Помощь в написании студенческих работ
Антистрессовый сервис

Сравнительное исследование калиевых каналов в кардиомиоцитах млекопитающих и моллюсков

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Существует еще один К±канал — HERG (Human Ether-a-go-go-Related Gene) который является, пожалуй, наиболее важным в сердце человека и был впервые идентифицирован Вармке и Ганетцки (Warmke, Ganetzky, 1994) у Drosophila. HERGподобные К±каналы наряду с сердцем и нейронами описаны и в васкулярной системе теплокровных (Kodirov et al, 2000). Альфа-субъединицы HERG кодируют быстрый компонент К±каналов… Читать ещё >

Сравнительное исследование калиевых каналов в кардиомиоцитах млекопитающих и моллюсков (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ВВЕДЕНИЕ
  • 2. ОБЗОР ЛИТЕРАТУРЫ
    • 2. 1. Общая характеристика ионных каналов кардиоваскулярной системы 6 теплокровных
    • 2. 2. Альфа- и р-субъединицы потенциалзависимых К±каналов и их роль в клеточных процессах
    • 2. 3. Ионные каналы в кардиомиоцитах моллюсков
    • 2. 4. Общая характеристика кардиоваскулярной системы моллюсков
  • 3. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
    • 3. 1. Объекты исследования
    • 3. 2. Особенности выделения миоцитов
    • 3. 3. Культуральные клетки
    • 3. 4. Адено и адено-ассоциированные вирусы
    • 3. 5. Растворы
    • 3. 6. Электрофизиология, обработка данных и статистика
  • 4. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
    • 4. 1. HERG-подобные К±каналы портальной вены кролика
    • 4. 2. Семейства потенциалзависимых К±каналов в сердце мыши
      • 4. 2. 1. Геноманипуляция и селективное исследование отдельных Kv
      • 4. 2. 2. Транзиторное введение
  • К -каналов с помощью аденовирусов
    • 4. 2. 3. Длительное введение а-субъединицы Kvl .5 с помощью адено-ассоциированных вирусов
    • 4. 3. Потенциалзависимые К±каналы в сердечных клетках Helix
    • 4. 3. 1. Общая характеристика
    • 4. 3. 2. Фармакологический анализ
    • 4. 3. 3. Биофизические свойства
  • 5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • 6. ВЫВОДЫ

Калиевые каналы играют важную роль в формирование потенциала покоя и потенциалов действия (ПД) в нейронах и в мышечных клетках. Мембранный потенциал (МП) покоя возбудимой клетки определяется соотношением ионов калия вне (Ко) и внутри (Kj) клетки, и входящие К±токи (/ki) играют при этом главную роль. Выходящие К±токи в свою очередь принимают наибольшее участие в фазе реполяризации потенциалов действия. Эти каналы, активирующиеся при деполяризации мембраны и получившие название потенциалзависимые К±каналы (Kv, voltage dependent potassium channels), были описаны еще Ходжкиным и Хаксли (Hodgkin, Huxley, 1952).

Изменение режим работы К±каналов влияет на текущие значения МП, регулируют возбудимость клетки, определяют длительность ПД. Длительность ПД и скорость реполяризации являются важнейшими факторами, от которых зависит эффективность синаптической передачи (Николлс и др., 2003; Muennich, Fyffe, 2004), частота и сила сокращений сердца (Nattel, 2002). Именно поэтому К±каналы являются одним из наиболее интенсивно изучаемых типов каналов.

В мышечных клетках различных типов идентифицированы несколько десятков подсемейств К±каналов, отличающихся по кинетике активации и инактивации, фармакологии и другим характеристикам (Крутецкая, Лонский, 1994; Roden et al., 2002). Для большинства каналов определены аминокислотные последовательности, вторичная и третичная структуры. Имеется много сведений о генах, кодирующих различные каналы. Оказалось, что даже у эволюционно далеких животных аминокислотные последовательности во многих фрагментах имеют гомологичные участки, перекрывающиеся на 50−100%. Например, у Drosophila относительно давно был идентифицирован ген Shaker. Гомологи этого гена, которые ответственны за потенциалзависимые К±каналы Kvl, экспрессируются у теплокровных животных. Другие гены Drosophila, такие, как Shab, Shaw, Shal, также имеют гомологи у млекопитающих, которые (гомологи) ответственны за соответствующие подсемейства потенциалзависимых К±каналов: Kv2, Kv3 и Kv4 (Butler et al., 1989).

Среди всех других К±каналов в сердце млекопитающих очень высокий уровень экспрессии мРНК Kvl.2, Kvl.4, Kvl.5, Kv2.1, и Kv4.2 (Dixon, McKinnon, 1994; Brahmajothi et al., 1996). Альфаи р-субъединицы потенциалзависимых К±каналов у млекопитающих ассемблируются в эндоплазматическом ретикулуме и остаются вместе как постоянный комплекс (Shi et al., 1996). Альфа-субъединицы формируют ионную пору, а р-субъединицы модулируют функции и свойства а-субъединиц. На данный момент обнаружены И подсемейств Kv каналов, которые обозначены как Kvl, Kv2.Kvll. Каналы подсемейств начиная от Kvl до Kv2 ассемблируются либо отдельно и образуют гомотетрамерные каналы, которые соассемблируются вместе с членами того же подсемейства (например Kvl. l, Kvl.2, Kvl.3 и т. д.), и формируют гетеротетрамерные ионные каналы. Альфа-субъединицы подсемейств Kv каналов начиная, от Kv5 до Kvll как гомотетрамерные не образуют функциональные (ион проводящие) каналы, но при гетеротетрамеризации с Kv2 или Kv3 переобразуются в функциональные каналы с особыми свойствами (Salinas et al., 1997аSalinas et al, 1997bOttschytsch et al., 2002). Известны четыре гена начиная от Kvpl до Kvp4, которые кодируют р-субъединицы подсемейств Kv каналов (Heinemann et al., 1996; Trimmer, 1998). Из этих субъединиц Kvpi до Kvp2 имеют сплайс-вариантов соответственно от Kvpl. l до Kvpl.4 и Kvp2.1, Kvp2.2 (Thorneloe et al., 2001).

Существует еще один К±канал — HERG (Human Ether-a-go-go-Related Gene) который является, пожалуй, наиболее важным в сердце человека и был впервые идентифицирован Вармке и Ганетцки (Warmke, Ganetzky, 1994) у Drosophila. HERGподобные К±каналы наряду с сердцем и нейронами описаны и в васкулярной системе теплокровных (Kodirov et al, 2000). Альфа-субъединицы HERG кодируют быстрый компонент К±каналов задержанного выпрямления (/кг) в сердечных клетках (Sanguinetti et al, 1995; Trudeau et al, 1995). Блокада этих каналов тоже ведет к продление потенциала действия и QT интервала, а этот эффект может послужить причиной LQT (Long QT) синдрома — синдрома удлиненного QT интервала. Существуют несколько вариантов этого синдрома в зависимости от аномалии в отдельных каналах (Abriel et al., 2001; Marx et al, 2002; Roden et al, 2002).

Отсюда важно сравнение свойств, а в перспективе — и генов калиевых каналов у различных представителей животного мира. Таким образом, представляет несомненный интерес дальнейшее исследование и сравнение К±токов в клетках эволюционно различных животных. Давно известно, что наибольшее число аналогий в строении и функционировании существуют между сердцами позвоночных животных и моллюсков. Только два эти типа животных имеют камерные сердца с миогенным ритмом (Jones, 1983). Однако свойства ионных каналов в кардиомиоцитах моллюсков исследованы фрагментарно только у двух видов.

