Soluble Forms of the Human Apoptosis-Inducing Fas Molecule Are Produced by Alternative Splicing. J. of Immunol. 154, 2706−2713.
  112. Cascino I., G. Papoff, A. Eramo, and G.Ruberti. (1996). Soluble Fas/APO-1 Splicing variants and apoptosis. Frontiers in Bioscience. 1, 12−18.
  113. Cheng J., Zhou T., Liu C. et al. (1994). Protection from Fas-Mediated Apoptosis by a Soluble Form of the Fas Molecule. Science 263, 1759−1762.
  114. Chinnaiyan, A.M., K. O’Rourke, G.-L. Yu et al. (1996). Signal transduction by DR-3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274, 990−992.
  115. Chinnaiyan, A.M., K. O’Rourke, M. Tewari, and V.M. Dixit (1995). FADD, a Novel Death Domain-Containing Protein, Interacts with the Death Domain of Fas and Initiates Apoptosis. Cell 81, 505−512.
  116. Choi C., Xu X., Oh J.W., Lee S.J., Gillespie G.Y., Park H. Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-related kinase and p38 mitogen-activated protein kinase.// Cancer Res, 2001,-V.61.-P. 3084−3091.
  117. Cifone M. G., De Maria R., Roncaioli P., M.R. Rippo, M. Azuma, L.L. Lanier, A. Santoni, and Testi R. Apoptotic signaling through CD95 (Fas/APO-1) activates an acidic sphingomielinase.// 1994. J. Exp.Med., 180. P. 15 471 552.
  118. Ciusani E., S. Frigerio, M. Gelati et al. (1998). Soluble Fas (Apo-1) levels in cerebrospinal fluid of multiple sclerosis patients. J. Of NeuroimmiinoL 82: 5−12.
  119. , R., Engvall E. (1981) Enzyme-linked immunosorbent assay (ELISA). Theoretical and practical aspects. Enzyme-Immunoassay (E.T. Maggio ed.) Boca Raton, Florida, 167−169.
  120. Cohen, P.L., and R.A. Eisenberg (1991). Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243−269.
  121. Cortese R., Felici F., Galfre G., Luzzago A., Monaci P., and Nicosia A. // Trends Biotechnol. 1994. V. 12. P. 262−267.
  122. Crnic I., Christofori G. Novel technologies and recent advances inmetastasis research // Int. J. Dev. Biol.-2004.-Vol.48, N.5−6.-P.573−581.
  123. Cubellis M.V., Nolli M.L., Cassani G. et al. // Binding of sigle-chain pro-urokinase to the urokinase receptor of human U937 cells. J.Biol.Chem.-1986.-Vol.261.-P. 15 819−15 822.
  124. Cwirla S.E., Peters E.A., Barrett R.W., and Dower W. J. // Proc Natl Acad Sci USA. 1990. V. 87. P. 6378−6382.
  125. Dano, K., Andreasen, P. A., Grondahl-Hansen, J., Kristensen, P., Nielsen, L. S., & Skriver, L. 1985. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res, 44: 139−266.
  126. Denner LA, Weigel NL, Maxwell BL, Schrader WT, O’Malley BW. 1990. Regulation of progesterone receptor-mediated transcription by phosphorylation. Science. Dec 21−250(4988):1740−3.
  127. Duan, H. and Dixit V. (1997). RAIDD is a new 'death' adaptor molecule. Nature 385, 86−89.
  128. Duffy, M. J., Reilly, D., O’Sullivan, C., O’Higgins, N., Fennelly, J. J., & Andreasen, P. 1990. Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res, 50(21): 6827−6829.
  129. Ellis V., Pyke C., Eriksen J. et al. // The urokinase receptor: involvement in cell surface proteolysis and cancer invasion.-Ann.N.Y.Acad.Sci.-1992.-Vol.667.-P. 13−31.
  130. Ellis, R.E., J. Yuan, and H.R. Horvitz (1991a). Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663−698.
  131. Ellis, R.E., Jacobson, D., Horvitz, H. (19 916) Genetics 129, 79.
  132. , V., & Dano, K. 1993. Specific inhibition of the activity of the urokinase receptor-mediated cell-surface plasminogen activation system by suramin. Biochem J, 296 (Pt 2): 505−510.
  133. Ellis, V., Behrendt, N., & Dano, K. 1991. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Client, 266(19): 12 752−12 758.
  134. Enari, M., A. Hase, and S. Nagata (1995a). Apoptosis by a cytosolic extract from Fas-activated cells. EMBO J. 14, 5201−5208.
  135. Enari, M., H. Hug and S. Nagata (1995b). Involvment of an ICE-like protease in Fas-mediated apoptosis. Nature 375, 78−81.
  136. Enari, M., R.V. Talanian, W.W. Wong, and S. Nagata (1996). Sequential activation of ICE-like and CPP32-like proteases during Fas-mediatedapoptosis. Nature 380, 723−726.
  137. Fadeel B., C.J. Thorpe, S. Yonehara, and F. Chiodi (1997). Anti-Fas IgGl antibodies recognizing the same epitope of Fas/APO-1 mediate different biological effects in vitro. Int. Immunol. 9: 201−209.
  138. Fadok, V. et al. (1992) J. Immunol. 148, 2207.
  139. Fairbrother W.J., Gordon N.C., Humke E.W., O’Rourke K.M., Starovasnik M.A., Yin J.P.the PYRIN domain: a member of the death domain-fold superfamily.//Protein Sci, 2001.- V.10.- P.1911−1918.
  140. Fazekas, de St. Groth and Scheidegger D. (1980). Production of monoclonal antibodies: strategy and tactics. J. Immunol. Methods 35, 1−21.
  141. Fazekas, de St.Groth. (1985). Monoclonal antibodies production: principles and practice. In: Handbook of Monoclonal Antibodies. Applications in Biology and Medicine. Ferrone S. and Dierich M.P. (Eds.), Noyes Publ., New Jersey, USA.
  142. F., Luzzago A., Monaci P., Nicosia A., Sollazzo M., Traboni C. // Biotechnol Annu Rev. 1995. V. 1. P. 149−183.
  143. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K.S., Powell-Braxton, L., Hillan, K.J., and Moore, M.W., Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene, Nature 380, 439- 442, 1996.
  144. Fisher, G.H., F.J. Rosenberg, S.E. Straus et al. (1995). Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935−946.
  145. Fitzpatrick SL, Brightwell J, Wittliff JL, et al. Epidermal growth factor binding by breast tumor biopsies and relationship to estrogen receptor and progestin receptor levels. Cancer Res 1984- 44:3448−3453.
