Помощь в написании студенческих работ
Антистрессовый сервис

Синтез и свойства наноструктур на основе слоистых двойных гидроксидов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Апробация работы. Результаты работы доложены на четырех ежегодных собраниях Американского Общества Материаловедов (1998 MRS Fall Meeting, Бостон, США, 1999 MRS Fall Meeting, Бостон, США, 2000 MRS Spring Meeting, Сан-Франциско, США, 2000 MRS Fall Meeting, Бостон, США), на II и III Всероссийских семинарах «Нелинейные процессы и проблемы самоорганизации в современном материаловедении» (Воронеж 1999… Читать ещё >

Синтез и свойства наноструктур на основе слоистых двойных гидроксидов (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. Введение
  • 2. Обзор литературы
    • 2. 1. Свойства веществ в нанокристаллическом состоянии
      • 2. 1. 1. Оптические свойства наносистем
      • 2. 1. 2. Магнитные свойства наносистем
    • 2. 2. Методы получения наноматериалов
    • 2. 3. Слоистые двойные гидроксиды
      • 2. 3. 1. Структура СДГ
      • 2. 3. 2. Синтез СДГ
      • 2. 3. 3. Свойства СДГ. Использование СДГ для синтеза нанокомпозитов
      • 2. 3. 4. Методы исследования СДГ
      • 2. 3. 5. Применение СДГ
  • 3. Экспериментальная часть
    • 3. 1. Общая схема получения функциональных нанокомпозитных материалов с использованием анион- и катион-замещенных СДГ
    • 3. 2. Методики синтеза
      • 3. 2. 1. Получение Mg-Al СДГ в карбонатной форме
      • 3. 2. 2. Получение Mg-Al СДО
      • 3. 2. 3. Синтез катион-замещенных Mg-Fe, Mg-Al-Fe, Mg-Co-Al и Mg- Ni-Al СДГ в карбонатной форме
      • 3. 2. 4. Получение анион-замещенных Mg-Al СДГ из СДО
      • 3. 2. 5. Химическая модификация катион- и анион-замещенных Fe-, Со-, Ni-содержащих СДГ
      • 3. 2. 6. Химическая модификация Mg-Al СДГ с интеркалированными комплексами свинца
    • 3. 3. Методы исследования
      • 3. 3. 1. Рентгенофазовый анализ
      • 3. 3. 2. ЯМР спектроскопия
      • 3. 3. 3. ИК-спектроскопия
      • 3. 3. 4. Спектрофотометрия
      • 3. 3. 5. Люминесцентная спектроскопия
      • 3. 3. 6. Термогравиметрический анализ
      • 3. 3. 7. Магнитные измерения
      • 3. 3. 8. Электронная микроскопия и дифракция электронов
      • 3. 3. 9. Количественный химический анализ
  • Результаты и их обсуждение
    • 4. 1. Оптимизация условий синтеза СДГ
    • 4. 2. Обратимая дегидратация СДГ
    • 4. 3. Получение и свойства магнитных наноматериалов
      • 4. 3. 1. Синтез Fe111, Со", Ni11 — замещенных интеркалированных СДГ
      • 4. 3. 2. Синтез железо- и никельсодержащих анион-замещенных СДГ
      • 4. 3. 3. Получение магнитных наноматериалов из катион- и анион-замещенных железосодержащих СДГ. Сравнение двух методов синтеза
      • 4. 3. 4. Получение магнитных наноматериалов из катион- и анион-замещенных никель- и кобальтсодержащих СДГ
    • 4. 4. Синтез полупроводниковых нанокомпозитов PbS/СДГ
      • 4. 4. 1. Получение Mg-Al СДГ с интеркалированными анионными комплексами свинца
      • 4. 4. 2. Модификация свинецсодержащих анион-замещенных СДГ
      • 4. 4. 3. Свойства нанокомпозитов PbS/СДГ, синтезированных из Mg3AlРЬ (820з)2 «
  • Выводы