Целью настоящего исследования являлся сравнительный анализ потенциалзависимых К±каналов кардиомиоцитов млекопитающих и моллюсков.

В соответствии с этой целью решались следующие основные задачи:

• Исследование HERG и потенциалзависимых К±каналов кардиоваскулярной системы теплокровных.

• Определение биофизических и фармакологических характеристик потенциалзависимых К±каналов кардиомиоцитов млекопитающих.

• Изучение К±каналов кардиомиоцитов виноградной улитки Helix sp.

• Определение подсемейств а-субъединицы К±каналов у Helix.

• Сравнительный анализ потенциалзависимых К±каналов кардиомиоцитов млекопитающих и моллюсков.

2. ОБЗОР ЛИТЕРАТУРЫ.

6. ВЫВОДЫ.

1. В гладкомышечных клетках портальной вены кролика впервые идентифицированы К±каналы задержанного выпрямления, кодируемые а-субъединицами HERG. Эти каналы активируются в диапазоне -(40 — 60) мВ, что указывает на их участие в поддержании и модуляции мембранного потенциала покоя миоцитов кровеносных сосудов млекопитающих.

2. Анализ биофизических свойств а-субъединиц семейства потенциалзависимых К±каналов (aKvl.5, aKv2.1 и/или aKv2.2 и aKv4.2) в сердце мышей дикого типа показал, что нативные aKvl.5 в кардиомиоцитах этих мышей кодируют 4-АП-чувствительные токи, участвующие в формировании выходящих К±токов наряду с a-субъединицами Kv4.2. Калиевые токи задержанного выпрямления, кодируемые aKv2.1, избирательно и обратимо блокируются аппликацией 5 мМ TEA.

3. Впервые проведенный анализ калиевых токов изолированных кардиомиоцитов виноградной улитки Helix показал, что семейство выходящих токов активируется с постоянной времени в диапазоне от 21,5 ± 2,4 мс при -10 мВ до 6 ± 0,8 мс при +40 мВ и эти значение почти совпадают с таковими для К±каналов типа, А у млекопитающих.

4. В кардиомиоцитах виноградной улитки впервые выявлены калиевые каналы, чувствительные к 4-АП, TEA и антиаритмическому веществу III класса Е-4031. Эти К±токи показывают входящее выпрямление при +20 мВ, что свойственно К±каналам HERG млекопитающих.

5. Анализ кинетики активации и инактивации калиевых токов в кардиомиоцитах виноградной улитки, результаты фармакологических тестирований позволяют сделать заключение о наличии в сердце улитки калиевых каналов, гомологичных каналам задержанного выпрямления и типа А, кодируемых a-субъединицами Kv2.1 и Kv4.2 у млекопитающих.