  146. Foekens J.A., Berns E.M.J.J., Look M.P. et al. // Molecular and Clinical Endocrinology (Vol.1). / Ed. I. R. Pasqualini. Hormone Dependent Cancer/ Eds. Pasqualini J.R., Katzenellebogen B.S.-New York.-1996.-P.217−253.
  147. Foekens, J. A., Schmitt, M., van Putten, W. L., Peters, H. A., Bontenbal, M., Janicke, F., & Klijn, J. G. 1992. Prognostic value of urokinase-type plasminogen activator in 671 primary breast cancer patients. Cancer Res, 52(21): 6101−6105.
  148. Folkman J. Angiogenesis. In: Harrison’s Textbook of Internal Medicine, 15th Edition. Braunwald E., Fauci A.S., Kasper D.L., Hauser S.L., Longo D.L., Jameson J.L., eds. New York: McGraw-Hill.-2001.-p.517−530.
  149. Folkman J. Tumor angiogenesis // Adv. Cancer Res.-1985.-Vol.43.-p.175−230.
  150. Folkman J. What is the evidence that tumours are angiogenesis dependent? // J. Natl. Cancer Inst.-1990.-Vol.82.-p.4−6.
  151. , J. (1986) How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 46, 467−473.
  152. , J. (1989) What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4−6.
  153. Fong, G.H., Rossant, J., Gertsenstein, M., and Breitman, M.L., Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium, Nature 376, 66−70, 1995.
  154. Fuqua SA, Fitzgerald SD, Chamness GC, et al. Variant human breast tumor estrogen receptor with constitutive transcriptional activity. Cancer Res 1991−51:105−109.
  155. Furuya, Y., Nagakawa, O., Fuse, H. Prognostic significance of serum soluble Fas level and its change during regression and progression of advanced prostate cancer. // Endocr J. 2003. — V.50(5). — P. 629−33.
  156. Fushimi, M., F. Furukawa, Y. Tokura et al. (1998). Membranous and soluble forms of Fas antigen in cutaneous lupus erythematosus. J. Dermatol. 25, 302−308.
  157. Gago FE, Tello OM, Diblasi AM, et al. Integration of estrogen and progesterone receptors with pathological and molecular prognostic factors in breast cancer patients. J Steroid Biochem Mol Biol 1998- 67:431−437.
  158. Gajewski, T.F. and C.B. Thompson (1996). Apoptosis meets signal transduction: elimination of BAD influence. Cell 87, 589−592.
  159. Gamen, S., I. Marzo, A. Anel, A. Pineiro, and J. Naval (1996). CPP32 inhibition prevents Fas-induced ceramide generation and apoptosis in human cells. FEBSLett 390, 233−237.
  160. Geiser M., Schultz D., Le Cardinal A., Voshol H., and Garcia-Echeverria C. // Cancer Res. 1999. V. 59. P. 905−910.
  161. Gerber, H., Malik, A.K., Solar, P.G., Sherman, D., Liang, X.H., Meng, G., Hong, K., Marsters, J.C., and Ferrara, N., VEGF regulates hematopoieticstem cell survival by an internal autocrine loop mechanism, Nature 417, 954 958, 2002.
  162. Goel N., D.T. Ulrich, E. William et al. (1995). Lack of Correlation between Serum Soluble Fas/APO-1 Levels and Autoimmune Disease. Arthritis&Rheumatism 38: 1738−1743.
  163. Goodwin, R.G., D Freind., S.F. Ziegler et al. (1990). Cloning of the human and murine interleukin 7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell 60, 941−950.
  164. G. 1986. The nature and development of steroid hormone receptors. Experientia. Jul 15−42(7):744−50.
  165. Gosden JR, Middleton PG, Rout D. Localization of the human oestrogen receptor gene to chromosome 6q24-q27 by in situ hybridization. Cytogenet Cell Genet 1986- 43:218−220.
  166. Graeff, H., Janicke, F., & Schmitt, M. 1991. Clinical and prognostic significance of tumor-associated proteases in gynecologic oncology. Geburtshilfe Frauenheilkd, 51(2): 90−99.
  167. Green S, Kumar V, Krust A, et al. Structural and functional domains of the estrogen receptor. Cold Spring Harb Symp Quant Biol 1986- 51(Pt 2):751−758.
  168. Grell, M., E. Douni, H. Wajant et al. (1995). The transmembrane form of the tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793−802.
  169. Grell, V., P.H. Krammer, and P. Scheurich (1994). Segregation of APO-l/Fas antigen- and tumor necrosis factor receptor-mediated apoptosis. Eur. J. Immunol. 24 2563−2566.
  170. Griffith, T.S., T. Brunner, S.M. Fletcher, D.R. Green, and T.A. Ferguson (1995). Fas Ligand-Induced Apoptosis as a Mechanism of Immune Privilege. Science 270, 1189−1192.
  171. Grugel, S., Finkenzeller, G., Weindel, K., Barleon, B., and Marme, D., Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells, J. Biol. Chem. 270, 25 915−25 919, 1995.
  172. Guidi A.J., Schnitt S.J., Fischer L. et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast // Cancer.-1997.-Vol.80, N.10.-P.1945−1953.
  173. Hahne, M., D. Rimoldi, M. Schroter et al. (1996). Melanoma Cell Expression of Fas (Apo-l/CD95) Ligand: Implications for Tumor Immune Escape. Science 274, 1363−1366.
  174. Halachmi S, Marden E, Martin G, et al. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 1994- 264:1455−1458.
  175. Hanahan, D. and Folkman, J., Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell 86, 353−364, 1996.
  176. Harris A.L. Anti-angiogenesis therapy and strategies for integrating it with adjuvant therapy. Recent Results // Cancer Res. 1998. — Vol. 152. — p. 341−52.
  177. Hasunuma T., N. Kayagaki, H. Asahara et al. (1997). Accumulation of soluble Fas in Inflamed Joints of Patients with Rheumatoid Arthriris. Arthritis&Rheumatism 40 80−86.
  178. Haverty, A. A., Harmey, J. H., Redmond, H. P., Bouchier-Hayes, D. J. Interleukin-6 upregulates GP96 expression in breast cancer.// J. Surg. Res. -1997.-V. 69 № 1.-P. 145−9.
  179. Heinrich P.C., Graeve L., Rose-John S. et al. Membrane-bound and soluble interleukin-6 receptor: studies on structure, regulation of expression, and signal transduction // Ann. N.Y. Acad. Med. Sci. USA.-1995.-Vol.762.-p.222−237.
  180. Heller, R.A., Song K., Onasch M.A. et al. (1990). Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. Proc. Natl. Acad. Sci. USA 87, 6151−6155.
  181. Hengartner, M.O., and H.R. Horvitz (1994). C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian protooncogene bcl-2. Cell 76, 665−676.