Одно из важнейших направлений современного материаловедения связано с решением проблем получения наноструктур с заданными характеристиками и создания функциональных наноматериалов на их основе. Однако использование наносистем в качестве материалов сильно затруднено ввиду метастабильности вещества в нанокристаллическом состоянии. Это связано со значительным увеличением удельной поверхности частиц по мере уменьшения их линейных размеров до нанометровых, приводящим к возрастанию химической активности соединения и усилению агрегации наночастиц. Для решения этой проблемы наиболее широко применяют подход, связанный с получением нанокомпозитных материалов, т. е. наночастиц, заключенных в химически инертную матрицу, что позволяет избежать агрегации наночастиц, защитить их от внешних воздействий (например, от окисления кислородом воздуха) и существенно облегчить практическое применение таких материалов.

В рамках данной работы был разработан новый вариант метода синтеза нанокомпозитных материалов, основанный на применении слоистых двойных гидроксидов (СДГ) состава М2' irM3+v (OI)2(атоп1″)х!п-т ЬО ] в качестве исходных реагентов. Структура СДГ состоит из положительно заряженных гидроксидных слоев (М2+1 -гМ3+г (011)2)л+ и анионов, находящихся в межслоевом пространстве. Метод синтеза нанокомпозитов заключается в химической модификации анионов, присутствующих в межслоевом пространстве СДГ (в роли anion" ' может выступать практически любой анионный комплекс). При этом реакционная зона ограничена гидроксидными слоями, что создает условия для синтеза нанофазы, сходные с условиями синтеза в двумерном нанореакторе, причем в качестве модифицирующего агента могут выступать газообразные реагенты. Так, например, при взаимодействии СДГ, содержащего какой-либо анионный комплекс свинца, с сероводородом, в межслоевом пространстве будут формироваться наночастицы PbS. В качестве реакционных центров могут также выступать и катионы гидроксидных слоев, однако это будет приводить к разрушению слоистой структуры.

Многие другие соединения (такие как глины, некоторые цеолиты, слоистые сульфиды и др.) также имеют слоистую структуру, однако только СДГ обладают рядом уникальных свойств, важных для направленного синтеза наноматериалов. С одной стороны, слоистая структура СДГ устойчива для очень широкого спектра катионов и анионов. С другой стороны, количество анионов, присутствующих в межслоевом пространстве СДГ, определяется соотношением М: М, которое легко поддается контролю при синтезе. Это позволяет получать СДГ заданного состава, и, следовательно, варьировать концентрацию реакционных центров в матрице. Кроме того, в силу высокой скорости диффузии газов в межслоевом пространстве, термическое разложение СДГ протекает с сохранением мотивов слоистой структуры. Это позволяет проводить химические реакции с участием анионов межслоевого пространства при повышенных температурах (например, восстановление водородом, необходимое для получения магнитных нанокомпозитов) практически без разрушения матрицы, ограничивающей реакционную зону.

Указанные свойства открывают широкие возможности химического дизайна нанокомпозитных материалов на основе СДГ. Во-первых, широкий выбор катионов позволяет подобрать такую матрицу, которая удовлетворяла бы всему комплексу свойств, предъявлямых к материалу. Так, например, при синтезе магнитных наноматериалов матрица должна быть диамагнитной, а при получении оптических нанокомпозитов матрица должна быть оптически прозрачной в определенной области спектра. Во-вторых, варьируя соотношения катионов М2+:М3+ (т.е. значение х), а также выбирая определенный анионный комплекс и метод химической модификации, можно варьировать размеры и форму наночастиц в широких пределах.

Цель работы — синтез нанокомпозитов методами химической модификации СДГ, установление их микроструктуры и функциональных свойств, а также выявление взаимосвязи этих свойств с составом исходных СДГ и условиями их химической модификации.

В качестве объектов исследования были выбраны магнитные (на основе металлических железа и никеля) и полупроводниковые (на основе PbS) наноматериалы, что объясняется их большой практической значимостью. В связи с этим, в обзоре литературы особое внимание уделено магнитным и оптическим свойствам наносистем. В качестве исходных реагентов выступали аниони катион-замещенные СДГ гидроталькитного ряда (Mgi^Alx (0H)2[(C03V2-wH20]). Это связано с высокой химической устойчивостью Mg-Al матрицы, а также с ее диамагнитными свойствами и оптической прозрачностью в широкой области спектра. Кроме этого, синтез гидроталькита прост в реализации и относительно дешев.