Показать весь текст

Список литературы

  1. Г. Н., Алексеев Н. П. Функциональная организация механорецепторов. JL, Наука, Лен. отд., 1985, с. 1−223.
  2. О.А., Мартынова М. Г., Нилунд А. Стволовые мышечные клетки в сердечной мышце моллюсков. Цитология. 1996. Т. 38. С. 440−444.
  3. В.Л., Инюшин М. Ю., Сафонова Т. А. Исследование постсинаптических потенциалов в миокарде улиток рода Helix II Журн. эвол. биох. физиол. 1989. Т. 25. N5. С. 589- 597.
  4. В.Л., Инюшин М. Ю., Сафонова Т. А. Центральные нейроны, тормозящие работу сердца виноградной улитки // Научные доклады высшей школы. Серия «Биологические науки». 1990. С. 58−65.
  5. В.Л., Кодыров С. А., Бычков Р. Е., Сафонова Т. А., Дьяков А. А. Кардиостимулирующие нейроны в подглоточных ганглиях африканской улитки Achatina fulica F. II Физиол. журн. им. И. М. Сеченова 1994. Т. 80. N9. С. 29−37.
  6. В.Л. Механизмы нейрогуморального контроля сердца гастропод. // Журн. эвол. биох. физиол. 1999. Т. 35. Вып. 2. С. 62−75.
  7. А.А. Материалы к сравнительной физиологии сердца. Сообщение I. Автоматия сердца виноградной улитки // Физиол. журн. СССР 1934. Т. 17. N2. С. 293- 298.
  8. М.Ю., Журавлев В. Л., Сафонова Т. А. Командные нейроны пневмостома инициируют синаптические потенциалы в сердце и легком улитки // Журн. ВНД. 1987. Т. 37. N3. С. 581−583.
  9. З.И., Лонский А. В. Биофизика мембран. ЛГУ Л 994.
  10. И. Максимова О. А., Балабан П. М. Нейронные механизмы пластичности поведения // М.: Наука, 1983. С. 126.
  11. A.M., Батрукова М. А. Кальциевые каналы (рианодиновые рецепторы) саркоплазматического ретикулума: Структура и свойства // Биохимия. 1997. Т. 62, N9. С. 1091−1105
  12. Akoev, G.N., B.V. Krylov, andN.P. Alekseev. 1988. Mechanoreceptors: Their Functional Organization. Springer-Verlag, Berlin. 1−189.• 14. Abriel Н., Cabo С., Wehrens X. Н., Rivolta I., Motoike H. K., Memmi M., Napolitano C.,
  13. Priori S. G., Kass R. S. Novel arrhythmo genie mechanism revealed by a long-QT syndrome mutation in the cardiac Na+ channel // Circ Res 2001. V.88. P.740−745.
  14. Aldrich R. W., Jr., Getting P. A., Thompson S. H. Mechanism of frequency-dependent broadening of molluscan neurone soma spikes // J Physiol 1979a. V.291. P.531−544.
  15. Aldrich R. W., Jr., Getting P. A., Thompson S. H. Inactivation of delayed outward current in molluscan neurone somata IIJ Physiol 1979b. V.291. P.507−530.
  16. Bahring R., Boland L. M., Varghese A., Gebauer M., Pongs 0. Kinetic analysis of open-and closed-state inactivation transitions in human Kv4.2 A-type potassium channels // J Physiol 2001. V.535. P.65−81.
  17. Bal R., Janahmadi M., Green G. G., Sanders D. J. Two kinds of transient outward• currents, /д and /Adepob in F76 and D1 soma membranes of the subesophageal ganglia of Helix aspersa HJMembr Biol 2001. V.179. P.71−78.
  18. Baldwin T. J., Tsaur M. L., Lopez G. A., Jan Y. N., Jan L. Y. Characterization of a mammalian cDNA for an inactivating voltage- sensitive K+ channel // Neuron 1991. V.7. P.471−483.
  19. J., Kunkel M. Т., Peralta E. G. Single Channel Studies of Inward Rectifier Potassium Channel Regulation by Muscarinic Acetylcholine Receptors // J. Gen. Physiol 2000. V.116. P.645−652.
  20. Baroudi G., Acharfi S., Larouche C., Chahine M. Expression and intracellular localization of an SCN5A double mutant R1232W/T1620M implicated in Brugada syndrome // Circ Res 2002. V.90. P. E11−16.
  21. Barry D. M., Trimmer J. S., Merlie J. P., Nerbonne J. M. Differential expression ofvoltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? // Circ Res 1995. V.77. P.361−369.
  22. Bauer С. K., EngelandB., WulfsenI., Ludwig J., Pongs O., Schwarz J. R. RERG is a molecular correlate of the inward-rectifying K+ current in clonal rat pituitary cells // Receptors And Channels 1998. V.6. P. 19−29.
  23. Baukrowitz Т., Yellen G. Modulation of K+ current by frequency and external K+.: a tale of two inactivation mechanisms // Neuron 1995. V.15. P.951−960.
  24. Bean B. P., Sturek M., Puga A., Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs // Circ Res 1986. V.59. P.229−235.
  25. Bean B. P. Multiple types of calcium channels in heart muscle and neurons. Modulation• by drugs and neurotransmitters // Ann N Y Acad Set 1989. V.560. P.334−345.• 27. Bekele-Arcuri Z., Matos M. F., Manganas L., Strassle B. W., Monaghan M. M., Rhodes
  26. K. J., Trimmer J. S. Generation and characterization of subtype-specific monoclonal antibodies to K+ channel alpha- and beta-subunit polypeptides // Neuropharmacology 1996. V.35. P.851−865.
  27. J., С ui J., M cdonald T. V. H ERG К + с hannel a ctivity i s r egulated bye hanges i n phosphatidyl inositol 4,5-bisphosphate // С ire Res 2001. V.89. P. 1168−1176.
  28. L., Priori S. G., Napolitano C., Surewicz K. A., Dennis А. Т., Memmi M., Schwartz P. J., Brown A. M. Mechanisms of 7ks suppression in LQT1 mutants // Am J Physiol Heart Circ Physiol 2000. V.279. P. H3003−3011.
  29. Boer H. H., Sminia T. Sieve structure of slit diaphragms of podocytes and pore cells of gastropod molluscs // Cell Tissue Res 1976. V. l70. P.221−229.
  30. R. A., Clark R. В., Juhasz A. E., Giles W. R. Changes in Extracellular K+ Concentration Modulate Contractility of Rat and Rabbit Cardiac Myocytes via the Inward Rectifier K+ Current, /Ki U J Physiol 2004. V.
  31. Boyd P. J., Osborne N. N., Walker R. J. The pharmacological actions of 5-HT, FMRFamide and substance P and their possible occurence in the heart of the snail Helix aspersa II Neurochem. Int. 1984. V.6. P.633−640.
  32. Brahmajothi M. V., Morales M. J., Liu S., Rasmusson R. L., Campbell D. L., Strauss H. C. In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes // Circ Res 1996. V.78. P. 1083−1089.
  33. Brette F., Rodriguez P., Komukai K., Colyer J., Orchard С. H. Beta-adrenergic stimulation restores the Ca transient of ventricular myocytes lacking t-tubules // J Mol Cell Cardiol 2004. V.36. P.265−275.
  34. Brezden B. L., Gardner D. R. The ionic basis of the resting potential in a cross-striated muscle of the aquatic snail Lymnaea stagnalis IIJ Exp Biol 1984. V.108. P.305−314.
  35. Brezden B. L., Benjamin P. R., Gardner D. R. The peptide FMRFamide activates a divalent cation-conducting channel in heart muscle cells of the snail Lymnaea stagnalis II J Physiol 1991. V.443. P.727−738.
  36. Brezden B. L., Gardner D. R. A review of the electrophysiological, pharmacological and single channel properties of heart ventricle muscle cells in the snail Lymnaea stagnalis II Experientia 1992. V.48. P.841−852.
  37. Brugada J., Brugada R., Brugada P. Right bundle-branch block and ST-segment elevation in leads VI through V3: a marker for sudden death in patients without demonstrable structural heart disease // Circulation 1998. V.97. P.457−460.
  38. Buckett K. J., Dockray G. J., Osborne N. N., Benjamin P. R. Pharmacology of the myogenic heart of the pond snail Lymnaea stagnalis II J Neurophysiol 1990. V.63. P.1413−1425.
