Помощь в написании студенческих работ
Антистрессовый сервис

Разработка компонентной базы на основе рекомбинантных А-и В-субъединиц рицина для создания тест-систем, антидотов и вакцин против отравлений рицином

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Клещевина обыкновенная представляет собой ценную сельскохозяйственную высокомасличную техническую культуру. В касторовых бобах содержится 48−55% касторового масла, которое отличается высоким содержанием трипшцеридов рицинолевой кислоты (80−85%) и используется в промышленности, медицине и косметологии. Побочным продуктом при производстве касторового масла является шрот клещевины, содержащий 3740… Читать ещё >

Разработка компонентной базы на основе рекомбинантных А-и В-субъединиц рицина для создания тест-систем, антидотов и вакцин против отравлений рицином (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений
  • ГЛАВА 1. Обзор литературы
    • 1. 1. Характеристика рицина
      • 1. 1. 1. Рибосом-инактивирующие лектины
      • 1. 1. 2. Строение рицина и его действие на эукариотические клетки
      • 1. 1. 3. Биосинтез рицина
      • 1. 1. 4. Транспорт рицина в клетках млекопитающих
      • 1. 1. 5. Действие А-субъединицы рицина на рибосомы
      • 1. 1. 6. Иммунологические свойства рицина
    • 1. 2. Профилактика излечение отравлений рицином
      • 1. 2. 1. Воздействие рицина на организм животных
      • 1. 2. 2. Разработка антидотов против рицина
      • 1. 2. 3. Разработка вакцин против отравлений рицином
      • 1. 2. 4. Разработка тест-систем для обнаружения рицина
    • 1. 3. Применение субъединиц рицина в медицине
      • 1. 3. 1. Иммунотоксины
      • 1. 3. 2. Адьюванты для создания вакцин
    • 1. 4. Использование технологии создания химерных белков для получения рекомбинантных антигенов
      • 1. 4. 1. Аффинные домены и белки-носители
      • 1. 4. 2. Применение целлюлозы, как иммуносорбента
  • ГЛАВА 2. Экспериментальная часть
    • 2. 1. Материалы и реактивы
      • 2. 1. 1. Плазмидные векторы и олигонуклеотиды
      • 2. 1. 2. Бактериальные штаммы и среды
      • 2. 1. 3. Ферменты
      • 2. 1. 4. Сорбенты
      • 2. 1. 5. Другие реактивы
      • 2. 1. 6. Буферные растворы
      • 2. 1. 7. Лабораторные животные
      • 2. 1. 8. Оборудование.л
    • 2. 2. Основные методики
      • 2. 2. 1. Выделение ДНК клещевины.7Г
      • 2. 2. 2. Полимеразная цепная реакция
      • 2. 2. 3. Химико-ферментативный синтез
      • 2. 2. 4. Сайт-специфический мутагенез
      • 2. 2. 5. Гидролиз ДНК специфическими эндонуклеазами
      • 2. 2. 6. Фракционирование.фрагментов ДНК методом электрофореза в агарозном геле
      • 2. 2. 7. Препаративное разделение фрагментов ДНК и их элюция из геля
      • 2. 2. 8. Лигирование фрагментов ДНК
      • 2. 2. 9. Выделение и очистка аналитического количества плазмидной ДНК
      • 2. 2. 10. Выделение препаративных количеств плазмидной ДНК
      • 2. 2. 11. Определение нуклеотидных последовательностей плазмидных ДНК.76. 2.2.12. Подготовка компетентных клеток Е. coli для трансформации плазмидной
  • ДНК электропорацией
    • 2. 2. 13. Трансформация клеток Е. col
    • 2. 2. 14. Электрофорез белков в ПААГ-ДСН
    • 2. 2. 15. Выращивание штамма-продуцента и индукция синтеза рекомбинантных белков
    • 2. 2. 16. Определение растворимости белков
    • 2. 2. 17. Определение периплазматической локализации белков
    • 2. 2. 18. Выделение и очистка белков, содержащих ШБе-аффинную метку
    • 2. 2. 19. Выделение и очистка белков, содержащих CBD
    • 2. 2. 20. Иммунизация кроликов
    • 2. 2. 21. Непрямой ИФА
  • ГЛАВА 3. Результаты и обсуждение
    • 3. 1. Получение рекомбинантных аутентичных RTA и RTB
      • 3. 1. 1. Клонирование нуклеотидной последовательности аутентичной RTA
      • 3. 1. 2. Клонирование нуклеотидной последовательности аутентичной RTB
      • 3. 1. 3. Экспрессия рекомбинантных генов аутентичных RTA и RTB в клетках Е. coli М
    • 3. 2. Получение рекомбинантной мутантной RTA
      • 3. 2. 1. Клонирование нуклеотиднойпоследовательности мутантной RTA.96'
      • 3. 2. 2. Экспрессия рекомбинантного гена мутантной RTA в клетках Е. coli Ml
    • 3. 3. Получение химерных белков RTAspCBD и RTBspCBD в цитоплазме Е. со I
      • 3. 3. 1. Клонирование гибридных генов химерных белков RTAspCBD и RTBspCBD
      • 3. 3. 2. Экспрессия гибридных генов химерных белков RTAspCBD и RTBspCBD в клетках Е. coli Ml
    • 3. 4. Получение химерных белков RTA-DHFR и RTB-DHFR и исследование их иммуногенных и антигенных свойств
      • 3. 4. 1. Клонирование гибридных генов химерных белков RTA-DHFR и RTB-DHFR
      • 3. 4. 2. Экспрессия гибридных генов химерных белков RTA-DHFR и RTB-DHFR в клетках Е. coli Ml 5.108,
      • 3. 4. 3. Выделение и очистка химерных белков RTA-DHFR и RTB-DHFR
      • 3. 4. 4. Исследование иммуногенных и антигенных свойств химерных белков RTA-DHFR и RTB-DHFR
    • 3. 5. Получение химерных белков RTAspCBD и RTBspCBD в периплазме Е. coli и исследование их иммуногенных и антигенных свойств
      • 3. 5. 1. Клонирование гибридных генов химерных белков SigRTAspCBD и SigRTBspCBD
      • 3. 5. 2. Экспрессия гибридных генов химерных белков SigRTAspCBD и SigRTBspCBD в Е. coli Ml
      • 3. 5. 3. Выделение и очистка химерных белков RTAspCBD и RTBspCBD
      • 3. 5. 4. Исследование иммуногенных и антигенных свойств химерных белков RTAspCBD и RTBspCBD
  • ВЫВОДЫ

Актуальность проблемы. Рицин, токсин растительного происхождения из семян клещевины обыкновенной (Ricinus communis) (рис. 1), является одним из наиболее сильнодействующих токсинов [1]. Его содержание в семенах (касторовых бобах) составляет приблизительно 1−5%. С давних лет известно, что употребление всего двух бобов клещевины может оказаться смертельно опасным для человека.

А. Б.

Рис. 1. Клещевина обыкновенная (Ricinus communis): А. Растение с плодами. Б. Высохший плод (коробочка) и семена (касторовые бобы).

Клещевина обыкновенная представляет собой ценную сельскохозяйственную высокомасличную техническую культуру. В касторовых бобах содержится 48−55% касторового масла, которое отличается высоким содержанием трипшцеридов рицинолевой кислоты (80−85%) и используется в промышленности, медицине и косметологии. Побочным продуктом при производстве касторового масла является шрот клещевины, содержащий 3740% питательного белка и входящий в компоненты кормов для сельскохозяйственных животных и рыб. Однако присутствие рицина в семенах клещевины осложняет производство касторового масла и шрота клещевины [2, 3, 4].

В руководстве работой и подготовке ее к защите принимал участие заведующий лабораторией биологически активных наноструктур ГУ НИИ эпидемиологии и микробиологии им. почетного академика Н. Ф. Гамалеи РАМН, к.б.н. В. Г. Лунин.

Обычно рицин удаляют из сырья острым паром [1]. Тем не менее, такая обработка не всегда полностью инактивирует токсин, что в дальнейшем может приводить к отравлению человека и сельскохозяйственных животных. Согласно ГОСТ 18 102–95 (Масло касторовое медицинское. Технические условия) и ГОСТ 17 290–71 (Шрот клещевинный кормовой. Технические условия), реакция. на рицин, в продукции должна отсутствовать.