  182. Hilsenbeck SG, Ravdin PM, de Moor CA, et al. Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat 1998- 52:227−237.
  183. Holler N., Zaru R., Micheau O., Thome M., Attingen A., Valitutti S. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule.// Nat Immunol, 2000.- V.I.- P. 489−495.
  184. Hoogenraad, N., Helman E. and Hoogenraad J. (1983). The effect of pre-injection of mice with pristan on ascites tumor formation and monoclonal antibody production. J. Immunol Methods 61, 317−320.
  185. Hortobagyi GN. Endocrine treatment of breast cancer. In Principles and Practice of Endocrinology and Metabolism. 2nd Ed. Edited by KL Becker. Philadelphia: JB Lippincott, 1995, pp 1868−1875.
  186. Hsu, H., H.-B. Shu, M.-G. Pan, and D.V. Goeddel (1996). TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transcription pathways. Cell 84, 299−308.
  187. Hsu, H., J. Xiong, D.V. and Goeddel (1995). The TNF Receptor 1-Associated Protein TRADD Signals Cell Death and NF-kB Activation. Cell 81, 495−504.
  188. Huang, B., M. Eberstadt, E.T. Olejniczak, R.P. Meadows & S.W. Fesik (1996). NMR structure and mutagenesis of the Fas (APO-l/CD95) death domain. Nature 384, 638−641.
  189. Hueber A., Zornig M., Lyon D. et al. (1997). Requirement for the CD95 Receptor-Ligand Pathway in c-Myc-Induced Apoptosis. Science 278, 13 051 309.
  190. Hunter, T., Signaling-2000 and beyond, Cell 100, 113−127, 2000.
  191. Hussein M.R., Haemel A.K., Wood G.S. Apoptosis and melanoma.// J Pathol, 2003.- V.199.- P. 275−288.
  192. Iacopetta, B., Grieu, F., Joseph, D. The -174 G/C gene polymorphism in interleukin-6 is associated with an aggressive breast cancer phenotype.// Br. J. Cancer. V. 90 № 2. — P. 419−22.
  193. A., Fujikawa K., Suyama T. // The activation of pro-urokinase by plasma kallikrein and ist inactivation by thrombin.-Ibid.-1986.-Vol.261.-P.3486−3489.
  194. Inazawa, J., Itoh, N., Abe, T., Nagata, S. (1992). Genomics 14, 821.
  195. Inoue A., C.-S. Koh, T. Sakai et al. (1997). Detection of the soluble form of the Fas molecule in patients with multiple sclerosis and human T-lymphotropic virus type I-associated myelopathy. J. Of Neuroimntunol. 75: 141−146.
  196. Irmler M., Thome M., Hahne M. et al. (1997). Inhibition of death receptor signals by cellular FLIP. Nature 388, 190−195.
  197. Ishikawa H., Tsuyama N., Kawano M.M. Interleukin-6-induced proliferation of human myeloma cells associated with CD45 molecules // Int. J. Hematol.-2003.-Vol.78, N.2.-p.95−105.
  198. Itoh, N. and S. Nagata (1993a). A Novel Protein Domain Required for Apoptosis. J- Biol. Chem. 268, 10 932−10 937.
  199. Itoh, N., S. Yonehara, A. Ishii et al. (1991). The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233−243.
  200. Itoh, N., Y. Tsujimoto, and S. Nagata (1993b). Effect of bcl-2 on Fas antigen-mediated cell death. J. Immunol. 151, 621−627.
  201. Janicke, F., Schmitt, M., & Graeff, H. 1991. Clinical relevance of the urokinase-type and tissue-type plasminogen activators and of their type 1 inhibitor in breast cancer. Semin Thromb Hemost, 17(3): 303−312.
  202. Jilka R.L., Weinstein R.S., Bellido T. et al. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines // J. Bone Miner. Res.-1998.-Vol. 13.-P.793−802.
  203. Jodo, S., S. Kobayashi, Y. Nakajima et al. (1998). Elevated serum levels of a soluble Fas/APO-1 (CD95) in patients with hepatocellular carcinoma. Clin. Exp. Immunol. 112, 166−171.
  204. Josimovic-Alasevic, O., Herrmann T., and Diamastein T. (1988). Demonstration of two distinct forms of released low-affinity type interleukin 2 receptors, ii"/'. J. Immunol. 18, 1855−1891.
  205. Jostock T., Mullberg J., Ozbek S. et al. Soluble gpl30 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses // Eur. J. Biochem.-2001 .-Vol.268.-P. 160−167.
  206. Judd A.M., Call G.B., Barney M., Mcllmoil C.J., Balls A.G., Adams A., Oliveira G.K. Possible function of IL-6 and TNF as intraadrenal factors in the regulation of adrenal steroid secretion // Ann. N.Y. Acad. Med. Sci.-2000.~ Vol.917.-p.628−637.
  207. Kohler, G. and Milstein C. (1975). Continuous cultures of fused cells secreting antibody of redefined specificity. Nature 256, 495−497
  208. Kang S.-M., Schneider D.B., Lin Z. et al. (1997). Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med. 3, 738−743.
  209. Karkkainen, M.J., Makinen, T., and Alitalo, K., Lymphatic endothelium: a new frontier of metastasis research, Nature Cell Biol. 4, E2-E5, 2002.
  210. Kawasaki, T., Kitsukawa, T., Bekku, Y., Matsuda, Y., Sanbo, M., Yagi, T., and Fujisawa, H., A requirement for neuropilin-1 in embryonic vessel formation, Development 126, 4895−4902, 1999.
  211. Kennedy N.J., Kataoka T., Tschopp J., Budd R.C. Caspase activation is required for T cell proliferation.// J Exp Med, 1999.- V.190.- P. 1891−1896.
  212. Kennett, R.J., McKearn T.J. and Bechtol K.B. (1980). (Eds.). Monoclonal antibodies hybridomas: A new dimension in biological analysis. New York, Plenum Press.
  213. Kerbel R.S. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis// Cancer Res. -2001. -Vol. 61, N. 13.-p. 5090−6101.
  214. Kim K., Li B., Winer J., Armanini M., Gillett N., Phillips H., Ferrara, N. Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo // Nature. 1993. — Vol. 362. — p. 841−844.
  215. King R.J.B. 1987. Structure and function of steroid receptors. J. Endocrinol. V.114. N.3. 341−349.
  216. Kischkel, F.C., S. Hellbardt, I. Behrmann et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with receptor. EMBO J. 14, 5579−5588.
  217. Kiston, J., T. Raven, Y.-P. Jiang et al. (1996). A death-domain-containing receptor that mediates apoptosis. Nature 384, 372−375.