Для получения магнитных наноматериалов методом катионного замещения проводился синтез СДГ состава Mg.x.yAxM'y{OR)2iCO^)(x+y)i2-mR20}, (х+у)<'/3, и Mg]. x. yM" yAlx (0Н)2[(С0з)д-/2-/77Н20], х<'/з, где М' и М" - катионы переходных металлов (Fe, Со, Ni,) в степенях окисления +3 и +2 соответственно. Для реализации анионного замещения в межслоевое пространство СДГ интеркалировали анионные комплексы соответствующих металлов (например Fe,(edta)~, Ni (edta)2'). Химическую модификацию полученных таким образом катиони анион-замещенных СДГ проводили восстановлением в токе водорода.

Для получения полупроводниковых наноматериалов на основе PbS синтезирован анион-замещенный гидроталькит с внедренными в межслоевое пространство анионными комплексами свинца, с последующим сульфидированием в токе сероводорода. Кроме того, эти материалы синтезировали без использования постороннего сульфидирующего агента. В этом варианте подбирали такой серосодержащий анионный комплекс свинца, который проявлял бы способность к разложению с образованием сульфида (например,.

Pb (S203)22″).

Научная новизна работы сформулирована в виде следующих положений, которые выносятся на защиту:

1. Разработан новый метод синтеза нанокомпозитов, основанный на химической модификации слоистых двойных гидроксидов, содержащих комплексы переходных металлов в межслоевом пространстве. Этот метод сочетает в себе простоту химических способов матричной изоляции наночастиц и вместе с тем обеспечивает возможность получения малоразмерных и пространственно-ограниченных наноструктур, свойственную синтезам в нанореакторах.

2. Установлены основные закономерности синтеза СДГ гидроталькитного ряда. В частности, найдены оптимальные параметры синтеза гидроталькита Mg3Al (OH)B[(C03)o-5'wH20] - рН соосаждения 10,0+0,1, температура термостатирования 80 °C, продолжительность 72 ч.

3. Впервые синтезированы Mg-Al СДГ с интеркалированными комплексами F e (edta)~, Ni (edta)2', Pb (edta)2', Pb (S203)22″, Pb (SCN)3″, ?b (dedtc)3' (edtaэтилендиаминтетраацетат, dedtc — диэтилдитиокарбамат). Показано, что конфигурация ЭДТА-комплексов в межслоевом пространстве определяется стехиометрическим составом СДГ-матрицы: с увеличением содержания комплекса в СДГ межслоевое расстояние монотонно возрастает. В частности, для Fe-содержащих образцов межслоевое расстояние изменяется от ~4 A (Mg9Al (OH)2o[Fe (edta)-mH20]) до -10 A (Mg2Al (0H)6[Fe (ed/a)-mH20]), а для Ni-содержащих образцов — от ~4 A (Mg9Al (OH)20[{Ni (e.

4. Методом восстановления Mg-Al СДГ с интеркалированными комплексами F e (edta)~ и Ni {edta)2' получены магнитные нанокомпозиты Ml Al-Mg-0 (М= Fe, Ni). Показано, что варьирование состава анион-замещенных СДГ позволяет осуществлять направленное получение одно-, двухи трехмерных наноструктур Fe и Ni в оксидной матрице. Увеличение содержания комплекса в СДГ-матрице приводит к понижению размерности формирующихся наноструктур и к увеличению фактора анизотропии. Необходимо отметить, что температура восстановления практически не влияет на морфологию образующихся наночастиц: при повышении температуры восстановления увеличиваются лишь средние размеры наночастиц, а соотношение линейных размеров друг к другу (анизотропия) изменяется незначительно.