Ввиду широкого распространения клещевины как сельскохозяйственной5 культуры и простой технологии выделения, рицин является легко доступным токсином. Из-за своей высокой токсичности и доступности он привлекает внимание военных специалистов в области химического оружия, начиная с 1-ой мировой войны. Технология выделения рицина из жмыха семян клещевины не требует сложного оборудования, и поэтому рицин доступен для производства даже в странах со слаборазвитой химической промышленностью. Разработаны эффективные технологии выделения и очистки рицина до кристаллического состояния.

По оценкам экспертов Всемирной организации здравоохранения (ВОЗ) летальная доза неочищенного рицина в аэрозольном состоянии находится на уровне ингаляционной дозы паров зарина, а очищенного — меньше чем летальная, доза вещества VX. Ему как поражающему агенту, был присвоен шифр «W» [5]. Летальные дозы токсина зависят от способа его попадания в организм животных и от вида животных. Наиболее опасной формой рицина является' аэрозоль. Минимальная летальная ингаляционная доза рицина для человека может составлять приблизительно 0,005 мг/кг [6, 7].

В 1978 году рицином был убит болгарский телеведущий Георгий Марков. Токсин был введен журналисту в бедро «уколом» зонтика, в котором была спрятана капсула с рицином. Смерть наступила через 3 дня [8]. В 2003 и 2004 годах рицин был обнаружен в Южной Каролине (США) в почтовом отделении, обслуживающем кабинет сенатора Билла Фриста, и внутри письма, адресованного в Белый Дом (США). Рицин был обнаружен на территории США у лиц, имеющих отношение к антиправительственным группировкам и связанных с террористическими организациями [1]. В начале 2003 года британская полиция арестовала группу террористов, часть которых прошла подготовку в Чечне. В подпольной лаборатории они наладили производство рицина, а между тем, один из задержанных работал на военной базе и имел доступ к приготовлению пищи солдат [9]. Очевидно, что растительный токсин рицин представляет серьезнейшую опасность из-за возможности его использования в качестве химического оружия, в частности, в террористических целях. Он может быть применен для отравления^ воздуха в закрытых вентиляционных системах, питьевой воды и запасов-продовольствия.

Рицин — гликопротеин, белковая часть молекулы которого построена из двух субъединиц — каталитической активной А-субъединицы (RTA, Ricinus Toxin А-chain) [10] и лектиновой связывающей В-субъединицы (RTB, Ricinus Toxin Вchain), соединенных одной дисульфидной связью [11]. RTA ответственна за.

— f токсические свойства рицина, а RTB за его транспорт внутрь клетки. Благодаря своей токсической активности RTA нашла применение в создании иммунотоксинов (ИТ) — конъюгатов, состоящих из токсина и антитела и обладающих направленным действием, например в противоопухолевой терапии [11], терапии ВИЧ [12], а также для подавления иммунного ответа при трансплантации органов [13].

На сегодняшний день не существует препаратов для профилактики и лечения отравления рицином, в связи с чем, чрезвычайный интерес представляет создание антидотов и вакцин, а также разработка тест-систем для экспресс-индикации рицина в окружающей среде и в организме. Наиболее перспективными представляются антидоты, полученные на основе протективных антител к рицину, а также тест-системы, основанные на иммунохимических методах. Производство подобных антидотов, тест-систем и вакцин требует получения антигенов рицина.

Работа с нативным рицином для получения его антигенов крайне сложна ввиду его высокой токсичности. Следует отметить, что RTA, изолированная от RTB, находясь вне клетки нетоксична из-за неспособности проникать в клетку без RTB [14]. RTB, сама по себе, также нетоксична [15]. Кроме того, известно, что рекомбинантные RTA и RTB сохраняют многие эпитопы нативного рицина, в том числе и протективные [16, 17]. Поэтому перспективным подходом к получению антигенов рицина является создание рекомбинантных RTA и RTB. Для разработки ИТ также возможно использование рекомбинантных RTA, но для этой цели необходимо сохранение токсичности рекомбинантых RTA и снижение их имму ногенности.

Цель и задачи исследования

Целью данной работы являлось получение рекомбинантных антигенов RTA и RTB и исследование их иммуногенных и антигенных свойств. Работа выполнялась в рамках комплексного проекта Федерального агентства по науке и инновациям при Министерстве образования и науки РФ по теме: «Разработка технологий, методов и средств обеспечения-системы биологической безопасности и противодействия терроризму» (шифр «БТ.

00.2.001″) по договору № 8-JI/05 от 04.05.2005 (ГК 02.467.11.6002 от 12.04.2005).

В соответствии с поставленной целью в процессе работы предстояло решить следующие основные задачи:

1. Клонирование и экспрессия в Е. coli нуклеотидных последовательностей, кодирующих как аутентичные RTA и RTB, так и их гибриды с белками-носителями;

2. Создание эффективных штаммов-продуцентов Е. coli рекомбинантных белков, содержащих RTA и RTBI.

3. Разработка технологии выделения и очистки рекомбинантных белков, содержащих RTA и RTB;

4. Исследование иммуногенных и антигенных свойств полученных белков.

Научная новизна. На основе идеологии создания многокомпонентных белков, развиваемой в исследовательских коллективах лабораторий биологически активных наноструктур ГУ НИИ эпидемиологии и микробиологии им. Н. Ф. Гамалеи РАМН и молекулярной диагностики и генно-инженерных конструкций ВНИИ сельскохозяйственной биотехнологии РАСХН, заведующим которых является к.б.н. В. Г. Лунин, были впервые спланированы и сконструированы рекомбинантные гибридные плазмидные ДНК Е. coli, позволяющие эффективно осуществлять в клетках Е. coli пггамма М15 индуцированный биосинтез химерных белков RTA-DHFR, RTB-DHFR и RTAspCBD, RTBspCBD, содержащих Аи В-субъединицы рицина и белки-носители (дигидрофолат редуктазу — DHFR и целлюлозосвязывающий доменCBD). Впервые получены штаммы-продуценты данных белков. Разработана высокоэффективная схема выделения, очистки и иммобилизации рекомбинантных белков ЯТАзрСБШ, ЯТВврСВО на целлюлозном сорбенте, основанная на свойствах целлюлозосвязывающего домена и позволяющая получать препараты белков со степенью чистоты более 95%. Впервые получены в препаративных количествах высокоочищенные рекомбинантные белки ЯТА-ОНГЛ, ЯТВ-ОНТЫ и ЯТАврСВВ,.

• ЯТВзрСВО, способные индуцировать у кроликов выработку высокого титра специфичных к нативному рицину антител.

Практическое значение работы. Полученные штаммы-продуценты рекомбинантных белков ЯТАэрСВО, ЯТВБрСВО и разработанный метод выделения, очистки и иммобилизации этих белков на целлюлозе, могут найти применение в области промышленной, биотехнологии при создании вакцинных препаратов для предотвращения отравлений рицином, тест-систем индикации рицина на основе иммунохимических методов, а также для получения антидотов к<, рицину на основе протективных антител. Целлюлозосвязывающий домен позволяет получать иммобилизованные препараты ЯТАзрСВО, ЯТВврСВО на целлюлозе. Белки, иммобилизованные на целлюлозном носителе, как показали данные предварительных испытаний, обладают большей стабильностью и существенно большей иммуногенностью по сравнению с раствором нативного белка [18]. Данные белки могут быть использованы для разработки нового поколения иммунологических диагностикумов, в том числе белковых биочипов, основанных на присоединении к подложке из целлюлозы данных рекомбинантных белков, а также для получения сорбентов на основе целлюлозы, для очистки противорициновых антител. В случае сохранения токсичности, связаннойс каталитической активностью ЯТА выщеплять аденин из 288 рРНК г эукариотических клеток, белок ЯТАврСВО может найти применение в качестве компонента ИТ для борьбы со злокачественными опухолями. Белок ЯТВврСВО. может бьггь использован в качестве адъюванта субъединичных генно-инженерных вакцин. 1.

выводы.

1. Сконструированы экспрессионные плазмиды, содержащие гибридные гены химерных белков, состоящих из Аи В-субъединиц рицина и дигидрофолат редуктазы, обеспечивающие эффективную продукцию целевых белков как в водорастворимой форме, так и в форме телец включения в цитоплазме клеток Е. coli.

2. Сконструированы экспрессионные плазмиды, содержащие гибридные гены химерных белков, состоящих из Аи В-субъединиц рицина, целлюлозосвязывающего домена и N-концевой сигнальной последовательности, обеспечивающие эффективную продукцию целевых белков в водорастворимой форме в периплазме клеток Е. coli.