  218. Kitsukawa, T., Shimono, A., Kawakami, A., Kondoh, H., and Fujisawa, H., Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system, and limbs, Development 121, 4309−4318, 1995.
  219. Klauber, N., Parangi, S., Flynn, E., Hamel, E., D’Amato, R.J. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res, V 57, N 1, P 81−6, 1997.
  220. Knipping E., P.H. Krammer, K.B. Onel et al. (1995). Levels of soluble Fas/APO-l/CD95 in systemic lupus erythematosus and juvenile rheumatoid arthritis. Arthritis&Rheumatism 38: 1735−1737.
  221. Knudson, C.M., K.S. Tung, W.G. Tourtellotte, G.A. Brown, and SJ. Korsmeyer (1995). Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96−99.
  222. Kobayashi H., Schmitt M., Goretzki L. et al. 11 Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound from of the proenzyme urokinase-type plasminogen activator (pro-uPA).-J.Biol.Chem.-1991.-Vol.266.-P.5147−5152.
  223. Konno, R., Takano, T., Sato, S., Yajima, A. Serum soluble Fas level as a prognostic factor in patients with gynecological malignancies. // Clin. Cancer Res. 2000. — V.6(9). — P. 3576−80.
  224. Kontogeorgos G., Scheithauer B.W., Kovacs K., Horvath E., Melmed S. Growth factor and cytokines in paragangliomas and pheochromocytomas, with special reference to sustentacular cells // Endocr. Pathol.-2002.-Vol. 13, N.3.-p.197−206.
  225. Kovalovich K.L., Li W. A, DeAngelis R. et al. Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2, and Bcl-xL // J. Biol. Chem.-2001.-Vol.276.-p.26 605−26 613.
  226. Kozlowski, L., Zakrzewska, I., Tokajuk, P., Wojtukiewicz, M. Z. Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients.// Rocz. Akad. Med. Bialymst. -2003.- V. 48.- P. 82−4.
  227. Krippner, A., A. Matsuno-Yagi, R. Gottlieb, and B. Babior (1996). Loss of function of cytochrome c in Jurkat cells undergoing Fas-mediated apoptosis. J. Biol Chem. 271, 21 629−21 636.
  228. Krust A, Green S, Argos P, et al. The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J 1986- 5:891−897.
  229. Kuida K., Zheng T.S., Na S. et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368−372.
  230. Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997- 138:863−870.
  231. Kuiper GG, Enmark E, Pelto-Huikko M, et al. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996- 93:5925−5930.
  232. Kumar V., Green S., Stack G., Berry M., Jin J.R., Chambon P. 1987. Functional domains of the human estrogen receptor. Cell. Dec 24−51(6):941−51.
  233. Lacronique V., Mignon A., Fabre M. et al. (1996). Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nature Med. 2, 80−86.
  234. Langone, J.J. and van Vunakis H. (1983). (Eds.). Immunochemical techniques part E: Monoclonal antibodies. Methods in Enzyniology, v. 92, New York, Acad. Press.
  235. Lau, D.H., Xue, L., Young, L.J., Burke, P.A., Cheung, A.T. Paclitaxel (Taxol): an inhibitor of angiogenesis in a highly vascularized transgenic breast cancer// CancerBiother. Radiopharm. 1999. — Vol. 14, N. 1. — p. 31−36.
  236. Lau, H.T., M. Yu, A. Fontana, and C.J. StoeckertJr. (1996). Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273,109−112.
  237. Lee S.H., S.Y. Kim, J.Y. Lee et al. (1998). Detection of soluble Fas mRNA Using In Situ Reverse Transcription-Polymerase Chain Reaction. Lab. Invest. 4 453−459.
  238. Lenczowski, J.M., L. Dominguez, A. Eder et al. (1997). Lack of a rolefor Jun kinase and AP-1 in Fas-induced apoptosis. Mol. Cell. Biol. 17, 170 181.
  239. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., and Ferrara, N. (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306−1309.
  240. Li, P., H. Allen, S. Banerjee et al. (1995). Mice deficient in IL-lp-Converting enzyme are defective in production of mature IL-113 and resistant to endotoxic shock. Cell 80, 401−411.
  241. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. 1980. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751): 67−68.
  242. Liu, Z.-G., H. Hsu, D. Goeddel, and M. Karin (1996). Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kB activation prevents cell death. Cell 87, 565−576.
  243. Lockshin R., Zahra Z. Caspase-independent cell deaths.// Current opinion in cell biology, 2002.- V.14.- P. 727−733.
  244. Los, M., M. Craen, L.C. Penning et al. (1995). Requirement of an ICE/CED-3 protease for Fas/APO-l-mediated apoptosis. Nature 375, 81−83.
  245. N., Boldin M., Kovalenko A., &Wallach D. (1997). MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1. Nature 385, 540−544.
  246. Marsters S.A., Sheridan J.P., Pitti R.M. et al. (1998). Identification of a ligand for the death-domain-containing receptor Apo3. Curr. Biol. 8, 525−528.
  247. Martinez E, Dusserre Y, Wahli W, et al. Synergistic transcriptional activation by CTF/NF-I and the estrogen receptor involves stabilized interactions with a limiting target factor. 1991. Mol Cell Biol., 11:2937−2945.
  248. Martinez-Lorenzo M.J., Anel A., Gamen S., Monle N.I., Lassierra P., Larrag L., Pineiro A., Alava M.A., Naval J. Activated human T cells release bioactive Fas ligand and AP02 ligand in microvesicles.// J Immmunol, 1999.-V.163.- P.1274−1281.
  249. Marzo I., S.A. Susin, P.X. Petit et al. (1998) Caspases disrupt mitochondrial membrane barrier function. FEBS Lett. 427, 198−202.
  250. Mass R.D. The HER receptor family: a rich target for therapeuticdevelopment // Int. J. Radiat. Oncol. Biol. Phys.-2004.-Vol.58.-P.932−940.
  251. Matsumoto, T. and Claesson-Welsh, L., VEGF Receptor Signal Transduction, Science’s S TKE www.stke.org/cgi/content/full/OC-sigtrans, 2001/112/re21,2001.
  252. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S. Necrotic death pathway in Fas receptor signaling.// The Journal of Cell biology.- V.151.- № 6, 2000. P. 1247−1255.
  253. McGuire WL. Hormone receptors: their role in predicting prognosis and response to endocrine therapy. Semin Oncol 1978- 5:428−433.
  254. Migliaccio A., Di Domenico M., Green S., de Falco A., Kajtaniak E.L., Blasi F., Chambon P., Auricchio F. 1989. Phosphorylation on tyrosine of in vitro synthesized human estrogen receptor activates its hormone binding. Mol.Endocrinol. Jul-3(7):1061−9.