  39. Butler A., Wei A. G., Baker K., Salkoff L. A family of putative potassium channel genes in Drosophila И Science 1989. V.243. P.943−947.
  40. O. A., Antropova O. Y. (1994). Comparative ultrastructural and biochemicalanalysis atrial and ventricular myocytes in the heart of Helix sp. In 23rd European Muscle Congress.
  41. Chartier C., Degryse E., Gantzer M., Dieterle A., Pavirani A., Mehtali M. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli IIJ Virol 1996. V.70. P.4805−4810.
  42. Choi K. L., Aldrich R. W., Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels // Proc Natl Acad Sci USA 1991. V.88. P.5092−5095.
  43. Christe G. Localization of K+ channels in the tubules of cardiomyocytes as suggested by the parallel decay of membrane capacitance, IKi and IKatp during culture and by delayed IKi response to barium IIJMol Cell Cardiol 1999. V.31. P.2207−2213.
  44. R. В., Tremblay A., Melnyk P., Allen B. G., Giles W. R., Fiset C. T-tubule localization of the inward-rectifier K+ channel in mouse ventricular myocytes: a role in K+ accumulation И J Physiol 2001. V.537. P.979−992.
  45. Connor J. A., Stevens C. F. Voltage clamp studies of a transient outward membrane current in gastropod neural somata// J Physiol 1971a. V.213. P.21−30.
  46. Connor J. A., Stevens C. F. Inward and delayed outward membrane currents in isolated neural somata under voltage clamp // J Physiol 1971b. V.213. P.1−19.
  47. Curtis Т. M., Depledge M. H., Williamson R. Voltage-activated currents in cardiac myocytes of the blue mussel, Mytilus edulis U Comp Biochem Physiol Part A 1999. V.124. P.231−241.
  48. Dale B. Blood pressure and its hydraulic functions in Helix pomatia II J. Exp. Biol. 1973. V.59. P.477−490.
  49. Deaton L. E., M.J. G. The ionic dependence of the cardiac action potential in bivalve molluscs: systematic distribution// Сотр. Biochem. Physiol 1980. V.67. P. 155−161.
  50. Denton J. S., Leiter J. C. Anomalous Effects of External TEA on Permeation and Gating of the A-Type Potassium Current in H. aspersa Neuronal Somata // J Membr Biol 2002. V.190. P. 17−28.
  51. Dixon J. E., Mckinnon D. Quantitative analysis of potassium channel mRNA expression • in atrial and ventricular muscle of rats // С ire Res 1994. V.75. P.252−260.
  52. Dixon J. E., Shi W., Wang H. S., Mcdonald C., Yu H., Wymore R. S., Cohen I. S.,
  53. Mckinnon D. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current // С ire Res 1996. V.79. P.659−668.
  54. Donahue J. K., Heldman A. W., Fraser H., Mcdonald A. D., Miller J. M., Rade J. J., Eschenhagen Т., Marban E. Focal modification of electrical conduction in the heart by viral gene transfer // Nat Med 2000. V.6. P. 1395−1398.
  55. Doupnik C. A., Davidson N., Lester H. A. The inward rectifier potassium channel family // Curr OpinNeurobiol 1995. V.5. P.268−277.
  56. R., Wang Q., Keating M. Т., Hartmann H. A., Schwartz P. J., Brown A. M., Kirsch G. E. Multiple mechanisms of Na+ channel-linked long-QT syndrome // Circ Res 1996. V.78. P.916−924.
  57. M., Olcese R., Zarei M. M., Того L., Stefani E. External pore collapse as an inactivation mechanism for Kv4.3 K+ channels // JMembr Biol 2002. V.188. P.73−86.
  58. Etheridge S. P., Compton S. J., Tristani-Firouzi M., Mason J. W. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations IIJ Am Coll Cardiol 2003. V.42. P. 1777−1782.
  59. C., Clark R. В., Larsen T. S., Giles W. R. A rapidly activating sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricle // J
  60. Physiol (Lond) 1997. V.504. P.557−563.
  61. Follmer С. H., Colatsky T. J. Block of delayed rectifier potassium current, /к, by flecainide and E-4031 in cat ventricular myocytes // Circulation 1990. V.82. P.289−293.
  62. Fozzard H. A. Afterdepolarizations and triggered activity // Basic Res Cardiol 1992. V.87. P.105−113.
  63. Freeh G. C., Vandongen A. M., Schuster G., Brown A. M., Joho R. H. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning // Nature 1989. V.340. P.642−645.
  64. V., Graham A. (1976). A functional anatomy of invertebrates. Academic Press, London.
  65. Frontali N., Williams L., Welsh J. H. Heart excitatory and inhibitory substances in molluscan ganglia // Comp Biochem Physiol 1967. V.22. P.833−841.
  66. Fujimoto K., Ohta N., Yoshida M., Kubota I., Muneoka Y., Kobayashi M. A novel cardio-excitatory peptide isolated from the atria of the African giant snail, Achatina fulica II Biochem Biophys Res Commun 1990. V.167. P.777−783.
  67. Fujita K., Minakata H., Nomoto K., Furukawa Y., Kobayashi M. Structure-activity relations of fulicin, a peptide containing a D-amino acid residue // Peptides 1995. V.16. P.565−568.
  68. Furukawa Y. Accumulation of inactivation in a cloned transient K+ channel (AKvl.la) of Aplysia/I JNeurophysiol 1995. V.74. P. 1248−1257.
  69. Furukawa Y., Kobayashi, M.,. Neural control of heart beat in the African giant snail, Achatina fulica Ferussac. I. Identification of the heart regulatory neurones I I J. Exp. Biol. 1987a. V.129. P.279−293.
  70. Furukawa Y., Kobayashi, M.,. Neural control of heart beat in the African giant snail, Achatina fulica Ferussac. II. Interconnections among the heart regulatory neurones // J. Exp. Biol. 1987b. V.129. P.294−307.
  71. Garateix A., Vega R., S alceda E., Сebada J., Aneiros A., S oto E. В gK anemone toxin inhibits outward K+ currents in snail neurons // Brain Res 2000. V.864. P.312−314.
  72. Gebauer M., Isbrandt D., Sauter K., Callsen В., Nolting A., Pongs O., Bahring R. N-type inactivation features of Kv4.2 channel gating // Biophys J 2004. V.86. P.210−223.
  73. Glazebrook P. A., Ramirez A. N., Schild J. H., Shieh C.-C., Doan Т., Wible B. A., Kunze D. L. Potassium channels Kvl. l, Kvl.2 and Kvl.6 influence excitability of rat visceral sensory neurons IIJ Physiol (Lond) 2002. V.541. P.467−482.
  74. M. J., Agarwal R. A., Wilkens L. A. (1973). Chemical regulation of rhythmical activity in molluscan muscle. In Neurobiology of Invertebrates. Mechanisms of rhythm regulation, ed. Salanki, J., pp. 167−181. Akademiai Kiado, Budapest.
  75. Greenberg M. J., Price D. A. Cardioregulatory peptides in molluscs // Soc Gen Physiol Ser 1980. V.35. P.107−126.ш 90. Greenberg М. J., Price D. A. Invertebrate neuropeptides: native and naturalized // Annu
  76. Rev Physiol 1983. V.45. P.271−288.
  77. Greenberg M. J., Payza K., Nachman R. J., Holman G. M., Price D. A. Relationships between the FMRFamide-related peptides and other peptide families // Peptides 1988. V.9. P.125−135.
  78. Grissmer S., Cahalan M. TEA prevents inactivation while blocking open K+ channels in human T lymphocytes // Biophys J1989. V.55. P.203−206.
  79. Gulbis J. M., Zhou M., Mann S., Mackinnon R. Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels II Science 2000. V.289. P. 123−127.
  80. Hamill O. P., Marty A., Neher E., Sakmann В., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane• patches // PJlugers Arch 1981. V.391. P.85−100.
  81. Heinemann S. H., R ettig J., G raack H. R., P ongs О. F unctional с haracterization о f К v channel beta-subunits from rat brain // J Physiol 1996. V.493. P.625−633.