3. Разработана технологичная и высокоэффективная методика выделения, очистки и иммобилизации белков, состоящих из субъединиц рицина и целлюлозосвязывающего домена на целлюлозном сорбенте.

4. Изучены иммуногенные и антигенные свойства полученных белков. Показано, что они индуцируют выработку высокого титра специфических к нативному рицину антител.

5. Предложено использование белков с целлюлозосвязывающим доменом, как наиболее технологически и экономически выгодных, для создания тест-систем, вакцин и антидотов.

Благодарности.

Автор выражает глубокую благодарность своему научному руководителю, акад. РАМН, д.б.н., проф. В. И. Швецу за умелое руководство и помощь в подготовке к защите данной работы. Автор выражает глубокую признательность заведующему лаборатории биологически активных наноструктур ГУ НИИ эпидемиологии и микробиологии им. Н. Ф. Гамалеи РАМН, к.б.н. В. Г. Лунину, идеалогически и экспериментально обосновавшего данную работу, за любезно предоставленную возможность выполнять работу в лаборатории биологически активных наноструктур, за помощь в ее выполнении и ежедневное умелое руководство. Автор выражает глубокую признательность сотрудникам лаборатории биологически активных наноструктур ГУ НИИ эпидемиологии и микробиологии им. Н. Ф. Гамалеи РАМН: к.б.н. П. В. Попадьину, к.б.н. З. М. Галушкиной, к.б.н. H.H. Полетаевой, к.б.н. JI.B. Верховской, к.б.н. Н. В. Лавровой, а также В. В. Евстифееву за помощь в постановке экспериментов. Автор благодарит научных сотрудников Т. В. Тихонову и к.х.н. О. В. Сергиенко из лаборатории молекулярной диагностики и генно-инженерных конструкций ВНИИ сельскохозяйственной биотехнологии РАСХН за участие в создании плазмиды pspCBD. Автор благодарит научных сотрудников лаборатории молекулярной диагностики и генно-инженерных конструкций ВНИИ сельскохозяйственной биотехнологии РАСХН: к.х.н. О. В. Сергиенко, к.б.н. О. Л. Воронину, О. С. Колобову, Е. М. Рязанову, Д. В. Гришина, A.C. Семихина и всех остальных сотрудников за ценные рекомендации и советы, за неизменную доброжелательность, дружеское участие и поддержку при выполнении работы.