  255. , P., & Rifkin, D. B. 1993. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev, 73(1): 161−195.
  256. Mignatti, P., Rifkin, D.B. Plasminogen activators and matrix metalloproteinases in angiogenesis // Enzyme Protein. 1996. — Vol. 49. — p. 117−137.
  257. Misrahi M., Atger M, dAuriol L, Loosfelt H, Meriel C, Fridlansky F, Guiochon-Mantel A, Galibert F, Milgrom E. 1987. Complete amino acid sequence of the human progesterone receptor deduced from cloned cDNA. BiochemBiophysResCommun. 143(2):740−8.
  258. Mizutani, Y., Yoshida, O., Bonavida, B. Prognostic significance of soluble Fas in the serum of patients with bladder cancer.// J Urol. 1998. — V. 160(2).-P. 571−6.
  259. Montogomery, R.I., M.S. Warner, B.J. Lum, and P.G. Spear (1996). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell SI, 427−436.
  260. Mosley, B., Beckman M.P., March C.J. et al. (1989). The murine interleukin-4 receptor molecular cloning and characterization of secreted and membrane bound forms. Cell 59, 335−343.
  261. , T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxity assays. J. Immunol. Methods, 65(1), 55−63.
  262. Motoyama, N., F. Wang, K.A. Roth et al. (1995). Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506−1510.
  263. Mouawad R., Antoine E.C., Khayat D., Soubrane C. Effect of endogenous interleukin-6 on Fas (APO-1/CD95) receptor expression in advanced melanoma patients // J. Cytokines Cell Mol. Ther.-2000.-Vol.6.~ P.135−140.
  264. Mouawad, R., Khayat, D., Soubrane, C. Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in advanced melanoma.// Melanoma Res. 2000. — V. 10(5). — P. 461−7.
  265. V.K. 1990. Phosphorylation of steroid hormone receptors. BiochimBiophysActa. 1055(3):243−58.
  266. Muchmore, S.W., M. Sattlet, H. Liang et al. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335−341.
  267. L.B. // Structure and function of the urokinase receptor. Blood Coagul. Fibrinolysis.-1993.-Vol.4.-P.293−303.
  268. Munker-R- Younes-A- Cabanillas-F- Andreeff-M. (1997). Soluble CD95 in the serum of patients with low and intermediate grade malignant lymphomas: absence of prognostic correlations. Leuk-Lymphoma 27(5−6)'. 517−521.
  269. Murakami M., Narazaki M., Hibi M. et al. Critical cytoplasmic region of interleikin 6 signal transducer gpl30 is conserved in the cytokine receptor family // Proc. Natl. Acad. Sci. USA.-1991 .-Vol.88.-P. 11 349−11 353.
  270. Murakami, M., Sasaki, T., Miyata, H., Yamasaki, S., Kuwahara, K., Chayama, K. Fas and Fas ligand: Expression and soluble circulating levels in bile duct carcinoma.// Oncol. Rep. 2004. — V. 11(6). — P. 1183−6.
  271. Muzio, M., A.M. Chinnaiyan, F.C. Kischkel et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95(Fas/APO-l) death-inducing signaling complex. Cell 85, 817−827.
  272. , S. (1997). Apoptosis by Death Factor. Cell 88, 355−365.
  273. Nagata, S. and Golstein P. (1995). The Fas Death Factor. Science 267, 1449−1456.
  274. Narazaki M., Yasukawa K., Saito T. et al. Soluble forms of the interleukin-6 signal-transducing receptor component gpl30 in human serum possessing a potential to inhibit signals through membrane-anchored gpl30 // Blood J.-1993.-Vol.82.-P.l 120−1126.
  275. Neufeld G., Cohen, T., Gengrinovitch S., and Poltorak Z. Vascular endothelial g rowth factor (VEGF) and its receptors, Faseb J. 13, 9−22, 1999.
  276. Nicholson, D.W., A. Ali, N.A. Thornberry et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37−43.
  277. Niitsu, N., Sasaki, K., Umeda, M. A high serum soluble Fas/APO-1 level is associated with a poor outcome of aggressive non-Hodgkin's lymphoma.// Leukemia. 1999. -V. 13(9). — P. 1434−40.
  278. O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., and Folkman, J., Endostatin: an endogenous inhibitor of angiogenesis and tumor growth, Cell 88, 277−285, 1997.
  279. Oehm, A., I. Behrmann, W. Falk et al. (1992). Purification and Molecular Cloning of the APO-1 Cell Surface Antigen, a Member of the Tumor Necrosis Factor/Nerve Growth Factor Receptor Superfamily. J. Biol. Chem. 267, 10 709−10 715.
  280. Ogasawara, J., R. Watanabe-Fukunaga, M. Adachi et al. (1993). Lethal effect of the anti-Fas antibody in mice. Nature 364, 806−809.
  281. Okuyama, M., S. Yamaguchi, N. Nozaki et al. (1997). Serum levels of soluble form of Fas molecule in patients with congestive heart failure. Am. J. Cardiol. 79, 1698−1701.
  282. Olson T.A., Mohanraj D., Carson L.F., Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic human ovaries // Cancer Res.-1994.-Vol.54-p.276−280.
  283. Osborne CK. Steroid hormone receptors in breast cancer management review. Breast Cancer Res Treat 1998- 51:227−238.
  284. Owen-Schaub L.B., L.S. Angelo, R. Radinsky et al. (1995). Soluble Fas/APO-1 in tumor eels: A potential regulator of apoptosis? Cancer Lett. 94: 1−8.
  285. Owen-Schaub L.B., R. Radinsky, E. Kruzel, K. Berry, and S. Yonehara. (1994). Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res. 54: 1580−1587.
  286. Packman K.S., Demeure M.J., Doffek K.M. et al. 1995. // Increased plasminogen activator and type IV collagenase activity in invasive follicular thyroid carcinoma cells. -Department of Surgery, Medical College of Wisconsin, Milwaukee 53 226, USA.
  287. Papoff G., Cascino I., Eramo A., Starace G., Lynch D.H., Ruberti G. An N-terminal domain shared Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro.// J Immunol, 1996.- V.156.- P.4622−4630.
  288. MG. 1988. The expanding family of nuclear hormone receptors. JEndocrinol. 119(2): 175−7.
  289. Path G., Scherbaum W.A., Bornstein S.R. The role of interleukin-6 in the human adrenal gland//Eur. J. Clin. Invest.-2000.-Vol.30, Suppl.3.-p.91−95.
  290. Perik, P. J., Van der Graaf, W. T., De Vries, E. G., Boomsma, F., Messerschmidt, J., Van Veldhuisen, D. J., Sleijfer, D. T., Gietema, J. A.