5. Предложен способ синтеза нанокомпозита PbS/СДГ, основанный на разложении серосодержащих анионных комплексов свинца в межслоевом пространстве СДГ. Установлено, что при УФ-облучении СДГ с интеркалированным комплексом РЬ (820з)22″ происходит формирование наночастиц PbS в аморфной оболочке. Такие частицы обладают необычными оптическими свойствами. В частности, их спектр поглощения имеет дополнительные максимумы при -580, -400 и -300 нм, соответствующие lSe-lSh, lSe-lPh, и 1 Sh- 1Ре экситонным переходам сульфида свинца, которые, как правило, не наблюдаются в спектрах PbS. Кроме того, образцы, полученные действием УФ-излучения, характеризуются повышенной интенсивностью люминесценции в видимой области.

Практическая значимость работы:

1. В настоящей работе на примере ряда магнитных и полупроводниковых систем установлены основные закономерности процессов синтеза нанокомпозитов. Информация, накопленная при выполнении работы, создает базу для целенаправленного получения других классов функциональных наноматериалов, имеющих важное практическое применение.

2. Полученные в работе суперпарамагнитные нанокомпозиты, содержащие переходные металлы, могут быть использованы как основа для создания материаловносителей информации в устройствах памяти со сверхвысокой плотностью записи.

3. Синтезированные в работе полупроводниковые нанокомпозиты на основе PbS являются перспективными материалами для активных элементов лазеров с перестраиваемой длиной волны, элементов нелинейной оптики и устройств наноэлектроники. Особый интерес представляют нанокомпозиты, содержащие частицы PbS в аморфной оболочке, обладающие уникальными оптическими свойствами и характеризующиеся высоким квантовым выходом фотолюминесценции.

Результаты, полученные в настоящей работе, нашли отражение в курсах лекций «Перспективные неорганические материалы со специальными функциями», «Физикохимия и технология материалов», «Наноматериалы», читаемых на Химическом факультете и Факультете наук о материалах МГУ им. М. В. Ломоносова. Кроме того, результаты работы используются при постановке задач специализированного практикума «Синтез и исследование неорганических веществ и материалов» .

Апробация работы. Результаты работы доложены на четырех ежегодных собраниях Американского Общества Материаловедов (1998 MRS Fall Meeting, Бостон, США, 1999 MRS Fall Meeting, Бостон, США, 2000 MRS Spring Meeting, Сан-Франциско, США, 2000 MRS Fall Meeting, Бостон, США), на II и III Всероссийских семинарах «Нелинейные процессы и проблемы самоорганизации в современном материаловедении» (Воронеж 1999, Воронеж 2000), на VII и VIII Европейских конференциях по химии твердого тела (Мадрид, Испания 1999, Осло, Норвегия 2001), 102 Съезде Американского Керамического Общества (Сент-Луис, США 2000), на Международной конференции «Функциональные градиентные материалы и поверхностные слои» (Киев, Украина 2000), на Международной конференции по химии твердого тела 2000 (Прага, Чехия 2000), на 4-ом Штайнфуртском керамическом семинаре (Штайнфурт, Германия 2000), на Международном симпозиуме по инеркаляционным соединениям (Москва 2001), на 3-ей Международной конференции «Химия высокоорганизованных веществ и научные основы нанотехнологии» (С.Петербург 2001), на Международных конференциях студентов и аспирантов по фундаментальным наукам «Ломоносов-98, 99, 2000, 2001», а так же на научных конференциях МГУ «Ломоносовские чтения — 1999» и «Ломоносовские чтения — 2001» .

Кроме этого, данная работа отмечена медалью РАН как лучшая научно-исследовательская работа молодых ученых 1999 г. по Отделению физикохимии и технологии неорганических материалов РАН.

Публикации. Материалы диссертационной работы опубликованы в 26 работах, в том числе в 6 статьях в российских и зарубежных научных журналах и сборниках и 20 тезисах докладов на международных и всероссийских научных конференциях.

Вклад автора в разработку проблемы. В основу диссертации положены результаты научных исследований, выполненных непосредственно автором в период 1998;2001 г. Работа выполнена в Московском Государственном Университете им. М. В. Ломоносова на Факультете наук о материалах и кафедре неорганической химии Химического факультета. Работа проведена при поддержке Российского Фонда Фундаментальных Исследований (грант № 00−03−32 579 «Химический дизайн наноструктур на основе слоистых гидроксидов») и Государственной научно-технической программы Минобразования РФ «Научные исследования высшей школы в области химии и химических продуктов» (грант № 003.01.02.03 «Направленный синтез наноструктур с использованием химической модификации интеркалированных неорганических матриц»). В эти же годы в выполнении отдельных разделов работы принимали участие студенты ФНМ Елисеев А. А., Журавлева.