Показать весь текст

Список литературы

  1. Audi J., Belson M., Patel M., Schier J., Osterloh J. Ricin poisoning: a comprehensive review.// JAMA. -2005.-V. 294. -N. 18.-P. 2342−2351.
  2. P. Получение пищевой добавки из шрота клещевины. // Комбикорма. -2003.-№ 5.-С. 29.
  3. Кормовые отравления сельскохозяйственных животных: Учебное пособие. 1-е изд. / Лимаренко А. А., Бажов Г. М., Бараников А. И. Санкт-Петербург: Лань, 2007. -С. 276−278.
  4. С.И. Повышение протеиновой питательности рационов растущих и откармливаемых свиней // Свиноферма. — 2007. -№ 3.-С. 14−16.
  5. Н.С. Химическое оружие на рубеже двух столетий. М: Прогресс, 1994.-С. 108−111.
  6. Doan L.G. Ricin: Mechanism of toxity, clinical manifestations, and vaccine development. // J. Toxicol. Clin. Toxicol. 2004. — V. 42. -N. 2. — P. 201−208.
  7. Bradbeiry S.M., Dickers K.J., Rice P., Griffiths G.D., Vale J.A. Ricin poisoning. // Toxicol. Rev. 2003. — V. 22. -N. 1. — P. 65−70.
  8. Crompton R., Gall D. Georgi Markov death in a pellet. // Med. Leg. J. — 1980. — V. 48.-N. 2.-P. 51−62.
  9. E.B. Рицин в руках террористов и врачей. // Химия и жизнь XXI век. -2003. -№ 3, — С. 18−20.
  10. Endo Y., Tsurugi К. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. // J. Biol. Chem. 1987. — V. 262.-N. 17.-P. 8128−8130.
  11. Olsnes S., Kozlov J.V. Ricin. // Toxicon. 2001 — V. 39. — N. 11. — P. 1723−1728.
  12. Pincus S.H. Therapeutic potential of anti-HIV immunotoxins. // Antiviral Res. — 1996.-V. 33.-N. l.-P. 1−9.
  13. О’Наге М., Roberts L.M., Thorpe Р.Е., Watson G.J., Prior В., Lord J.M. Expression of ricin A chain in Escherichia coli. IIFEBS Lett. 1987. — V. 216. — N. 1. — P. 73−78.
  14. Roberts L.M., Lord J.M. Ribosome-inactivating proteins: entry into mammalian cells and intracellular routing. // Mini Rev. Med. Chem. 2004. — V. 4. — N. 5. — P. 505−512.
  15. McGuinness C.R., Mantis N.J. Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin В subunit. // Infect. Immun. 2006. — V. 74.-N. 6.-P. 3463−3470.
  16. И.Ю., Лунина H.A., Великодворская Г. А. Перспективы практического применения субстратсвязывающих модулей гликозолгидролаз // Прикладн. биох. мик. 2004. — Т.40. — № 5. — С. 499−504.
  17. Stirpe F., Battelli M.G. Ribosome-inactivating proteins: progress and problems. // Cell Mol. Life Sci. 2006. — V. 63. -N.16. — P. 1850−1866.
  18. Sweeney E.C., Tonevitsky A.G., Temiakov D.E., Agapov I.I., Saward S., Palmer R.A. Preliminary crystallographic characterization of ricin agglutinin. // Proteins. — 1997.-V. 28.-P. 586−589.
  19. Olsnes S., Stirpe F., Sandvig K., Pihl A. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). // J. Biol. Chem. 1982. — V. 257. — P. 13 263−13 270.
  20. Sweeney E.C., Tonevitsky A.G., Temiakov D.E., Agapov I.I., Saward S., Palmer R.A. Preliminary crystallographic characterization of ricin agglutinin. // Proteins. — 1997. V. 28. — P. 586−589.
  21. Ю.В., Сударкина О. Ю., Курманова А. Г. Рибосом-инактивирующие лектины растений. // Мол. биол. 2006. — Т. 40. — № 4. — С. 711−723.
  22. Montfort W., ViUafranca J.E., Monzingo A.F., Ernst S.R., Katzin В., Rutenber E., Xuong N.H., Hamlin R., Robertus J.D. The three-dimensional structure of ricin at 2.8 A. // J. Biol. Chem. 1987. — V. 262. — P. 5398−5403.
  23. Rutenber E., Katzin В J., Ernst S., Collins E .J., Mlsna D., Ready M.P., Robertus J.D. Crystallographic refinement of ricin to 2.5 A. // Proteins. 1991. — V. 10. — N. 3. — P. 240−250.
  24. Olsnes S., Pappenheimer A.M., Meren R. Lectins from Abrus precatorius and Ricinus communis. II. Hybrid toxins and their interaction with chain-specific antibodies. // J. Immunol. 1974. — V. 113. -N. 3. — P. 842−847.
  25. A.M. Особенности строения и фармакокинетика рицина. // Психофамакол. биол, наркол. 2007. — Т. 7. -№ 1. -С. 1484−1487.
  26. Е.Н. Взаимодействие рицина с клетками гибридом, секретирующих антитела против его каталитической субъединицы: Дис.. канд. биол. наук. М., 2004. -160 с.
  27. Н.Н., Чикишев А. Ю., Сотников А. И. Савочкина Ю.А., Агапов И. И., Тоневицкий А. Г. Кирпичников М.П. Конформационные различия рицина и агглютинина рицина в растворе и кристалле. // Докл. АН 2001. — Т. 376. — № 5. -С.687−689.
  28. Lewis M. S, Youle RJ. Ricin subunit association. Thermodynamics and the role of the disulfide bond in toxicity. // J. Biol. Chem. 1986. — Vol 261. — N. 25. P. 11 571−11 577.
  29. Olsnes S., Pihl A. Different biological properties of the two constituent peptide chainse of ricin, a toxic protein inhibiting protein synthesis. // Biochemistry. 1973. — V. 12.-P. 3121−3126.
  30. Katzin B.J., Collins E.J., Robertus J.D. Structure of ricin A-chain at 2.5 A. // Proteins.-1991.-V. 10.-P. 251−259.
  31. Robertus J. D., Monzingo A. F. The structure of ribosome-inactivating proteins. // Mini Rev. Med. Chem. 2004. — V. 4. — P. 477−486.
  32. Endo Y., Mitsui K., Motizuki M., Tsutugi K. The mechanism of action of ricin and related toxins on eukaryoutic ribosomes.// J. Biol. Chem. 1987. — V. 262. — P. 81 288 130.
  33. Rutenber E., Robertus J.D. Structure of ricin B-chain at 2.5 A resolution. // Proteins. -1991. -V. 10.-P. 260−269.
  34. Murzin A.G., Lesk A. M, Chothia C.-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interlieukins-1 P and la and fibroblast growth factors. // J. Mol. Biol. 1992. --V. 223. — P. 531−543.
  35. Sphyris N., Lord J.M., Wales R., Roberts L.M. Mutational analysis of the Ricinus lectin B-chains. Galactose-binding ability of the 2 gamma subdomain of Ricinus communis agglutinin B-chain.// J. Biol. Chem. 1995. — V. 27. — N. 35. — P. 20 292 202 937.
  36. Wales R., Richardson P.T., Roberts L. M, Woodland H.R., Lord J.M. Mutational: analysis of the galactose binding ability of recombinant ricin B chain. // J. Biol. Chem: -1991.-V. 266. -N- 29.-P. 19 172−19 179:
  37. Tregear J. W, Roberts L.M. The lectin gene family of Ricinus communis: cloning of a functional ricin gene and three lectin pseudogenes. // Plant Mol. Biol. 1992. — V. 18: -N. 3.-P. 515−525.
  38. Lord J.M., Roberts L. M, Robertus J.D. Ricin: structure, mode of action, and some current applications. // FASEB- J. 1994. — V. 8. — N. 2. — P. 201−208:
  39. Youle R.J., Huang A.H. Protein bodies from the endosperm of castor bean: subfractionation, protein components, lectins, and changes during germination. // Plant Physiol. 1976. -V. 58: -N. 6. — P. 703−709.
  40. Lamb F.I., Roberts L. M, Lord J. M: Nucleotide sequence of cloned cDNA coding for preproricin. // Eur. J. Biochem. 1985. — V. 148. — N. 2. — P. 265−270.
  41. Ferrini J. BI, Martin M, Taupiac M.P., Beaumelle B. Expression of functional ricin B chain using the baculovirus system- // Eur. J. Biochem. 1995. — V. 233. — N. 3. — P. 772−773.
  42. Lord J.M. Synthesis and intracellular transport of lectin and storage protein precursors in endosperm from castor bean. // Eur. J. Biochem: 1985. -V. 146: -N. 2. — P. 403−409.
  43. Lord J.M. Precursors of ricin and Ricinns communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. // Eur. J. Biochem. 1985. — V. 146.-N. 2.-P.411−416.
  44. Kimura Y., Hase S., Kobayashi.Y., Kyogoku Y., Ikenaka Т., Funatsu G. Structures of sugar chains of ricin B. // J. Biochem.- 1988.- V. 103.-N. 6. P. 944−949.
  45. Harley S.M., Beevers H. Ricin inhibition of in vitro protein synthesis by plant ribosomes. // Proc. Natl.Acad. Sci. USA. 1982. — V. 79. -N. 19. — P. 5935−5938.
  46. Richardson P.T., Westby M., Roberts L.M., Gould J.H., Colman A., Lord J. M- Recombinant proricin binds galactose but does not depurinate 28S ribosomal RNA. // FEBS lett. -1989. V 255. — P. 15−20.
  47. Frigerio L., Vitale A., Lord J.M., Ceriotti A., Roberts L.M. Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. //J. BioL Chem. 1998. — V. 273. -N. 23. -P. 14 194^14199^
  48. Barbieri L., Battelli M.G., Stirpe F. Ribosome-inactivating proteins from plants. // Biochim. Biophys Acta. 1993.- V, 1154:-N. 3−4.-P. 237−82: •