  291. Circulating apoptotic proteins are increased in long-term disease-free breast cancer survivors.// Acta Oncol. 2006. — V. 45(2). — P. 175−83.
  292. Petit F., Corbeil J., Lelievre J.D., Moutouh-de Parseval L., Pinon G., Green D.R. Role of CD95-activated caspase-1 processing of IL-ip in TCR-mediated proliferation of HIV-infected CD4(+) T cells.// Eur J Immunol, 2001.- V.31.- P.3513−3524.
  293. Pichon, M. F., Labroquere, M., Rezai, K., Lokiec, F. Variations of soluble fas and cytokeratin 18-Asp 396 neo-epitope in different cancers during chemotherapy.// Anticancer Res. 2006. — V. 26(3B). — P. 2387−92.
  294. B., Briiggemeier U., Beato M. 1990. Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell. 60(5):719−31.
  295. Pintucci G., Bikfalvi A., Klein S., Rifkin D.B. Angiogenesis and the fibrinolytic system // Semin. Thromb. Hemost. 1996. — Vol. 22, N. 6. — p. 517−24, 1996.
  296. Plate, K. H., Breier, G., Weich, H. A., and Risau, W. (1992) Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359, 845−848.
  297. Pollanen J., Sakseba O., Salonen E.M. et al. // Distinct localisation of urokinase-type plasminogen activator and its type 1 inhibitor under cultuked human fibroblasts and sarcoma cells. J. Cell Biol.-1987.-Vol.104.-P.1085−1097.
  298. Ponglikitmongkol M, Green S, Chambon P. Genomic organization of the human oestrogen receptor gene. EMBO J 1988- 7:3385−3388.
  299. Ponton A., Clement M.V., Stamencovicl. The CD95 (Apo-l/Fas) receptor activates NF-kB independently of its cytotoxic function.// J Biol Chem, 1996.- V.271.-P.8991−8995.
  300. Power RF, Mani SK, Codina J, Conneely OM, O’Malley BW. 1991. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science. 254(5038): 1636−9.
  301. , M. C. (1992). Nature 356, 397.
  302. Raff, M., Barres, B.A., Bume, J.F., et al. (1993). Programmed Cell Death and the Control of Cell Survival: Lessons from the Nervous System. Science 262, 695−697.
  303. Rao, V. S., Dyer, C. E., Jameel, J. K., Drew, P. J., Greenman, J. Potential prognostic and therapeutic roles for cytokines in breast cancer. // Oncol Rep. -2006.-V. 15 № 1.-P. 179−85.
  304. Rappolee, D. A., Mark, D., Banda, M. J., and Werb, Z. (1991) Wound macrophages express TGF-D and other growth factors in vivo: analysis by mRNA phenotyping. Science 241, 708−712.
  305. Rathmell, J., Townsend, S., Xu, J., Flavell, R., and Goodnow, C. (1996). Cell 87, 319.
  306. Ravdin PM. Prognostic factors in breast cancer. In: Textbook of Breast Cancer-A Clinical Guide to Therapy. Edited by G Bonadonna, GN Hortobagyi GN, AM Gianni. St. Louis: Mosby, 1997:35−63.
  307. Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression.// Cancer Biol, 2002.- V.12.- P. 309−315.
  308. Rensing-Ehl A., Hess S., Ziegler-Heitbrock H.W., Riethmuller G., Engelmann H. Fas/Apo-1 activates nuclear factor kappa B and induces interleukin-6 production.// J inflamm, 1995.- V.45.- P.161−174.
  309. Rieux-Laucat, F., F. Le Deist, C. Hivroz et al. (1995). Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347−1349.
  310. Rodriguez, I., K. Matsuura, K. Knatib et al. (1996). A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection. J. Exp. Med. 183, 1031−1036.
  311. Rose L.M., D.S. Latchman, and D.A. Isenberg (1997). Elevated soluble Fas production in SLE correlates with HLA status not with disease activity. Lupus 6: 717−722.
  312. Rosen L. Antiangiogenic strategies and agents in clinical trials // The Oncologist.-2000.-Vol.5.-p.20−27.
  313. Rothe, M., S.C. Wong, W.J. Henzel, and D.V. Goeddel (1994). A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681−692.
  314. Rothstein, T.L., J.K.M. Wang, D.J. Panka et al. (1995). Protection against Fas-dependent Thl-mediated apoptosis by antigen receptor engagement in B cells. Nature 374, 163−165.
  315. Rouvier, E., Luciani, M.-F., Golstein, P. (1993). Fas Involvement in Ca2±independent T Cell-mediated Cytotoxicity. J. Exp. Med. 177, 195−197.
  316. Ruggero De Maria, L. Lenti, F. Malisan et al. (1997). Requirement for GD3 Ganglioside in CD95- and Ceramide-Induced Apoptosis. Science 277, 1652−1655.
  317. Salgado, R., Junius, S., Benoy, I., Van Dam, P., Vermeulen, P., Van Marck, E., Huget, P., Dirix, L. Y. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer.// Int. J. Cancer. 2003. — V. 103 № 5. -P. 642−6.
  318. Sato T., Shinjhirie, Kitado S., Reed J.C. (1995). FAP-1: A Protein Tyrosine Phosphatase That Associates with Fas. Science 268, 411−415.
  319. Sato Y. Transcription factor ETS-1 as a molecular target for angiogenesis inhibition // Hum. Cell. 1998. — Vol. 11, N. 4. — p. 207−214.
  320. Schulze-Osthoff, K., H. Walczak, W. Droge, and P.H. Krammer (1994). Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol. 127, 15−20.
  321. Schumann H., Morawietz H., Hakim K. et al. (1997). Alternative
  322. Splicing of the Primary Fas Transcript Generating Soluble Fas Antagonists Is Supressed in the Failing Human Ventricular Myocardium. Biocltem. Biophys. Res. Commun. 239, 794−798.
  323. Screaton, G. Xu X.-N., Olsen A.L. et al. (1997). LARD: A new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 94, 4615−4619.
  324. Seishima M., M. Takemura, K. Saito et al. (1996). Highly sensitive ELISA for soluble Fas in serum: increased soluble Fas in the eldery. Clin. Client. 42: 1911−1914.
  325. Seishima M., Takemura, K. Saito, K. Ando, and A. Noma (1997). Increased serum soluble Fas (sFas) concentrations in HCV-positive patients with liver ciihosis. J. of Hepatol. 27: 424−427.