Н.Г., Никифоров М. П., Вячеславов А. С., у которых автор был руководителем курсовых и научных работ.

Объем и структура работы. Диссертационная работа изложена на 141 странице машинописного текста, иллюстрирована 57 рисунками и 7 таблицами. Список цитируемой литературы содержит 292 ссылки.

Работа состоит из введения, трех глав (литературный обзор, экспериментальная часть, результаты и их обсуждение), выводов и списка цитируемой литературы.

5. Выводы.

1. Разработан новый метод синтеза нанокомпозитов, основанный на химической модификации интеркалированных слоистых двойных гидроксидов. Этот метод сочетает в себе простоту химических способов матричной изоляции наночастиц и вместе с тем обеспечивает возможность получения малоразмерных и пространственно-ограниченных наноструктур, свойственную синтезам в нанореакторах.

2. Оптимизированы условия синтеза СДГ гидроталькитного ряда. Установлены оптимальные рН синтеза и условия термостатирования, которые позволяют получать СДГ требуемого состава с высокой степенью кристалличности (в частности, для гидроталькита Mg3Al (OH)x[(C03)o, 5'/wH20] рН = 10,0+0,1, температура термостатирования 80 °C, продолжительность 72 ч.).

3. Впервые синтезированы Mg-Al СДГ с интеркалированными комплексами Fe (edta)~, ЩеЛа)2', Pb (edta)2 Pb (S203)22″, Pb (SCN)3″, Pb (*fedfc)3 Показано, что конфигурация ЭДТА-комплексов в межслоевом пространстве определяется стехиометрическим составом СДГ-матрицы.

4. Методом восстановления Mg-Al СДГ с интеркалированными комплексами Fc (edta) л. и Ni (edta) ' получены магнитные нанокомпозиты M/Al-Mg-0 (М= Fe, Ni). Показано, что варьирование состава анион-замещенных СДГ позволяет осуществлять направленное получение одно-, двухи трехмерных наноструктур Fe и Ni в оксидной матрице.

5. Предложен способ синтеза нанокомпозита PbS/СДГ, основанный на разложении серосодержащих анионных комплексов свинца в межслоевом пространстве СДГ. Установлено, что при УФ-облучении СДГ с интеркалированным комплексом Pb (S203)22″ происходит формирование наночастиц PbS в аморфной оболочке, обладающих высокой интенсивностью фотолюминесценции и необычными оптическими свойствами.