  82. Hill R. B. Some effects of acetylcholine and of active amines on the isolated ventricles of Aplysia dactylomela and Aplysia fasciata // Pubbl. Stn. Zool. Napoli 1964. V.34. P.75−85.
  83. R. В., Welsh J. H. (1966). Heart circulation and blood cells. In Physiology of Mollusca, vol. 2. ed. Wilbur, К. M. & Yong, С. M., pp. 125−174. Academic Press, New York.
  84. Hill R. B. Effects of acetylcholine on resting and action potentials, and on contractile force in the ventricle of Dolabella auricularia IIJ Exp Biol 1974a. V.61. P.629−637.
  85. Hill R. B. Effects of 5-hydroxytryptamine on action potentials and on contractile force in the ventricle of Dolabella auricularia IIJ Exp Biol 1974b. V.61. P.529−539.
  86. Hill R. B. Cardiovascular control in Mollusca. Introduction: Comparative physiology of cardiovascular control // Experientia 1987a. V.43. P.953−956.
  87. Hill R. B. Cardiovascular control in Mollusca. Conclusion: Comparative physiology of cardiovascular control // Experientia 1987b. V.43. P.994−997.
  88. R. В., Kuwasawa K. Neuromuscular transmission in molluscan hearts // Zool. Science 1990. V.7. P.999−1011.
  89. Hill R. B. Cardioactive substances regulating the myogenic heart of Mollusca: evidence from comparative electrocardiography // Jpn. J. Electrocardiology 1996. V.16. P.76−83.
  90. Hodgkin A. L., Huxley A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo IIJ Physiol 1952. V.116. P.449−472.
  91. Hoshi Т., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation // Science 1990. V.250. P.533−538.
  92. N., Gonoi Т., Clement J. P. Т., Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. Reconstitution of IKatp: an inward rectifier subunit plus the sulfonylurea receptor // Science 1995. V.270. P. l 166−1170.
  93. Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by * preincubation in a «KB medium» // Pjlugers Arch. 1982. V.395. P.6−18.
  94. Isner J. M. Myocardial gene therapy // Nature 2002. V.415. P.234−239.
  95. Jaeger C. P. Physiology of Mollusca. I. Action of acetylcholine on the heart of Strophocheilus oblongus И Сотр. Biochem. Physiol 1961. V.4. P.30−32.
  96. Jan L. Y., Jan Y. N. Cloned potassium channels from eukaryotes and prokaryotes // Annu RevNeurosci 1997. V.20. P.91−123.
  97. С. Т., Riddle J. M. Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current // Circ Res 1989. V.64. P.977−990.
  98. Jerng H. H., S hahidullah M., С ovarrubias M. Inactivation g ating о f К v4 p otassium channels: molecular interactions involving the inner vestibule of the pore // J Gen Physiol 1999. V. l 13. P.641−660.
  99. H. D. (1983). The circulatory systems of gastropods and bivalves. In The Mollusca, vol. 5. ed. Saleuddin, A. S. M. & Mansour, Т. E., pp. 189−238. Academic Press, New York.
  100. J., Geraerts W. P. М. (1983). Endocrinology. In The Mollusca, vol. 4. ed. Saleuddin, A. S. М. & Wilbur, К. М. P., pp. 317−406.
  101. Kagan A., Yu Z., Fishman G. I., Mcdonald Т. V. The dominant negative LQT2 mutation A561V reduces wild-type HERG expression // J Biol Chem 2000. У.215. P. l 1241−11 248.
  102. Kamp T. J., F oell J. D. L-type С a2+ с hannels i n a trial fibrillation: w allflowers о r a vanishing act // JMol Cell Cardiol 2003. V.35. P.427−431.
  103. Kang Т. M., Hilgemann D. W. Multiple transport modes of the cardiac Na+/Ca2+ exchanger // Nature 2004. V.427. P.544−548.
  104. Katz A. M. Calcium channel diversity in the cardiovascular system // J Am Coll Cardiol 1996. V.28. P.522−529.
  105. R. (1985). Die Weinbergsnecke. Uber Leben und Nutzung von Helix pomatia. Ziemsen Verlag, Wittenberg Lutherstadt.
  106. Kim L. A., Furst J., Butler M. H., Xu S., Grigorieff N., Goldstein S. A. Ito channels are octomeric complexes with four subunits of each Kv4.2 and K+ channel-interacting protein 2IIJ Biol Chem 2004a. V.279. P.5549−5554.
  107. Kim L. A., Furst J., Gutierrez D., Butler M. H., Xu S., Goldstein S. A., Grigorieff N. Three-dimensional structure of /to- Kv4.2-KChIP2 ion channels by electron microscopy at 21 Angstrom resolution II Neuron 2004b. V.41. P.513−519.
  108. Kiss Т., Laszlo Z., Szabadics J. Mechanism of 4-aminopyridine block of the transient outward K±current in identified Helix neuron // Brain Res 2002. V.927. P. 168−179.
  109. Klemic K. G., Shieh С. C., Kirsch G. E., Jones S. W. Inactivation of Kv2.1 potassium channels // Biophys J1998. V.74. P.1779−1789.
  110. Kobertz W. R., Miller C. K+ channels lacking the 'tetramerizatiori domain: implications for pore structure // Nat Struct Biol 1999. V.6. P. l 122−1125.
  111. Koch G., Chen M. L., Sharma R., Walker R. J. The actions of RFamide neuroactive peptides on the isolated heart of the giant African snail, Achatina fulica II Comp Biochem Physiol С 1993. V.106. P.359−365.
  112. Kodirov S. A., Goyal R. K., Hay R., Giles W. R., Akbarali H. I. HERG-like K+ channels с ontribute t о t he r esting p otential о f s mooth m uscle 11 В iophys J 2 000. V .78. P.2134.
  113. Kodirov S. A., Brunner M., Buckett P., Koren G. In vivo rescue of an LQT phenotypeby infection of the heart of transgenic mice with adenoviral vectors carrying Kvl.5 cDNA II Circulation 2001. V. l04. P. 120.
  114. S. A., Brunner M., Koren G. 4-aminopyridine-sensitive current downregulation and its rescue by an in vivo Kvl.5 adenoviral infection // Biophys J2002. V.82. P. 1187.
  115. Kodirov S. A., Brunner M., Busconi L., Koren G. Long-term restitution of 4-aminopyridine-sensitive currents in KvlDN ventricular myocytes using adeno-associated virus-mediated delivery of Kvl.5 // FEBS Lett 2003. V.550. P.74−78.
  116. Kodirov S. A., Brunner M., Nerbonne J., Buckett P., Mitchell G., Koren G. Attenuation of 7k, s1ow1 and 7k, s1ow2 in Kvl/Kv2DN mice prolongs the APD and QT intervalsbut does not suppress spontaneous or inducible arrhythmias // Am J Physiol Heart Circ
  117. Physiol 2004a. V.286. P. H368−374.
  118. Kodirov S. A., Zhuravlev V. L., Pavlenko V. K., Safonova T. A., Brachmann J. K+ channels in cardiomyocytes of the pulmonate snail Helix II J. Membr. Biol. 2004b. V. l 97. P.145−154.
  119. Korchev Y. E., Negulyaev Y. A., Edwards C. R., Vodyanoy I., Lab M. J. Functional localization of single active ion channels on the surface of a living cell // Nat Cell Biol 2000. V.2. P.616−619.
  120. Kostyuk P. G., Krishtal O. A., Pidoplichko V. I. Potential-dependent membrane current during the active transport of ions in snail neurones // J Physiol 1972. V.226. P.373−392.
  121. Krapivinsky G., Gordon E. A., Wickman K., Velimirovic В., Krapivinsky L., Clapham D. E. The G-protein-gated atrial K+ channel 1Кдсь is a heteromultimer of two inwardly rectifying K±channel proteins II Nature 1995. V.374. P.135−141.
  122. Kreusch A., Pfaffinger P. J., Stevens C. F., Choe S. Crystal structure of the tetramerization domain of the Shaker potassium channel // Nature 1998. V.392. P.945−948.