  49. Lord J.M., Roberts L.M. Toxin entry: retrograde transport throught the secretory pathways. // J. Cell Biol. 1998. — V. 140. — N. 4. — P. 733−736.
  50. О.В. Конформационные изменения растительных токсинов в ходе внутриклеточного транспорта: Дис. канд. биол. наук. М., 2004. — 122 с.
  51. Rodal S.K., Skretting G., Garred О., Vilhardt F., van Deurs В., Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. //Mol. Biol. Cell: — 1999:-V: 10.-N. 4.-P. 961−974.
  52. Simpson J.C., Smith D.C., Roberts L.M., Lord J.M. Expression of mutant dynamin protects cells against diphtheria toxin but not against ricin. // Exp. Cell. Res. 1998. — V. 239.-N. 2.-P. 293−300.
  53. M.M., Демина И. А., Агапов И. И. Рицин и вискумин связываются с разными участками клеточной мембраны. // ДАН. 2001. — Т. 379. — № 3. — С. 406 410.
  54. Cosson P., Letourneur F. Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting. // Curr. Opin. Cell Biol. 1997. — V 9. — N. 4. — P. 484 487.
  55. Munro S., Pelham H.R. A C-terminal signal prevents secretion of luminal ER proteins. // Cell. 1987. — V. 48. — N. 5. — P. 899−907.
  56. Wesche J., Rapak A., Olsnes S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. // J. Biol. Chem. 1999. -V. 274. — N. 48. — P. 34 443−34 449.
  57. Day P J., Owens S.R., Wesche J., Olsnes S., Roberts L.M., Lord J.M. An interaction between ricin and calreticulin that may have implications for toxin trafficking. // J. Biol. Chem. 2001. — V. 276. — N. 10. — P. 7202−7208.
  58. Johnson. A.E., van Waes M.A. The translocon: a dynamic gateway at the ER membrane. // Ann. Rev. Cell Dev. Biol. 1999. — V. 15. — P. 799−842.
  59. Ellgaard L., Molinari M., Helenius A. Setting the standards: quality control in the secretory pathway. // Science. 1999. — V. 286. -N. 5446. — P. 1882−1888.
  60. Simpson J.C., Roberts L.M., Romisch К., Davey J., Wolf D.H., Lord J.M. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. // FEBS Lett. 1999. — V. 459. — N. 1. — P. 80−84.
  61. А.Г., Мириманова H.B., Бушуева Т.JI. Структурные и функциональные особенности термически обработанной связывающей субъединицы растительного токсина рицина. //Мол. биол. -1991.-Т. 25. -Вып. 2. -С. 451−461.
  62. Spooner R.A., Watson P.D., Marsden C.J., Smith D.C., Moore K.A., Cook J.P., Lord J.M., Roberts L.M. Protein disulphide-isomerase reduces ricin to its A and В chains in the endoplasmic reticulum. // Biochem. J. 2004. — V. 383. — P. 285−293.
  63. Day P.J., Pinheiro T.J., Roberts L.M., Lord J.M. Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. // Biochemistry. 2002. — V. 41. — N. 8. — P. 2836−2843.
  64. Argent R.H., Parrott A.M., Day P.J., Roberts L.M., Stockley P.G., Lord J.M., Radford S.E. Ribosome-mediated folding of partially unfolded ricin A-chain. // J. Biol. Chem. 2000. — V. 275. -N. 13. — P. 9263−9269.
  65. E.H. Взаимодействие рицина с клетками гибридом, секретирующих антитела против его каталитической субъединицы: Дис.. канд. биол. наук. М., 2004.-160 с.
  66. Ogasawara T., Sawasaki T., Morishita R, Ozawa A., Madin K., Endo Y. A new class of enzyme acting on damaged ribosomes: ribosomal RNA apurinic site specific lyase found in wheat germ. // EMBO J. 1999. — V. 18. — N. 22. — P. 6522−6531.
  67. Robertus J. D., Monzingo A. F. The structure of ribosome-inactivating proteins. // Mini Rev. Med. Chem. 2004. — V. 4. — P. 47786.
  68. Olsnes S., Fernandez-Puentes C., Carrasco L., Vazquez D. Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of the enzymic activity of the toxin A-chains. // Eur. J. Biochem. 1975.- V. 60. — P. 281−288.
  69. Eiklid K., Olsnes S., Pihl A. Entry of lethal doses of abrin, ricin and modeccin into the cytosol ofHeLa cells. // Exp. Cell Res. 1980. — V. 12. -N. 2. — P. 321−326.
  70. Hartley M. R, Legname G., Osborn R., Chen Z., Lord J.M. Single-chain ribosometinactivating proteins from plants depurinate Escherichia coli 23 S ribosomal RNA. // FEBS Lett. 1991. -V. 290. — P. 65−68.
  71. Moazed D., Robertson J.M., Noller H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. // Nature. 1988. — V. 334. — P. 362−364.
  72. Gluck A., Endo Y., Wool I.G. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. // J. Mol. Biol. 1992 — V. 226. — N. 2. — P. 411−424.
  73. Gluck A., Endo Y., Wool I.G. The ribosomal RNA identity elements for ricin and for alpha-sarcin: mutations in the putative CG pair that closes a GAGA tetraloop. // Nucleic Acids Res. 1994. -V. 22. -N. 3. — P. 321−324.
  74. Endo Y., Gluck A., Wool I.G. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. // J. Mol. Biol. 1991. — V. 221. — N. 1. — P. 193−207.
  75. Larsson S.L., Sloma M.S., Nygard O. Conformational changes in" the structure of domains II and V of 28S rRNA in ribosomes treated with the translational inhibitors ricin or alpha-sarcin. // Biochim. Biophys. Acta. 200. — V. 1577. — P. 53−62.
  76. Osborn R.W., Hartley M.R. Dual effects of ricin A chain on protein synthesis in rabbit reticulocyte lysate. Inhibition of initiation and translocation. // Eur. J. Biochem. -1990.-V. 193.-P. 401−407.
  77. Correll C.C., Munishkin A., Chan Y.L., Ren Z., Wool I.G., Steitz T.A. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. // Proc. Natl. Acad. Sci. USA. 1998. — V. 95. N. 23. — P. 13 436−13 441.
  78. Correll C.C., Wool I.G., Munishkin A. The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. // J Mol Biol. 1999. — V. 292.-N. 2.-P. 275−87.
  79. Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. // Science. 2000. — V. 289. — N. 5481.-P. 905−920.
  80. Endo Y., Tsurugi K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA*. // J Biol Chem. 1988. — V. 263. -N. 18. P. 8735−8739.
  81. Nicolas E., Beggs J.M., Taraschi T.F. Gelonin is an unusual DNA glycosylase that removes adenine from single-stranded DNA, normal base pairs and mismatches. // J. Biol. Chem. 2000. — V. 275. — N. 40. — P. 31 399−31 406.
  82. Roncuzzi L., Gasperi-Campani A. DNA-nuclease activity of the single-chain ribosome-inactivating proteins dianthin 30, saporin 6 and gelonin. // FEBS Lett. 1996. -V. 392.-N. l.-P. 16−20.
  83. Rajamohan F., Venkatachalam Т.К., Irvin J.D., Uckun F.M. Pokeweed antiviral protein isoforms PAP-I, РАР-П, and PAP-III depurinate RNA of human immunodeficiency virus (HIV)-1. // Biochem. Biophys. Res. Commun. 1999. — V. 260. -N.2.-P. 453—458.
  84. C.H. Противовирусные вакцины: от Дженнера до наших дней. // Сорос, образ, жур. Биол. 1998. — № 7. — С. 43−50.
  85. Chanh Т.С., Romanowski M.J., Hewetson J.F. Monoclonal antibody prophylaxis against the in vivo toxicity of ricin in mice. // Immunol. Invest. 1993. — V. 22. — N. 1. — P. 63−72.
  86. Hewetson J.F., Rivera V.R., Creasia D.A., Lemley P.V., Rippy M.K., Poli M.A. Protection of mice from inhaled ricin by vaccination with ricin or by passive treatment with heterologous antibody. // Vaccine. 1993. — V. 11. — P. 743−746.
  87. Foxwell B.M., Detre S.I., Donovan T.A., Thorpe P.E. The use of anti-ricin antibodies to protect mice intoxicated with ricin. // Toxicology. 1985. — V. 34. — N. 1. — P. 79−88:
  88. Griffiths G. Di, Lindsay C.D., Allenby A.C., Bailey S.C., Scawin J.W., Rice P., Upshall D.G. Protection against inhalation toxicity of ricin and abrin by immunisation. // Hum. Exp Toxicol. 1995. -V. 14. -N. 2. — P. 155−164.
  89. GodaltA., Fodstad O., Pihl A. Antibody formation against the cytotoxic proteins abrin and ricin in humans and mice. // Int. J. Cancer. 1983. — V. 32. — N. 4. — P. 515 521.
  90. Houston L.L. Protection of mice from ricin poisoning by treatment with antibodies directed against ricin. // J. Toxicol. Clin. Toxicol. 1982. — V. 19. — N. 4. — P. 385−389.
  91. Lemley P.V., Amanatides P., Wright D.C. Identification and characterization of amonoclonal antibody that neutralizes ricin toxicity in vitro and in vivo. // Hybridoma. i1994.-V. 13.-N.5.-P.41−7-421. .