  326. Semenza, G.L.I., Angiogenesis in ischemia and cancer, Annu. Rev. Med. 54, 17−28, 2003.
  327. Shaham, S., and H.R. Horvitz (1996). Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev. 10, 578−591.
  328. Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L., and Schuh, A.C., Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice, Nature 376, 62−66, 1996.
  329. Sheen-Chen, S. M., Chen, H. S., Eng, H. L., Chen, W. J. Circulating soluble Fas in patients with breast cancer.// World J Surg. 2003. — V. 27(1). -P. 10−3.
  330. Sheridan PL, Krett NL, Gordon JA, Horwitz KB. 1988. Human progesterone receptor transformation and nuclear down-regulation are independent of phosphorylation. Mol.Endocrinol. 2(12): 1329−42.
  331. Shimaoka, Y., Y. Hidaka, M. Okumura et al. (1998). Serum concentration of soluble Fas in patients with autoimmune thyroid diseases. Thyroid 8, 43−47.
  332. Singer, G.G., and A.K. Abbas (1994). The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1, 365−371.
  333. Smith DF, Toft DO. 1993. Steroid receptors and their associated proteins. Mol.Endocrinol. 7(1):4−11.
  334. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G., and Klagsbrun, M., Neuropilin-l is expressed by endothelial and tumor cells as an isofonn-specific receptor for vascular endothelial growth factor, Cell 92, 735−745, 1998.
  335. Soldi, R., Mitola, S., Strasly, S., Defilippi, P., Tarone, G., and Bussolino, F., Role of av/?3integrin in the activation of vascular endothelial growth factor receptor-2, EMBO J. 18, 734−740, 1999.
  336. Spangelo B.L., Judd A.M., Isakson P.C. et al. Interleukin-6 stimulates anterior pituitary hormone release in vivo // Endocrinology.-1989.-Vol.125.-P.575−577.
  337. Spiegel, S., D. Foster, and R. Kolesnick (1996). Signal transduction through lipid second messenger. Curr. Opin. Cell Biol. 8, 159−167.
  338. Spitz, M., Spitz L., Thorpe R., and Eugui E. (1984). Intrasplenic Primary Immunization for the Production of Monoclonal Antibodies. J. of Immunological Methods 70, 39−43.
  339. Stanger B., Leder P., Lee T.-H., Kim E., and Seed B. (1995). RIP: A Novel Protein Containing a Death Domain That Interacts with Fas/APO-1 (CD95) in Yeast and Causes Cell Death. Cell 81, 513−523.
  340. Steller, H. and Grether, M. (1994). Neuron 13, 1269.
  341. Stennicke H.R., Deveraux Q.L., Humke E.W., Reed J.C., Dixit V.M., Salvesen G.S. Caspase-9 can be activated without proteolytic processing.// J Biol Chem, 1999- V.274.- P.8359−8362.
  342. Strand, S., WJ. Hofmann, H. Hug et al. (1996). Lymphocyte apoptosis induced by CD95 (APO-l/Fas) ligand expressing tumor cells — A mechanism of immune evasion. Nature Med. 2, 1361−1366.
  343. Strasser A., and O’Connor L. (1998). Fas ligand—caught between Scylla and Charybdis. Nature Med. 4, 21−22.
  344. Strasser A., Harris A.W., Huang D., Krammer P.H. and Cory S. (1995). Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBOJ. 14,6136−6147.
  345. Suda, T. and Nagata, S. (1994). Purification and Characterization of the Fas-ligand that Induces Apoptosis. J. Exp. Med. 179, 873−877.
  346. Suda, T., T. Takahashi, P. Golstein, and S. Nagata (1993). Molecular Cloning and Expression of the Fas Ligand, a Novel Member of the Tumor Necrosis Factor Family. Cell 75, 1169−1178.
  347. Sugahara, K., Y. Yamada, Y. Hiragata et al. (1997). Soluble and membrane isoforms of Fas/CD95 in fresh adult T-cell leukemia (ATL) cells and ATL-cell lines. Int. J. Cancer 72, 128−132.
  348. Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., et al. (1996) Requisite role of angiopoietin-1, a ligand for the tie-2 receptor, during embryonic angiogenesis. Cell 87, 1171−1180.
  349. Szekanecz, Z. and Koch, A.E. 2001. Chemokines and angiogenesis, Curr. Opin. Rheumatol. 13, 202−208.
  350. Takahashi, T., M. Tanaka, C.I. Brannan et al. (1994a). Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 16, 969−976.
  351. Takahashi, T., M. Tanaka, J. Inazawa, T. Abe, T. Suda and S. Nagata (1994b). Human Fas ligand: gene structure, chromosomal location and species specificity./"/. Immunol. 6, 1567−1574.
  352. Takenawa J., Kaneko Y., Fukumoto M. et al. Enhanced expression of interleukin-6 in primary human renal cell carcinomas // J. Natl. Cancer Inst.-1991.-N.83.-P.1668.
  353. Tanaka M., Itai T., Adachi M., and Nagata S. (1998). Downregulation of
  354. Fas ligand by shedding. Nature Med. 4, 31−36.
  355. Tanaka, M., T. Suda, K. Haze et al. (1996). Fas ligand in human serum. Nature Med. 2, 317−322.
  356. Tartaglia, L.A., T.M. Ayres, G.H.W. Wong, and D.V. Goeddel (1993). A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845 853.
  357. Tewari, M. and V.M. Dixit (1995). Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Client. 270, 3255−3260.
  358. Thorn, D., A.J. Powell, C.W. Lloid, and D.A. Rees. (1977) Rapid isolation of plasma membranes in high yield from cultured fibroblasts. Biochem.J., 168, 187−191.
  359. Thornberry, N.A., H.G. Bull, J.R. Calaycay et al. (1992). A novel heterodimeric cysteine protease is required for interleukin-l (3 processing in monocytes. Nature 356, 768−774.
  360. Thorpe SM, Christensen IJ, Rasmussen BB, et al. Short recurrence-free survival associated with high oestrogen receptor levels in the natural history of postmenopausal, primary breast cancer. Eur J Cancer 1993- 29A:971−977.
  361. Toi M, Tominaga T, Osaki A, et al. Role of epidermal growth factor receptor expression in primary breast cancer: results of a biochemical study and an immunocytochemical study. Breast Cancer Res Treat 1994- 29:51−58.
  362. Toi M., Hoshina S., Takayanagi T., Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer // Jpn. J. Cancer Res.-1994.-Vol.85, N.10.-p.1045−1049.
  363. Toi M., Inada K., Suzuki H., Tominaga T. Tumor angiogenesis in breast cancer: its importance as a prognostic indicator and the association with vascular endothelial growth factor expression // Breast Cancer Res. Treat.-19 956.-Vol.36, N.2.-p. 193−204.