Показать весь текст

Список литературы

  1. Nanostructure science and technology: a worldwide study. Eds. Siegel R.W., Ни E., Roco M.C. NSTC, Washington. 2001. 362 C.
  2. А.И., Ремпель А. А. Нанокристаллические материалы. М.: Физматлит. 2000. 224 С.
  3. Nanotechnology: shaping the world atom by atom. Ed. Roco M.C. ACS Press. 2000. 244 C.
  4. Nanomaterials: synthesis, properies and applications. Eds. Edelstein A.S., Cammarata R.S. Institute of Physics, Bristol. 1998. 455 C.
  5. Rieth M., Schommers W., Baskoutas S. Thermal stability and specific material properties of nanosystems. // Mod. Phys. Tett. B. 2000. V.14. N.17−18. P.621−629.
  6. Drexler K.E. Nanosystems, Molecular machinery, manufacturing, and computation. Wiley Intersci. 1992. 568 C.
  7. P.A., Глезер A.M. Размерный эффект в нанокристаллических материалах: II. Механические и физические свойства. // Физика металлов и металловедение. 2000. Т.89. №.1. С.91−112.
  8. Suryanarayana С. Structure and properties of nanocrystalline materials. // Bull. Mat. Sci. 1994. V.17. N.4. P.307−346.
  9. Siegel R.W. Nanophase materials, synthesis, structure and properties. // Springer series in materials sciences. Ed. Fujita F.E. Springer Verlag. 1994. P.65−105.
  10. Moriarty P. Nanostructured materials. // Rep. Prog. Phys. 2001. V.64. N.3. P.297−381.
  11. А.Д., Розенберг A.C., Уфлянд И. Е. Наночастицы металлов в полимерах. М.: Химия. 2000. 672 С.
  12. Suryanarayana С., Koch С.С. Nanocrystalline materials: current research and future directions. // Hyperfine Interact. 2000. V.130. N. l-4. P.5−44.
  13. Kawazoe Y. Clusters and nanomaterials: theory and experiment. Springer Verlag. 2001. 755 C.
  14. Yoffe A.D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. // Adv. Phys. 2001. V.50. N.l. P.1−208.
  15. Ю.Г. Курс коллоидной химии. М.: Химия. 1989. 463 С.
  16. Д.А. Курс коллоидной химии. Л.: Химия. 1984. 368 С.
  17. А. Физическая химия поверхностей. М.: Мир. 1979. 568 С.
  18. Gleiter Н. Nanostructured materials: Basic concepts and microstructure. // Acta Mater. 2000. V.48. N.l. P.1−29.
  19. Ч. Введение в физику твердого тела. М.: Наука. 1978. 491 С.
  20. Borrelli N.F., Hall D. W, Holland H.J., Smith D.W. Quantum confinement of semiconducting microcrystalites in glass. // J. Appl. Phys. 1987. V.61. P.5399−5409.
  21. Kayanuma Y. Wannier exciton in microcrystals. // Solid State Comm. 1986. V.59. P.405−408.
  22. Ю.В., Калинников В. Т. Современная магнетохимия. СПб.: Наука. 1994. 272 С.
  23. Che М., Bennett С.О. The influence of particle-size on the catalitic properties of supported metals. // Adv. Catal. 1989. V.36. P.55−172.
  24. Coq В., Figueras F. Structure-activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. // Coord. Chem. Rev. 1998. V.180. P. 17 531 783.
  25. И.П., Суздадев П. И. Нанокластеры и нанокластерные системы. // Успехи Химии. 2001. Т.70. №.3. С.203−240.
  26. Metal clusters in chemistry. Eds. Branstein P., Oro L.A., Raithly L.A. VCH, New York. 1999. 950 C.
  27. Aiken J.D., Finke R.G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. // J. Mol. Catal. A-Chem. 1999. V.145. N. l-2. P.1−44.
  28. Schmid G., Baumle M., Geerkens M., Helm I., Osemann C., Sawitowski T. Current and future applications of nanoclusters. // Chem. Soc. Rev. 1999. V.28. N.3. P.179−185.
  29. Volokitin Y., Sinzig J., Dejongh L.J., Schmid G., Vargaftik M.N., Moiseev I.I. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. // Nature. 1996. V.384. N.6610. P.621−623.
  30. Suryanarayana C. Nanocrystalline materials. // Int. Mater. Rev. 1995. V.40. N.2. P.41−64.