  92. Hewetson J.F., Rivera* V.R., Creasia D.A., Lemley P.V., Rippy M: K., Poli M.A. Protection of mice from inhaled ricin by vaccination with ricin or by passive treatment with heterologous antibody. // Vaccine. 1993. — V. 11. — P. 743−746.
  93. Kende M., Yan C., Hewetson J., Frick M.A., Rill W.L., Tammariello R. Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric microspheres against aerosol challenge. // Vaccine. 2002. — V. 20. — N. 11−12. — P. 1681−1691.
  94. Thrush G.R., Lark L.R., Clinchy B.C., Vitetta E.S. Immunotoxins: an update. // Ann. Rev. Immunol. 1996. — V. 14. — P. 49−71.
  95. Lebeda F.J., Olson M.A. Prediction of a conserved, neutralizing epitope in ribosome-inactivating proteins. // Int. J. Biol. Macromol. 1999. — V. 24. — N. 1. — P. 1926. ,
  96. Maddaloni M., Cooke C., Wilkinson R., Stout A.V., Eng L., Pincus S.H. Immunological characteristics associated withsthe protective efficacy of antibodies to ricin. // J. Immunol. -2004. -V. 172. -N. 10. P. 6221−6228.
  97. Mantis N.J., McGuinness C.R., Sonuyi O., Edwards G., Farrant S.A. Immunoglobulin A antibodies against ricin A and В subunits protect epithelial cells from ricin intoxication. //Infect. Immun. -2006. V. 74. -N. 6. — P. 3455−3462.
  98. McGuinness C.R., Mantis NJ. Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin В subunit. // Infect. Immun. 2006. — V. 74.-N. 6. -P. 3463−3470.
  99. А.Г., Топтыгин А. Ю., Агапов И. И., Рахманова В. А., Шамшиев А. Т., Алексеев Ю. О., Пфюллер У., Франкел А. Получение биологически активной рекомбинантной В-субъединицы рицина. // Мол. биол. 1995. — Т. 29. — № 2. — С. 398−406.
  100. Bigalke Н., Rummel A. Medical aspects of toxin weapons. // Toxicology. 2005. -V. 214.-P. 210−220.
  101. Challoner K.R., McCarron M.M. Castor bean intoxication. // Ann. Emerg. Med. -1990.-V. 19.-N. 10.-P. 1177−1183.
  102. Fodstad О., Olsnes S., Pihl A. Toxicity, distribution and elimination of the cancerostatic lectins abrin and ricin after parenteral injection into mice. // Br. J. Cancer. -1976. V. 34. — N. 4. — P. 418−425.
  103. Fodstad O., Johannessen J.V., Schjerven L., Pihl A. Toxicity of abrin and ricin in mice and dogs. // J. Toxicol. Environ. Health. 1979. — V. 5. -N. 6. — P. 1073−1084.
  104. A.M. Фармакологическая и токсикологическая характеристика действия рицина: Автореф. дис.. канд. биол. наук. Санкт-Петербург, 2005. 24 с.
  105. Roy С.J., Hale М., Hartings J.M., Pitt L., Duniho S. Impact of inhalation exposure modality and particle size on the respiratory deposition of ricin in BALB/c mice. // Inhal. Toxicol. -2003. -V. 15. -N. 6. -P: 619−638.
  106. Burnett J.C., Henchal E.A., Schmaljohn A.L., Bavari S. The evolving field of biodefence: therapeutic developments and diagnostics. // Nat. Rev. Drug Discov. — 2005. -V. 4. N. 4. — P. 281−97.
  107. Pappenheimer A.M.J., Uchida Т., Harper A.A. An immunological study of the diphtheria toxin molecule. // Immunochemistry. 1972. — V. 9. -N. 9. P. 891−906.
  108. Yamaizumi M., Uchida Т., Okada Y., Furusawa M. Neutralization of diphtheria toxin in living cells by microinjection of antifiragment A contained within resealed erythrocyte ghosts. // Cell. 1978. — V. 13. — N. 2. P. 227−232.
  109. Zucker D.R., Murphy J.R. Monoclonal antibody analysis of diphtheria toxin-I. Localization of epitopes and neutralization of cytotoxicity. // Mol. Immunol. 1984. — V. 21.-N. 9.-P. 785−793.
  110. Lemley P.V., Wright D.C. Mice are actively immunized after passive monoclonal antibody prophylaxis and ricin toxin challenge. // Immunology. 1992. — V. 76. — N. 3. — P. 511−513.
  111. Dertzbaugh M.T., Rossi C.A., Paddle B.M., Hale M., Poretski M., Alderton M.R. Monoclonal antibodies to ricin: in vitro inhibition of toxicity and utility as diagnostic reagents. // Hybridoma (Larchmt). 2005. — V. 24. -N. 5. — P. 236−243.
  112. Guo J.W., Shen B.F., Feng J.N., Sun Y.X., Yu M., Hu M.R. A novel neutralizing monoclonal antibody against cell-binding polypeptide of ricin. // Hybridoma (Larchmt). — 2005. V. 24. — N. 5. P. 263−266.
  113. Poli M.A., Rivera V.R., Pitt M.L., Vogel P. Aerosolized specific antibody protects mice from lung injury associated with aerosolized ricin exposure. // Toxicon. 1996. —
  114. V. 34. -N. 9. -N. 1037−1044.
  115. Vogel P., Rivera V.R., Pitt M.L., Poll M.A. Comparison of the pulmonary distribution and efficacy of antibodies given to mice by intratracheal instillation or aerosol inhalation. //Lab. Anim. Sci. 1996. — V. 46. -N. 5. -N. 516−523.
  116. Rainey G.J., Young J.A. Antitoxins: novel strategies to target agents of bioterrorism. // Nat. Rev. Microbiol. 2004. — V. 2. — N. 9. — P. 721−726.
  117. Griffiths G.D., Phillips G.J., Bailey S.C. Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. // Vaccine. 1999. — V. 17. — P. 2562−2568.
  118. Marsden C.J., Smith D.C., Roberts L.M., Lord J.M. Ricin: current understanding and prospects for an antiricin vaccine. // Expert. Rev. Vaccines. 2005. — V. 4. — N. 2. -P. 229−37.
  119. Piatak M., Lane J.A., Laird W., Bjorn M.J., Wang A., Williams M. Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive. // J. Biol. Chem. 1988. -V. 263. -N. 10. — P. 4837−4843.
  120. Griffiths G.D., Bailey S.C., Hambrook J.L., Keyte M.P. Local and systemic responses against ricin toxin promoted by toxoid or peptide vaccines alone or in liposomal formulations. // Vaccine. 1998. — V. 16. — N. 5. — P. 530−535.
  121. Yoder J.M., Aslam R.U., Mantis NJ. Evidence for widespread epithelial damage and coincident production of monocyte chemotactic protein 1 in a murine model of intestinal ricin intoxication. // Infect. Immun. 2007. — V. 75. — N. 4. — P. 1745−1750.
  122. Mantis NJ. Vaccines against the category B toxins, staphylococcal enterotoxin B, epsilon toxin and ricin. // Adv. drug deliv. rev. 2005. — V. 57. — P. 1424−1439.
  123. Ready M.P., Kim Y., Robertus J.D. Site-directed mutagenesis of ricin A-chain and implications for the mechanism of action. // Proteins. 1991. — V. 10. — N. 3. — P. 270 278.
  124. Roberts L.M., Tregear J. W, Lord J.M. Molecular cloning of ricin. // Targeted Diagn. Ther. 1992. — V. 7. — P. 81−97.
  125. Smallshaw J.E., Firan A., Fulmer J.R., Ruback S.L., Ghetie V., Vitetta E.S. A novel recombinant vaccine which protects mice against ricin intoxication. // Vaccine. 2002. -V. 20. -N. 27−28. — P. 3422−3427.
  126. Monzingo A.F., Robertus J.D. X-ray analysis of substrate analogs in the ricin A-chain active site. // J. Mo. l Biol. 1992. — V. 227. — N. 4. — P. 1136−1145.
  127. Kim Y., Mlsna D., Monzingo A.F., Ready M.P., Frankel A., Robertus J.D. Structure of a ricin mutant showing rescue of activity by a noncatalytic residue. // Biochemistry. -1992.-V. 31.-N. 12.-P. 3294−3296.
  128. Day P.J., Pinheiro T.J., Roberts L.M., Lord J.M. Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. // Biochemistry. 2002. — V. 41. — N. 8. — P. 2836−2843.
  129. Schlossman D., Withers D., Welsh P., Alexander A., Robertus J., Frankel A. Role of glutamic acid 177 of the ricin toxin A chain in enzymatic inactivation of ribosomes. // Mol. Cell. Biol. 1989. -V. 9. -N. 11. — P. 5012−5021.
  130. Olson M.A., Carra J.H., Roxas-Dunkan V., Wannemacher R.W., Smith L.A., Millard C.B. Finding a new vaccine in the ricin protein fold. // Protein Eng. Des. Sel. — V. 4.-P. 391−397.
  131. Chaddock J.A., Roberts L.M. Mutagenesis and kinetic analysis of the active site Glul77 of ricin A-chain. // Protein Eng. 1993. — V. 6. — N. 4. — P. 425−431.
  132. Marsden C.J., Knight S" Smith D.C., Day P.J., Roberts L.M., Phillips G.J., Lord J.M. Insertional mutagenesis of ricin A chain: a novel route to an anti-ricin vaccine. // Vaccine. 2004. — V. 22. — N. 21−22. — P. 2800−2805.
  133. McHugh C.A., Tammariello R.F., Millard C.B., Carra J.H. Improved stability of a protein vaccine through elimination of a partially unfolded state. // Protein Sci. 2004. -V. 13.-N. 10.-P. 2736−2743.