  123. Kurokawa J., MotoikeH. K., Kass R. S. TEA±sensitive KCNQ1 constructs reveal pore-independent access to KCNE1 in assembled /ks channels // J Gen Physiol 2001. V. l 17. P.43−52.
  124. Kuryshev Y. A., Gudz Т. I., Brown A. M., Wible B. A. KChAP as a chaperone for specific K+ channels 11 Am. J. Physiol Cell Physiol 2000. V.278. P. C931-C941.
  125. Sci. Pergamon Press, Budapest.
  126. Kuwasawa K., Yazawa, Т., Kurokawa M.,. Inhibitory neural control of the myocardium in opisthobranch molluscs // Experientia 1987. V.43. P.986−990.
  127. Leake L. D., Evans T. G., Walker R. J. The role of catecholamines and 5-HT on the heart of Patella vulgata II Сотр. Gen. Pharmacol. 1971. V.2. P.151−158.
  128. Leonoudakis D., Mailliard W., Wingerd K., Clegg D., Vandenberg C. Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97 // J Cell Sci 2001. V. 114. P.987−998.
  129. Liebeswar G., Goldman J. E., Koester J., Mayeri E. Neural control of circulation in Aplysia. III. Neurotransmitters // JNeurophysiol 1975. V.38. P.767−779.
  130. Lien С. C., Martina M., Schultz J. H., Ehmke H., Jonas P. Gating, modulation and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurones of rat hippocampus IIJ Physiol 2002. V.538. P.405−419.
  131. Lipp P., Huser J., Pott L., Niggli E. Spatially non-uniform Ca signals induced by the reduction of transverse tubules in citrate-loaded guinea-pig ventricular myocytes in culture IIJ Physiol 1996. V.497 (Pt 3). P.589−597.
  132. Liu Y., Holmgren M., Jurman M. E., Yellen G. Gated access to the pore of a voltage-dependent K+ channel // Neuron 1997. V. 19. P. 175−184.
  133. Lloyd P. E. Biochemical and pharmacological analyses of endogenous cardioactive peptides in the snail, Helix aspersa II J. Сотр. Physiol. 1980. V.138. P.265−270.
  134. Lomax A. E., Rose R. A., Giles W. R. Electrophysiological evidence for a gradient of G protein-gated K+ current in adult mouse atria // Br J Pharmacol 2003. V.140. P.576−584.
  135. Lopatin A. N., Makhina E. N., Nichols C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification // Nature 1994. V.372. P.366−369.
  136. Lopez-Barneo J., Hoshi Т., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels // Receptors And Channels 1993. V.l. P.61−71.
  137. Lu Y., Mahaut-Smith M. P., Varghese A., Huang C. L., Kemp P. R., Vandenberg J. I.
  138. Effects of premature stimulation on HERG K+ channels IIJ Physiol 2001. V.537. P.843−851.
  139. Ma M., Koester J. The role of K+ currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic-clamp analysis // JNeurosci 1996. V.16. P.4089−4101.
  140. Mackay A. R., Gelperin A. Pharmacology and reflex responsiveness of the heart of the giant garden slug, Umax maximus II Сотр. Biochem. Physiol 1972. V.43. P.877−896.
  141. Mackinnon R., Heginbotham L., Abramson T. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor // Neuron 1990. V.5. P.767−771.
  142. Manganas L. N., Wang Q., Scannevin R. H., Antonucci D. E., Rhodes K. J., Trimmer J. S. Identification of a trafficking determinant localized to the Kvl potassium channel pore // Proc Natl Acad Sci USA 2001. V.98. P.14 055−14 059.
  143. Mannuzzu L. M., Moronne M. M., Isacoff E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating // Science 1996. V.271. P.213−216.
  144. Martina M., Schultz J. H., Ehmke H., Monyer H., Jonas P. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus IIJ Neurosci 1998. V.18. P.8111−8125.
  145. Marx S. O., Kurokawa J., Reiken S., Motoike H., D’armiento J., Marks A. R., Kass R. S. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel // Science 2002. V.295. P.496−499.
  146. Matsubayashi T., M atsuura H., E hara T. О n t he m echanism о f t he e nhancement о f delayed rectifier K+ current bye xtracellular A TP i n g uinea-pig v entricular m yocytes // Pflugers Arch. 1999. V.437. P.635−642.
  147. Matsuda H., Saigusa A., Irisawa H. Ohmic conductance through the inwardly rectifying K+ channel and blocking by internal Mg2+ // Nature 1987. V.325. P. 156−159.
  148. Matsuura H., Tsuruhara Y., Sakaguchi M., Ehara T. Enhancement of delayed rectifier K+ current by P2-purinoceptor stimulation in guinea-pig atrial cells // J. Physiol (bond) 1996. V.490. P.647−658.
  149. M. С., Worley J. F., 3rd. Linoleic acid both enhances activation and blocks Kvl.5 and Kv2.1 channels by two separate mechanisms // Am J Physiol Cell Physiol 2001. V.281. P. C1277−1284.
  150. Meyhofer E., Morse M. P., Robinson W. E. Podocytes in bivalve molluscs: Morphological evidence for ultrafiltration // J. Сотр. Physiol 1985. V.156. P.151−161.
  151. Mitcheson J. S., Hancox J. C., Levi A. J. Action potentials, ion channel currents and transverse tubule density in adult rabbit ventricular myocytes maintained for 6 days in cell culture // Pflugers Arch 1996. V.431. P.814−827.
  152. Motoike H. K., Liu H., Glaaser I. W., Yang A. S., Tateyama M., Kass R. S. The Na+ channel inactivation gate is a molecular complex: a novel role of the COOH-terminal domain IIJ Gen Physiol 2004. V.123. P.155−165.
  153. Muennich E. A., Fyffe R. E. Focal aggregation of voltage-gated, Kv2.1 subunit-containing, potassium channels at synaptic sites in rat spinal motoneurones // J Physiol 2004. V.554. P.673−685.
  154. Murakoshi H., Trimmer J. S. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons // J Neurosci 1999. V.19. P.1728−1735.
  155. Murrell-Lagnado R. D., Aldrich R. W. Interactions of amino terminal domains of Shaker K+ channels with a pore blocking site studied with synthetic peptides // J Gen Physiol 1993. V.102. P.949−975.
  156. Nadal M. S., Amarillo Y., Vega-Saenz De Miera E., Rudy B. Evidence for the presence of a novel Kv4-mediated A-type K+ channel-modifying factor // J Physiol 2001. V.537. P.801−809.
  157. Nakahira K., Shi G., Rhodes K. J., Trimmer J. S. Selective interaction of voltage-gated K+ channel beta-submits with alpha-subunits IIJ Biol Chem 1996. V.271. P.7084−7089.
  158. Nattel S. New ideas about atrial fibrillation 50 years on // Nature 2002. V.415. P.219−226.
  159. Negulyaev Y. A., Khaitlina S. Y., Hinssen H., Shumilina E. V., Vedernikova E. A. Sodium channel activity in leukemia cells is directly controlled by actin polymerization // J Biol Chem 2000. V.275. P.40 933−40 937.
  160. Neher E. Two fast transient current components during voltage clamp on snail neurons // J Gen Physiol 1971. V.58. P.36−53.
  161. Neher E., Lux H. D. Properties of somatic membrane patches of snail neurons under voltage clamp // Pflugers Arch. 1971. V.322. P.35−38.ж 181. Nicaise G., Amsellem J. (1983). Cytology of muscle and neuromuscular junction. In
  162. The Mollusca, vol. 4. ed. Willbur, К. M. & Saleuddin, A. S. M., pp. 1−33. Academic Press, New York.
  163. R. N. Plummer J. M. (1968). The fine structure of cardiac and other molluscan muscle. In Symp. Zool. Soc. bond., pp. 193−311.
  164. Nishida M., Mackinnon R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution // Cell 2002. V.lll. P.957−965.
  165. Noma A. ATP-regulated K+ channels in cardiac muscle // Nature 1983. V.305. P.147−148.