  31. P.А., Глезер A.M. Размерный эффект в нанокристаллических материалах: I. Структурные характеристики, термодинамика, фазовые равновесия и транспортный феномен. // Физика металлов и металловедение. 1999. Т.88. №.1. С.50−73.
  32. Marin P., Hernando A. Applications of amorphous and nanocrystalline magnetic materials. //J. Magn. Magn. Mater. 2000. V.215. P.729−734.
  33. Nogami M. Semiconductor-doped sol-gel optics. // Sol-gel optics, processing and applications. Ed. Klein L.C. Kluwer Acad. Publ. 1994. P.329−344.
  34. Maxwell-Garnett J.C. Colour in glasses. // Philos. Trans. R. Soc. London. 1904. V. 203. P.385−387.
  35. Potter B.G., Simmons J.H. Quantum size effects in optical properties of CdS-glass composites. // Phys. Rev. B. 1998. V.37. P.10 838−10 845.
  36. Gehr R.J., Boyd R.W. Optical properties of nanostructured optical materials. // Chem. Mat.1996. V.8.N.8. P.1807−1819.
  37. Chakraborty P. Metal nanoclusters in glasses as non-linear photonic materials. // J. Mater. Sci. 1998. V.33. N.9. P.2235−2249.
  38. Grieve K., Mulvaney P., Grieser F. Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. // Curr. Opin. Colloid Interface Sci. 2000. V.5. N. l-2. P. 168 172.
  39. Beecroft L.L., Ober C.K. Nanocomposite materials for optical applications. // Chem. Mat.1997. V.9. N.6. P.1302−1317.
  40. Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. // Science. 1996. V.271. N.5251. P.933−937.
  41. Efros A.L., Rosen M. The electronic structure of semiconductor nanocrystals. // Annu. Rev. Mater. Sci. 2000. V.30. P.475−521.
  42. Rubio A., Alonso J.A., Blase X., Louie S.G. Theoretical models for the optical properties of clusters and nanostructures. // Int. J. Mod. Phys. B. 1997. V. l 1. N.23. P.2727−2776.
  43. Brus L.E. Bans-edge absorption and luminescence of nanometer-size semiconductor particles. // J. Chem. Phys. 1983. V.79. N.6. P.5566−5571.
  44. Murray C.B., Norris D.J., Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Те) semiconductor nanocrystallites. // J. Am. Chem. Soc. 1993. V. l 15. N. 19. P.8706−8715.
  45. Ekimov A.I., Efros A.L. Nonlinear optics of semiconductor-doped glasses. // Phys. Status Solidi B-Basic Res. 1988. V.150. N.2. P.627−633.
  46. Itoh Т., Nishijima M., Ekimov A.I., Gourdon C., Efros A.L., Rosen M. Polaron and esciton-phonon complexes in CuCl nanocrystals. // Phys. Rev. Lett. 1995. V.74. N.9. P.1645−1648.
  47. Itoh Т., Yano S., Katagiri N., Iwabuchi Y., Gourdon C., Ekimov A.I. Interfaces effects on the properties of confined excitons in CuCl microcrystals. // J. Lumines. 1994. V.60−1. P.396−399.
  48. Nogami M., Zhu Y.Q., Nagasaka K. Preparation and quantum size effect of CuBr microcrystal doped glasses by the sol-gel process. // J. Non-Cryst. Solids. 1991. V. l34. N. 1−2. P.71−76.
  49. Valenta J., Moniatte J., Gilliot P., Honerlage В., Grun J.B., Levy R., Ekimov A.I. Dynamics of excitons in CuBr nanocrystals: Spectral-hole burning and transient four-wave-mixing measurements. // Phys. Rev. B. 1998. V.57. N.3. P.1774−1783.
  50. Shinojima H., Yumoto J., Uesugi N., Omi S., Asahara Y. Microcrystallite size dependence of absorption and photoluminescence spectra in CdSxSeix doped glass. // Appl. Phys. Lett. 1989. V.55. N.15. P.1519−1521.
  51. Chamarro M., Gourdon C., Lavallard P., Lublinskaya O., Ekimov A.I. Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect. // Phys. Rev. B. 1996. V.53. N.3. P.1336−1342.
  52. Alivisatos A.P. Semiconductor nanocrystals. // MRS Bull. 1995. V.20. N.8. P.23−32.
  53. Wise F.W. Lead salt quantum dots: The limit of strong quantum confinement. // Acc. Chem. Res. 2000. V.33. N. l 1. P.773−780.