  134. Smallshaw J.E., Richardson J.A., Pincus S., Schindler J., Vitetta E.S. Preclinical toxicity and efficacy testing of RiVax, a recombinant protein vaccine against ricin. // Vaccine. -2005. -V. 23. -N. 39. P. 4775784.
  135. Vitetta E.S., Smallshaw J.E., Coleman E., Jafri H., Foster C., Munford R., Schindler J. A pilot clinical trial of a recombinant ricin vaccine in normal humans. // Proc. Natl. Acad. Sci. USA. -2006. -V. 103. -N. 7. P. 2268−2273.
  136. Smallshaw J.E., Richardson J.A., Vitetta E.S. RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol. // Vaccine. — 2007. — V. 25. -N. 42. P. 7459−7469.
  137. Измерение концентраций вредных веществ в воздухе рабочей зоны: Сб. метод, указаний МУК 4.1.100−96-МУК 4.1.197−96. / Официальное издание, М.: Информационно-издательский центр Минздрава России, 1998. Вып. 29. — 429 с.
  138. А., Бростофф Дж., Мейл Д. Иммунология. М.: Мир, 2000. — С. 527г536.
  139. Griffiths G.D., Newman H.V., Gee D.J. Immunocytochemical detection of ricin. П. Further studies using the immunoperoxidase method. // Histochem. J. 1986. — V. 18. -N. 4.-P. 189−195.
  140. Leith A.G., Griffiths G.D., Green M.A. Quantification of ricin toxin using a highly sensitive avidin/biotin enzyme-linked immunosorbent assay. // J. Forensic Sci. Soc -1988 V. 28 — N. 4 — P. 227−236.
  141. Shyu R.H., Shyu H.F., Liu H.W., Tang S.S. Colloidal gold-based immunochromatographic assay for detection of ricin. // Toxicon. 2002. — V. 40. — N. 3. -P. 255−258.
  142. Market profile: handheld assays for biodefense. // Instrument Business Outlook. -2006. http://www.allbusiness.eom/instrument-business-outlook/l 176 843−1 .html
  143. Fulton R.E., Thompson H.G. Fluorogenic hand-held immunoassay for the identification of ricin: rapid analyte measurement platform. // J. Immunoassay Immunochem. 2007. — V. 28. — N. 3. — P. 227−241.
  144. Cloneya L.P., Spiller L.J., Fong W.K., Harris J.E., Harris P.C. RAMP®: High accuracy from immunochromatographic assays by the use of internal control ratios. // Clinical Chemistry. 2003. — V. 49. — P. 1775−1777.
  145. McCoig C., Van Dyke G., Chou C.S., Picker L.J., Ramilo O., Vitetta E.S. An anti-CD45RO immunotoxin eliminates T cells latently infected with HTV-1 in vitro. // Proc. Natl. Acad. Sci. USA. 1999. — V. 96. — N. 20. — P. 11 482−11 485.
  146. Kreitman RJ. Immunotoxins in cancer therapy. // Curr. Opin. Immunol. 1999. -11.-N.5.-P. 570−578.
  147. Frankel A.E., Neville D.M., Bugge T.A., Kreitman RJ., Leppla S.H. Immunotoxin therapy of hematologic malignancies. // Semin. Oncol. 2003. — V. 30. — N. 4. — P. 545 557.
  148. Frankel A.E., Kreitman R J. CLL immunotoxins. // Leuk. Res. 2005. — V. 29. — N. 9. -P. 985−986.
  149. Jain R.K. Delivery of* molecular and cellular, medicine to solid tumors. // Microcirculation. 1997. — V. 4'. — N. 1. — P. 1−23.
  150. A.F., Демина И. А., Агапов И. И. Цитотоксическая активность конъюгатов человеческого трансферрина и А-субъединиц растительных токсинов in vivo и in vitro. II ДАН. 2000. — Т. 374. — № 4: — С. 557−560.
  151. Winter G., Harris W.J. Humanized antibodies'. // Immunol. Today. 1993. — V. 14'. -N. 6:-P. 243−246.
  152. Laske D.W., Youle R.J., Oldfield E.H. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients witbmalignant brain tumors. // Nat. Med. -1997. -V. 3. -N. 12.-P: 1362−1368.
  153. Engert- A., Sausville E.A., Vitetta E. The emerging role of ricin A-chain immunotoxins in leukemia and lymphoma. // Curr. Top. Microbiol: Immunol. 1998. — V. 234:-P. 13−33.
  154. Zhan J., Chen Y., Wang K., Zheng S. Expression of ricin A chain and ricin A chain-KDEL in Escherichia coli. II Protein Expr. Purif. 2004. — V. 34. — N. 2. — P. 197−201.
  155. Choi N.W., Estes M.K., Langridge W. H: Ricin toxin B1 subunit enhancement of rotavirus NSP4'immunogenicity in mice. // Viral Immunol. — 2006. V. 19. — N. Г. — P. 54−63.
  156. Beaumelle В., Taupiac M.P., Lord J.M., Roberts L.M. Ricin A chain can transport unfolded"dihydrofolate reductase into the cytosol. // J. Biol. Chem. 1997. —V. 272. — N. 35.-P. 22 097−22 102.
  157. Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. // Appl. Microbiol. Biotechnol. 2003. — V. 60. -N.5.-P. 523−533.
  158. ., Пастернак Д. Молекулярная биотехнология. Принципы и применение. -М.: Мир, 2002.-589 с.
  159. Scheich С., Sievert V., Bussow К. An automated method for high-throughput protein- purification applied to" a comparison' of His-tag and GST-tag affinity-chromatography. // BMC Biotechnol- 2003. — V. 3. — N. 1. — P. 12.
  160. Hochuli E., Dobeli H., Schacher A. New metal chelate adsorbent selective for, proteins and peptides containing neighbouring histidine residues. // J. Chromatogr. -1987.-V. 411.-P. 177−184.
  161. Blanar M.A., Rutter W.J. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-Fos. // Science. 1992. — V. 256. — N. 5059. — P. 1014—1018.
  162. Schmidt T.G.M., Koepke J., Frank R., Skerra A. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. // J. Mol. Biol. 1996. — V. 255.-P. 753−766.
  163. Keefe A.D., Wilson D.S., Seelig Br, Szostak J.W. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. // Protein Expr. Purif. 2001. — V. 23. — P. 440−446.
  164. Evan G.I., Lewis G.K., Ramsay G., Bishop J.M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. // Mol. Cell: Biol. 1985. — V. 5. — P. 3610−3616.
  165. Karpeisky M.Y., Senchenko V.N., Dianova.M.V., Kanevsky V. Formation and properties ofiS-protein complex with S-peptidecontaining fusion protein. // FEBS Lett. — 1994. V. 339. — P. 209−212.
  166. McCormick M., Berg J. Purification and S-Tag detection’of CBD fusion proteins. // Innovations. 1997. — V. 7. -P: 12−15.
  167. Zheng C.-F., Simcox T., XuL., Vaillancourt P. A new. expression vector for high level protein production, 1 one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. // Gene. 1997. -V. 186. — P. 55−60:
  168. Stofko-Hahn R.E., Carr D.W., Scott J.D. A single step purification for recombinant proteins. // FEBS Lett. 1992. — V. 302. — P. 274−278″
  169. Xu Z., Bae W., Mulchandani A., Mehra R. Kt, Chen W. Heavy metal removal by novel CBD-EC20 sorbents immobilized on cellulose: //Biomacromolecules. -2002. — V.3.-N.3.-P. 462−465.
  170. Nock S, Spudich JA, Wagner P. Reversible, site-specific immobilization of polyarginine-tagged fusion proteins on mica surfaces. // FEBS Lett. 1997. -V. 414. — N. 2.-P. 233−238.
  171. The QIAexpressionist. A handbook for high-level expressionist and purification of 6xHis-tagged proteins. QIAGEN: -2003. 128 p.
  172. Hopp T. P, Pricket K.S., Price V.L., Libbi R.T., March C.J., Ceretti D.P., Urdal D.L., Conlon P.J. A short polypeptide marker sequence useful for recombinant protein identification and purification. // Biotechnology. 1988. — V. 6. — P. 1204−1210.
  173. Einhauer A., Schuster M., Wasserbauer E., Jungbauer A. Expression and purification of homogenous proteins in Saccharomyces cerevisiae based on ubiquitin-FLAG fusion. // Protein. Expr. Purif. 2002. — V. 24. — P. 497−504.
  174. Voss S., Skerra A. Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. // Protein Eng. 1997. — V. 10. — N. 8. — P. 975−982.
  175. Skerra A., Schmidt T, G. Use of the Strep-Tag and streptavidin for detection and purification of recombinant proteins. // Methods Enzymol. 2000. — V. 326. — P. 271— 304.
  176. Munro S., Pelham H.R. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. // Cell. -1986. V. 46. — N. 2. — P. 291−300.
  177. Kipriyanov S.M., Kupriyanova O.A., Little M., Moldenhauer G. Rapid detection of recombinant antibody fragments directed against cell-surface antigens by flow cytometry. // J. Immunol. Methods. 1996. — V. 196. — N. 1. — P. 51−62.
  178. Schioth H.B., Kuusinen A., Muceniece R., Szardenings M., Keinanen K., Wikberg J.E. Expression of functional melanocortin 1 receptors in insect cells. // Biochem. Biophys. Res. Commun. 1996. — V. 221 — N. 3. — P. 807−814.