  166. Nomura H. The effect of stretching on the intracellular action potential from the cardiac muscle fibre of the marine mollusc, Dolabella auricularia II Sci. Rep. Tokio Kyoiku Daigaku 1963. V.ll. P.153−165.
  167. H. В., Marban E., Johns D. C. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes // J.Clin.Invest 1999. V.103. P.889−896.
  168. Ogielska E. M., Zagotta W. N., Hoshi Т., Heinemann S. H., Haab J., Aldrich R. W. Cooperative subunit interactions in C-type inactivation of K+ channels // Biophys J 1995. V.69. P.2449−2457.
  169. Ohya S., Tanaka M., Oku Т., Asai Y., Watanabe M., Giles W. R., Imaizumi Y. Molecular cloning and tissue distribution of an alternatively spliced variant of an A-type K+ channel alpha-subunit, Kv4.3 in the rat // FEBS Lett 1997. V.420. P.47−53.
  170. Orlic D., Kajstura J., Chimenti S., Jakoniuk I., Anderson S. M., Li В., Pickel J., Mckay R., Nadal-Ginard В., Bodine D. M., Leri A., Anversa P. Bone marrow cells regenerate infarcted myocardium // Nature 2001a. V.410. P.701−705.
  171. Ottschytsch N., Raes A., Van Hoorick D., Snyders D. J. Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome // Proc Natl Acad Sci USA 2002. V.99. P.7986−7991.
  172. Patel A. J., Lazdunski M., Honore E. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes // Embo Journal 1997. V.16. P.6615−6625.
  173. Peterson B. Z., Demaria C. D., Adelman J. P., Yue D. T. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L- type calcium channels // Neuron 1999. V.22. P.549−558.
  174. Pongs O. Voltage-gated potassium channels: from hyperexcitability to excitement // FEBS Lett 1999. V.452. P.31−35.
  175. Price D. A., Greenberg M. J. Structure of a molluscan cardioexcitatory neuropeptide // Science 1977a. V.197. P.670−671.
  176. Price D. A., Greenberg M. J. Purification and characterization of a cardioexcitatory neuropeptide from the central ganglia of a bivalve mollusc // Prep Biochem 1977b. V.7. P.261−281.
  177. Price D. A. Evolution of a molluscan cardioregulatory neuropeptide // Amer. Zool. 1986. V.26. P.1007−1015.
  178. Price D. A., Cobb C. G., Doble К. E., Kline J. K., Greenberg M. J. Evidence for a novel FMRFamide-related heptapeptide in the pulmonate snail Siphonaria pectinata И Peptides 1987. V.8. P.533−538.
  179. Price D. A., Lesser W., Lee T. D., Doble К. E., Greenberg M. J. Seven FMRFamide-related and two SCP-related cardioactive peptides from Helix IIJ Exp Biol 1990. V.154. P.421−437.
  180. Puglisi J. L., Bers D. M. LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca2+ transport // Am J Physiol Cell Physiol 2001. V.281. P. C2049−2060.
  181. Rajamani S., Anderson C. L., Anson B. D., January С. T. Pharmacological rescue of human K+ channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block // Circulation 2002. V.105. P.2830−2835.
  182. Rettig J., Heinemann S. H., Wunder F., Lorra C., Parcej D. N., Dolly J. O., Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit // Nature 1994. V.369. P.289−294.
  183. Reuter H., Han Т., Motter C., Philipson K. D., Goldhaber J. I. Mice overexpressing the cardiac sodium-calcium exchanger: defects in excitation-contraction coupling // J Physiol 2004. V.554. P.779−789.
  184. Ridley J. MM ilnes J. Т., Z hang Y. HW itchel H. J., H ancox J. С. Inhibition о f HERG K+ current and prolongation of the guinea-pig ventricular action potential by 4aminopyridine И J Physiol (bond) 2003. V.549. P.667−672.
  185. Ripplinger J. Contribution a l’etude de la physiologie due coeur et son innervation extrinseque chez l’escargot (Helixpomatia) II Zool. Physiol. 1957. V.8. P.3−179.
  186. Roberds S. L., Tamkun M. M. Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart // Proc Natl Acad Sci USA 1991. V.88. P. 1798−1802.
  187. Roden D. M., Balser J. R., George Jr. A. L., Anderson M. E. CARDIAC ION CHANNELS HAnnu. Rev. Physiol. 2002. V.64. P.431−475.
  188. Roeper J., Sewing S., Zhang Y., Sommer Т., Wanner S. G., Pongs O. NIP domain prevents N-type inactivation in voltage-gated potassium channels // Nature 1998. V.391. P.390−393.
  189. Ruppersberg J. P., Frank R., Pongs O., Stocker M. Cloned neuronal IKA channels reopen during recovery from inactivation II Nature 1991. V.353. P.657−660.
  190. S.-Rozsa K. S., Nagy I. Z. Physiological and histochemical evidence for neuroendocrine regulation of heart activity in the snail Lymnaea stagnalis L // Comp Biochem. Physiol 1967. V.23. P.373−382.
  191. Sakmann В., Noma A., Trautwein W. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart // Nature 1983. V.303. P.250−253.
  192. Salinas M., De Weille J., Guillemare E., Lazdunski M., Hugnot J. P. Modes of regulation of shab K+ channel activity by the Kv8.1 subunit IIJ Biol Chem 1997a. V.272. P.8774−8780.
  193. Salinas M., D uprat F., Heurteaux С., H ugnot J. PLazdunski M. N ew m odulatory alpha subunits for mammalian Shab K+ channels IIJ Biol Chem 1997b. V.272. P.24 371−24 379.
  194. Sanger J. W. Cardiac fine structure in selected arthropods and molluscs // Am Zool 1979. V.19. P.9−27.
  195. Sanguinetti M. C., Jurkiewicz N. K. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents // J Gen Physiol 1990. V.96. P.195−215.
  196. Sanguinetti M. C., Jiang C., Curran M. E., Keating M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the /кг potassium channel // Cell 1995. V.81. P.299−307.
  197. Schwarz J. R., Bauer С. K. Ionic mechanisms underlying TRH-induced prolactin secretion in rat lactotrophs // Ross.Fiziol.Zh.Im I.M.Sechenova 1999. V.85. P. 195−204.
  198. Serodio P., Kentros C., Rudy B. Identification of molecular components of A-type channels activating at subthreshold potentials // JNeurophysiol 1994. V.72. P. 1516−1529.
  199. Serodio P., Vega-Saenz De Miera E., Rudy B. Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain IIJ Neurophysiol 1996. V.75. P.2174−2179.
  200. Sewing S., Roeper J., Pongs 0. Kv beta 1 subunit binding specific for shaker-relatedpotassium channel alpha submits // Neuron 1996. V. 16. P.455−463.
  201. Shahidullah M., Covarrubias M. The link between ion permeation and inactivation gating of Kv4 potassium channels // Biophys J 2003. V.84. P.928−941.
  202. Shi G., Kleinklaus A. K., Marrion N. V., Trimmer J. S. Properties of Kv2.1 K+ channels expressed in transfected mammalian cells // Journal Of Biological Chemistry 1994. V.269. P.23 204−23 211.
  203. Shi G., Nakahira K., Hammond S., Rhodes K. J., Schechter L. E., Trimmer J. S. Beta subunits promote K+ channel surface expression through effects early in biosynthesis // Neuron 1996. V.16. P.843−852.
  204. Shimizu Y., Kubo Т., Furukawa Y. Cumulative inactivation and the pore domain in the Kvl channels // Pflugers Arch 2002. V.443. P.720−730.
  205. Smith P. J. S. Cardiac output in the Mollusca: Scope and regulation // Experientia1987. V.43. P.956−965.
  206. Smith P. L., Baukrowitz Т., Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel // Nature 1996. V.379. P.833−836.