  364. Toi M., Kondo S., Suzuki H. et al. Quantitative analysis of vascular endothelial growth factor in primary breast cancer // Cancer.-1996a.-Vol.77, N.6.-P.1101−1106.
  365. Toi M., Yamamoto Y., Taniguchi T. Regulation of endothelial growth factor expressions in breast cancer // Gan To Kagaku Ryoho.-19 966.-Vol.23, Suppl.l.-P.75−79.
  366. Tokano Y., Miyake S., Kayagaki N. et al. (1996). Soluble Fas Molecule in the Serum of Patients with Systemic Lupus Erythematosus. J. of Clin.1.munol. 16, 261−265.
  367. Tomokuni A., T. Aikoh, T. Matsuki et al. (1997). Elevated soluble Fas/APO-1 levels in silicosis patients without clinical symptoms of autoimmune diseases or malignant tumors. Clin. Exp. Immunol. 110: 303−309.
  368. Trauth, B.C., C. Klas, A.M. Peters et al. (1989). Monoclonal Antibody-Mediated Tumor Regression by Induction of Apoptosis. Science 245, 301−304.
  369. Treveny B., Bailly A., Rauch C., Rauch M., Delain E.& Milgram E., Nature 329, 79−81, 1987.
  370. Tsujimoto Y. Cell death regulation by the bcl-2 protein family in the mitochondria.// J Cell Physiol, 2003.- V.195.- P. 158−167.
  371. Tsutsumi S, Kuwano H, Shimura T, Morinaga N, Mochiki E, Asao T. Circulating soluble Fas ligand in patients with gastric carcinoma.// Cancer, 2000.- V.15.-P. 2560−2564.
  372. Ueno, T., Toi, M., Tominaga, T. Circulating soluble Fas concentration in breast cancer patients.// Clin. Cancer Res. 1999. — V. 5(11). — P. 3529−33.
  373. Ugurel, S., Rappl, G., Tilgen, W., Reinhold, U. Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients.// Clin. Cancer Res. -2001. -V. 7(5). P. 1282−6.
  374. Van Antwerp, D.J., S.J. Martin, T. Kafri, D.R. Green, and I.M. Verma (1996). Supression of TNF-a-induced apoptosis by Nf-KB. Science 274, 787 789.
  375. Vandenabeele, P., W. Declercq, R. Beyaert, and W. Fiers (1995). Two tumor necrosis factor receptors: structure and function. Trends Cell Biol 5, 392−399.
  376. Vandenbunder B., Wernert N., Stehelin D. L’oncogene c-ets 1 participe-t-il a la regulation de l’angiogenese tumorale? // Bull. Cancer. 1993. — Vol. 80.-p. 38−49.
  377. Veis, D.J., C.M. Sorenson, J.R. Shutter, and S.J. Korsmeyer (1993). Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229−240.
  378. Verhagen A.M., Coulson., Vaux D.L. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs.// Genome Biol, 2001.- V.2.- P. 30 013 010.
  379. Wajant H., Johannes F.-J., Haas E. et al. (1998). Dominant-negative FADD inhibits TNFR60-, Fas/Apol- and TRAIL-R/Apo2-mediated cell death but not gene induction. Curr. Biol. 8, 113−116.
  380. Wajant H., PfitzenmaierK., Scheurich P. Non-apoptotic Fas signaling.// Cytokine and Growth factor Reviews, 2003.- V.14.- P.53−66.
  381. Wang, C.-Y., M.W. Mayo, and J.A.S. Balwin (1996). TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of Nf-KB. Science 274, 784−787.
  382. Watanabe-Fukunaga, R., C.I. Brannan, N. Itoh et al. (1992). The cDNA Structure, Expression, and Chromosomal Assignment of the Mouse Fas Antigen. J. Immunol. 148, 1274−1279.
  383. Weber J., Gunn H., Yang J. et al. A phase I trial of intravenouse interleukin-6 in patients with advanced cancer // J. Immunotherapy.-1994.-Vol.l5.-p.292−302.
  384. Weidner N., Semple J., Welch W., Folkman J. Tumor angiogenesis and metastasis correlation in invasive breast carcinoma // N. Engl. J. Med. 1991. -Vol. 324.-p. 1−8.
  385. Weigel NL, Carter TH, Schrader WT, O’Malley BW. 1992. Chicken progesterone receptor is phosphorylated by a DNA-dependent protein kinase during in vitro transcription assays. Mol.Endocrinol. 6(1):8−14.
  386. Willenberg H.S., Path G., Vogeli T.A., Scherbaum W.A., Bornstein S.R. Role of interleukin-6 in stress response in normal and tumorous adrenal cell and during chronic inflammation // Ann. N.Y. Acad. Med. Sci.-2002.-Vol.966.-p.304−314.
  387. Yamasaki K., Taga T., Hirata Y. et al. Cloning and expression of the human interleukin-6 (B2/IFN beta 2) receptor // Science.-1998.-Vol.241.-P.825−828.
  388. Yang X., Khosravi-Far R., Chang H., and Baltimore D. (1997). Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis. Cell 89, 10 671 076.
  389. Yang, E., and S.J. Korsmeyer (1996). Molecular thanatopsis: a discourse on the Bcl2 family and cell death. Blood 88, 386−401.
  390. Yonehara, S., A. Ishii, and M. Yonehara (1989). A Cell-Killing Monoclonal Antibody (Anti-Fas) to a Cell Surface Antigen Co-Downregulated with the Receptor of Tumor Necrosis Factor. J. Exp. Med. 169, 1747−1756.
  391. Yoshiji H., Gomez D.E., Shibuya M., Thorgeirsson U.P. Expression of vascular endothelial growth factor. Its receptor, and other angiogenic factors in human breast cancer// Cancer Res. 1996. — Vol. 56. — p. 2013−2016.
  392. Yuan, J., S. Shaham, S. Ledoux, H.M. Ellis, and H.R. Horvitz (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 (3-converting enzyme. Cell 75, 641−652.
  393. Yuan Q., Pestka J. J., Hespenheide B. M., Kuhn L. A., Linz J. E., and Hart L. P. // Appl Environ Microbiol. 1999. V. 65. P. 3279−3286.
  394. Zamzami, N., S.A. Susin, P. Marchetti, et al. (1996). Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183, 1533−1544.
  395. Zha, J., H. Harada, E. Yang, J. Jockel, and S.J. Korsmeyer (1996). Serine phosphorylation of death agonist BAD in responce to survival factor results in binding to 14−3-3 not Bcl-x. Cell 87, 619−628.
  396. Zhang J., Cado D., Chen A., Kabra N., and Winoto A. (1998). Fasmediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mortl. Nature 392, 296−299.
Заполнить форму текущей работой