  179. Dreher M.L., Gherardi E., Skerra A., Milstein C. Colony assays for antibody fragments expressed in bacteria. // J. Immunol. Methods. 1991. — V. 139. — N. 2. — P. 197−205.
  180. Karpeisky M.Y., Senchenko V.N., Dianova M.V., Kanevsky V.Y. Fonnation and properties of S-protein complex with S-peptide-containing fusion protein. // FEBS Lett. — 1994.-V. 339.-N. 3.-P. 209−212.
  181. Head J.F. A better grip on calmodulin. II Curr. Biol. 1992. — V. 2. — N. 11. — P. 609−611.
  182. Zheng C.F., Simcox Т., Xu L., Vaillancourt P. A new expression vector for. high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. //Gene. — 1997.-V. 186.-N. l.-P. 55−60.
  183. Рабинович M. JL, Мельник M.C. Прогресс в изучении целлюлолитических ферментов и механизм биодеградации высокоупорядоченных форм целлюлозы. // Успехи биол. химии. 2000. — Т. 40. — С. 205—266.
  184. Rabinovich M.L.: Materials of Soviet-Finland Seminar on Bioconversion of Plant Raw Materials by Microorganisms. Pushchino: Institute of Biochemistry and Physiology of Microorganisms, 1984. — P. 31−48.
  185. Рабинович M. JL Кинетические аспекты действия карбогидраз (лизоцим и целлюлолитические ферменты): Дис.. канд. хим. наук. М., 1977. — С. 16.
  186. Levy I., Shoseyov О. Cellulose-binding domains: biotechnological applications. // Biotechnol. Adv. -2002. -V. 20. -N. 3−4. P. 191−213.
  187. Xu Z., Bae W., Mulchandani A., Mehra R.K., Chen W. Heavy metal removal by novel CBD-EC20 sorbents immobilized on cellulose. // Biomacromolecules. 2002. -V. 3.-N. 3.-P. 462−465.
  188. Watanabe Т., Ito Y., Yamada Т., Hashimoto M., Sekine S., Tanaka H. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 inchitindegradation.//J.Bacterid.- 1994.-V. 176.-N. 15.-P.4465−4472.
  189. Szweda P., Pladzyk R., Kotlowski R., Kur J. Cloning, expression, and purification of the Staphylococcus simulans lysostaphin using the intein-chitin-binding domain (CBD) system. // Protein Expr. Purif. 2001. — V. 22. -N. 3. — P. 467−471.
  190. Smith D.B., Johnson K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. // Gene. 1988. — V. 67. — N. 1. — P. 31—40.
  191. Duplay P., Hofiiung M. Two regions of mature periplasmic maltose-binding protein of Escherichia coli involved in secretion. // J. Bacteriol. 1988. — V. 170. — N. 10. — P. 4445−4450.
  192. Sachdev D., Chirgwin J.M. Properties of soluble fusions between mammalian aspartic proteinases and bacterial maltose-binding protein. // J. Protein Chem. 1999. -V. 18.-N. l.-P. 127−136.
  193. Davis G.D., Elisee C., Newham D.M., Harrison R.G. New fusion protein systems designed to give soluble expression in Escherichia coli. //Biotechnol. Bioeng. 1999. -V. 65.-N. 4-N. 382−388.
  194. LaVallie E.R., Lu Z., Diblasio-Smith E.A., Collins-Racie L.A., McCoy J.M. Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. II Methods Enzymol. Bacteriol. 2000. — V. 326. — P. 322−340.
  195. Jungbauer A., Hahn R. Engineering protein A affinity chromatography. // Curr. Opin. Drug Discov. Devel. 2004. — V. 7. — N. 2. — P. 248−256.
  196. Goward C.R., Murphy J.P., Atkinson Т., Barstow D.A. Expression and purification of a truncated recombinant streptococcal protein G. // Biochem. J. 1990. — V. 267. — N. l.-N. 171−177.
  197. A.A., Васильев H.H. Адьюваиты (неспецифические стимуляторы иммуногенеза). М.: Мед. книга, 1969 206 с.
  198. В.А., Воробьев А. А. Молекулярные основы иммуногенности. — М.: Медицина, 1982−271 с.
  199. А.Е., Капнер Р. Б., Незлин Р. С. Выделение чистых антител при помощи фиксированных на целлюлозе антигенов и изучение их свойств. // Биохимия. -1959.-Т. 24.-С. 142.
  200. А.Е. Количественное определение содержания антител при помощи белковых антигенов, фиксированных на бумаге. // Биохимия. 1957. — Т. 22. — Вып. 6. — С. 1028. '
  201. Gurvich А.Е., Drizlikh G. L Use of antibodies on an insoluble support for specific detection of radioactive antigens. //Nature. 1964. — V. 203. — P. 648−649.
  202. E.B., Гурвич A.E. Синтез высокоемкого иммуносорбента на основе суспензии целлюлозы. // Бюл. экспер. биол. и мед. — 1981. — Т. 92. — Вып. 7. — Р. 6870.
  203. Wang W., Malcolm В.А. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. // Biotechniques. 1999. — V. 26. — N. 4. — P. 680−682.
  204. Т., Фрич Э., Сембрук Дж. Методы генетической инженерии. Молекулярное клонирование. М: Мир, 1984. — 479 с.
  205. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. //Nature. 1970. — V. 227. -N. 5259. -680−682.
  206. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. // Anal. Biochem. -1976. -V. 72.-P. 248−254.
  207. Hailing K.C., Hailing A.C., Murray E.E., Ladin B.F., Houston L.L., Weaver R.F. Genomic cloning and characterization of a ricin gene from Ricinus communis. // Nucleic Acids Res. 1985.-V. 13.-N. 22.-P. 8019−8033.
  208. Hussain K., Bowler C., Roberts L.M., Lord J.M. Expression of ricin В chain in Escherichia coli. И FEBS Lett. 1989. — V. 244. -N. 2. — P. 383−387.
  209. Richardson P.T., Hussain K., Woodland H.R., Lord J.M., Roberts L.M. The effects of N-glycosylation on the lectin activity of recombinant ricin В chain. II Carbohydr. Res. 1991.-V. 213.-P. 19−25.
  210. Hussain K., Bowler C., Roberts L.M., Lord J.M. Expression of ricin В chain in Escherichia coli. И FEBS Lett. 1989. — V. 244. -N. 2. — P. 383−387.
  211. Wales R., Gorham H.C., Hussain K., Roberts L.M., Lord J.M. Ricin В chain fragments expressed in Escherichia coli are able to bind free galactose in contrast to the full length polypeptide. // Glycoconj. J. 1994. — V. 11. — N. 4. — P. 274−281.
  212. A.E., Корукова A.A., Эльгорт Д. А. Усиление иммуногенности белков путем их присоединения к целлюлозной матрице. // сб. Иммуномодуляторы. -1987. -С.67−76.
  213. A.M. Получение и характеристика рекомбинантного белка TUL4, потенциального компонента генно-инженерной субъединичной противотуляремийной вакцины: Автореф. дис.. канд. биол. наук. М., 2005. 19 с.
  214. А.В., Ершов П. В., Решетова О. С., Тихонова Т. В., Лунин В. Г., Трофимова М. С., Бабаков А. В. Вакуолярный №+/Н+антийортер ячменя: идентификация и реакция на солевой стресс. // Биохимия. 2005. — Т. 70. — № 1. -С. 123−132
  215. S.T., Ни M.R., Guo J.W., Feng J.N., Shen B.F. Fusion expression and purification of recombinant ricin A-chain. // Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. -2005.- V.21.-N.2.-P. 137−140.
  216. Bardwell J.C. Building bridges: disulphide bond formation in the cell. II Mol. Microbiol. 1994. -V. 14. -N. 2. — P. 199−205.
  217. Rudolph R., Lilie H. In vitro folding of inclusion body proteins. // FASEB J. 1996. -V. 10.-N. l.-P. 49−56.
  218. Blight M.A., Holland I.B. Heterologous protein secretion and the versatile Escherichia coli haemolysin translocator. // Trends Biotechnol. 1994. — V. 12. — N. 11. -P. 450−455.
  219. Jennings M.P., Beacham I.R. Analysis of the Escherichia coli. gene encoding L-asparaginase II, ?z"sB, and its regulation by cyclic AMP receptor and FNR proteins. //
  220. J. Bacterid. 1990. — V. 172.-N.3.-P: 1491−1498.
  221. Tan S., Wu W., Liu J., Kong Y., Pu Y., Yuan R. Efficient expression and secretion of recombinant hirudin III in E. coli using the L-asparaginase II signal sequence. // Protein Expr. Purif. 2002. — V. 25. — N. 3. — P. 430−436.
  222. A.E., Кузовлева О. Б., Туманова A.E. Получение белково-целлюлозных комплексов (иммуносорбентов) в виде суспензий, способных присоединять большие количества антител. // Биохимия. — 1961. Т. 26. — Вып. 5. — С. 934−942.
  223. Ada G. Overview of vaccines. // Mol. Biotechnol. 1997. — V. 8. -N. 2. — P. 123 134.
  224. Dertzbaugh M.T. Genetically engineered vaccines: an overview. // Plasmid. 1998. — V. 39.-N. 2.-P. 100−113.
  225. Liljeqvist S., Stahl S. Production of recombinant subunit vaccines: proteinimmunogens, live delivery systems and nucleic acid vaccines. // J. Biotechnol — V. 73. —40.48.1. N. l.-P. 1−33.
Заполнить форму текущей работой