  207. Snyders D. J., Chaudhary A. High affinity open channel block by dofetilide of HERG expressed in a human cell line // Mol.Pharmacol. 1996. V.49. P.949−955.
  208. Soejima M., Noma A. Mode of regulation of the ACh-sensitive K±channel by the muscarinic receptor in rabbit atrial cells // Pflugers Arch 1984. V.400. P.424−431.
  209. Sotkis A. V., Kostyuk P. G., Lukyanetz E. A. Diversity of single potassium channels in isolated snail neurons // Neuroreport 1998. V.9. P.1413−1417.
  210. Spector P. S., Curran M. E., Zou A., Keating M. Т., Sanguinetti M. C. Fast inactivation causes rectification of the /кг channel // J.Gen.Physiol 1996. V. l07. P.611• 619.
  211. Splawski I., Shen J., Timothy K. W., Lehmann M. H., Priori S., Robinson J. L., Moss
  212. A. J., Schwartz P. J., Towbin J. A., Vincent G. M., Keating M. T. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2 // Circulation 2000. V.102. P. l 178−1185.
  213. Strang C., Cushman S. J., Derubeis D., Peterson D., Pfaffinger P. J. A central role for the T1 domain in voltage-gated potassium channel formation and function IIJ Biol Chem 2001. V.276. P.28 493−28 502.
  214. Strang C., Kunjilwar K., Derubeis D., Peterson D., Pfaffinger P. J. The role of Zn2+ in Shal voltage-gated potassium channel formation// J Вiol Chem 2003. V.278. P.31 361−31 371.
  215. Swartz K. J., Mackinnon R. An inhibitor of the Kv2.1 potassium channel isolated from m the venom of a Chilean tarantula // Neuron 1995. V. 15. P.941 -949.
  216. Swartz K. J., Mackinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites // Neuron 1997. V. 18. P.665−673.
  217. Tateyama M., Liu H., Yang A. S., Cormier J. W., Kass R. S. Structural effects of an LQT-3 mutation on heart Na+ channel gating // Biophys J 2004. V.86. P. 1843−1851.
  218. Tempel B. L., Jan Y. N., Jan L. Y. Cloning of a probable potassium channel gene from mouse brain II Nature 1988. V.332. P.837−839.
  219. Thompson S. H. T hree p harmacologically d istinct p otassium с hannels i n m olluscan neurones // J Physiol 1977. V.265. P.465−488.
  220. K. S., Chen Т. Т., Kerr P. M., Grier E. F., Horowitz В., Cole W. C., Walsh M. P. Molecular composition of 4-aminopyridine-sensitive voltage-gated K+ channels of vascular smooth muscle // Circ Res 2001. V.89. P.1030−1037.
  221. Trautwein W., Dudel J. Zum mechanismus der membranwirkung des acetylcholin an der herzmuskelfaser И Pflugers Arch 1958. V.266 (3):. P.324−334.
  222. Trimmer J. S. Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain // Proc Natl Acad Sci U S A 1991. V.88. P. 1 076 410 768.
  223. Trimmer J. S. Regulation of ion channel expression by cytoplasmic subunits // Curr Opin Neurobiol 1998. V.8. P.370−374.
  224. Trudeau M. C., Warmke J. W., Ganetzky В., Robertson G. A. HERG, a human inward rectifier in the voltage-gated potassium channel family // Science 1995. V.269. P.92−95.
  225. Vandongen A. M., Freeh G. C., Drewe J. A., Joho R. H., Brown A. M. Alteration and restoration of K+ channel function by deletions at the N- and C-termini // Neuron 1990.• V.5. P.433−443.
  226. Vosswinkel R. Das Blutgefassystem von Helixpomatia L. (Gastropoda, Pulmonata). I. Makroskopische Untersuchung des arteriellen Systems // Zool Jb. Anat 1976. V.96. P.529−554.
  227. Vosswinkel R. Das Blutgefassystem von Helix pomatia L. (Gastropoda, Pulmonata). II. Licht- und elektronenmikroskopische Untersuchungen der verschiedenen Anteile des Systems II Zool Л. Anat 1982. V.108. P.341−374.
  228. Wang S., Morales M. J., Qu Y.-J., Bett G. C. L., Strauss H. C., Rasmusson R. L. Kvl.4 channel block by quinidine: evidence for a drug-induced allosteric effect // J Physiol (Lond) 2003. V.546. P.387−401.
  229. Wang Z., Zhang X., Fedida D. Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kvl.5IIJ Physiol 2000. V.523. P.575−591.
  230. Warmke J. W., Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals // Proc Natl Acad Sci USA 1994. V.91. P.343 8−3442.
  231. Welch W. J., Brown C. R. Influence of molecular and chemical chaperones on protein folding // Cell Stress Chaperones 1996. V.l. P.109−115.
  232. Wilkens L. A., Greenberg M. J. Effects of acetylcholine and 5-hydroxytryptamine and their ionic mechanisms of action on the electrical and mechanical activity of molluscan heart smooth muscle // Сотр. Biochem. Physiol 1973. V.45. P.637−651.
  233. J. Т., Wang H., Perez-Reyes E., Barrett P. Q. Stimulation of recombinant Cav3.2, T-type, Ca2+ channel currents by CaMKIIgammaC // J Physiol (Lond) 2002. V.538. P.343−355.
  234. Wollnik В., Schroeder В. C., Kubisch C., Esperer H. D., Wieacker P., Jentsch T. J. Pathophysiological mechanisms of dominant and recessive KVLQT 1 K+ channel mutations found in inherited cardiac arrhythmias // Hum Mol Genet 1997. V.6. P. 19 431 949.
  235. Yellen G., Jurman M. E., Abramson Т., Mackinnon R. Mutations affecting internal TEA blockade identify the probable pore- forming region of a K+ channel // Science 1991. V.251. P.939−942.
  236. Yeoman M. S., Benjamin P. R. Two types of voltage-gated K+ currents in dissociated heart ventricular muscle cells of the snail Lymnaea stagnalis 11 J Neurophysiol 1999. V.82. P.2415−2427.
  237. Yeoman M. S., Brezden B. L., Benjamin P. R. LVA and HVA Ca2+ currents in ventricular muscle cells of the Lymnaea heart H J Neurophysiol 1999. V.82. P.2428−2440.
  238. Zagotta W. N., Hoshi Т., Aldrich R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB I I Science 1990. V.250. P.568−571.
  239. Zhou J., Kodirov S., Murata M., Buckett P. D., Nerbonne J. M., Koren G. Regional upregulation of Kv2.1-encoded current, /k, Siow2, in KvlDN mice is abolished by crossbreeding with Kv2DN mice // Am J Physiol Heart Circ Physiol 2003. V.284. P. H491−500.
  240. Zhou W., Cayabyab F. S., Pennefather P. S., Schlichter L. C., Decoursey Т. E. HERG-like K± channels in microglia // J. Gen. Physiol 1998a. V. 111. P.781 -794.
  241. Zhou Z., Gong Q., Epstein M. L., January С. T. HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects // J.Biol.Chem. 1998b. V.273. P.21 061−21 066.
  242. Zhou Z., Gong Q., January С. T. Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects // J.Biol. Chem. 1999. V.274. P.31 123−31 126.
  243. Zhuravlev V., Bugaj V., Kodirov S., Safonova Т., Staruschenko A. Giant multimodal heart motoneurons of Achatina fulica: a new cardioregulatory input in pulmonates // Comp Biochem Physiol Part A 2001. V.130. P.183−196.
  244. V. L., Iniushin M. U., Safonova T. A. (1988). Synaptic potentials in the hearts of molluscs. In Neurobiology of Invertebrates, vol. 36, pp. 733−737. Symposia Biologica Hungarica.
  245. Zimmer Т., Biskup C., Bollensdorff C., Benndorf K. The betal subunit but not the beta2 subunit colocalizes with the human heart Na+ channel (hHl) already within the endoplasmic reticulum // JMembr Biol 2002. V.186. P. 13−21.
  246. Zuhlke R. D., Pitt G. S., Deisseroth K., Tsien R. W., Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels // Nature 1999. V.399. P.159−162.
Заполнить форму текущей работой