  54. Banfi G., Degiorgio V., Ricard D. Nonlinear optical properties of semiconductor nanocrystals. // Adv. Phys. 1998. V.47. N.3. P.447−510.
  55. Mulvaney P., Liz-Marzan L.M., Giersig M., Ung T. Silica encapsulation of quantum dots and metal clusters. // J. Mater. Chem. 2000. V.10. N.6. P. 1259−1270.
  56. Caruso F. Nanoengineering of particle surfaces. // Adv. Mater. 2001. V. 13. N.l. P. 11−15.
  57. Bruchez M., Moronne M., Gin P., Weiss S., Alivisatos A.P. Semiconductor nanocrystals as fluorescent biological labels. // Science. 1998. V.281. N.5385. P.2013−2016.
  58. Kuno M., Lee J.K., Dabbousi B.O., Mikulec F.V., Bawendi M.G. The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state. // J. Chem. Phys. 1997. V.106. N. 23. P.9869−9882.
  59. Peng X.G., Schlamp M.C., Kadavanich A.V., Alivisatos A.P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. // J. Am. Chem. Soc. 1997. V. l 19. N.30. P.7019−7029.
  60. Danek M., Jensen K.F., Murray C.B., Bawendi M.G. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. // Chem. Mat. 1996. V.8. N.l. P. 173−180.
  61. Dormann J.L., Fiorani D. Nanophase magnetic materials size and interaction effects on static and dynamic properties of fine particles. // J. Magn. Magn. Mater. 1995. V. l40. P.415−418.
  62. Himpsel F.J., Ortega J.E., Mankey G.J., Willis R.F. Magnetic nanostructures. // Adv. Phys. 1998. V.47. N.4.P.511−597.
  63. Gajbhiye N.S. Trends in research on nanostructured magnetic materials. // Met. Mater. Proc. 1998. V.10. N.3. P.247−264.
  64. Leslie-Pelecky D.L., Rieke R.D. Magnetic properties of nanostructured materials. // Chem. Mat. 1996. V.8. N.8. P.1770−1783.
  65. Magnetic properties of fine particles. Ed. Dormann J.L. North-Holland, Amsterdam. 1992. 432 C.
  66. Д.Д. Магнитные материалы. M.: Высшая школа. 1991. 278 С.
  67. Hernando A. Magnetic properties and spin disorder in nanocrystalline materials. // J. Phys.-Condes. Matter. 1999. V. l 1. N.48. P.9455−9482.
  68. Dahlgren M., Grossinger R. Physics of nanocrystalline magnetic materials. // Mater. Sci. Forum. 1999. V.302−3. P.263−272.
  69. Cullity B.D. Introduction to magnetic materials. Addison-Wesley Publishing Company: Reading, MA. 1972. 840 C.
  70. Hadjipanayis G.C. Nanophase hard magnets. // J. Magn. Magn. Mater. 1999. V.200. N. l-3. P. 373−391.
  71. O’Connor C.J., Seip C., Sangregorio C., Carpenter E., Li S.C., Irvin G., John V.T. Nanophase magnetic materials: Synthesis and properties. // Mol. Cryst. Liq. Cryst. Sci. Techno 1. Sect. A-Mol. Cryst. Liq. Cryst. 1999. V.334. P. l 135−1154.
  72. Kemeny Т., Kaptas D., Kiss L.F., Balogh J., Vincze I., Szabo S., Beke D.L. Structure and magnetic properties of nanocrystalline soft ferromagnets. // Hyperfme Interact. 2000. V.130. N. l-4. P.181−219.
  73. Fukunaga H., Nakamura H. Computer simulation of magnetic properties of anisotropic nanocomposite magnets. // IEEE Trans. Magn. 2000. V.36. N.5. P.3285−3287.
  74. Cowburn R.P. Property variation with shape in magnetic nanoelements. // J. Phys. D-Appl. Phys. 2000. V.33.N.1. P. R1-R16.
  75. Hernando A., Gonzalez J.M. Soft and hard nanostructured magnetic materials. // Hyperfme Interact. 2000. V.130. N. 1−4. P.221−240.
  76. Blakemore J.S. Solid state physics. Cambridge University Press, Cambridge. 1985. 608 C.
  77. Morrish A.H. The physical principles of magnetism. Willey, New York. 1965. 355 C.
  78. И.Д., Трусов JI.И., Чижик С. П. Ультрадисперсные металлические среды. М.: Атомиздат. 1977. 280 С.
  79. Г. И., Тимофеев Е. Н. Технология магнитных лент. Л.: Наука. 1987. 314 С.
  80. Fidler J., Schrelf Т. Micromagnetic modelling of nanocrystalline magnets and structures. // J. Magn. Magn. Mater. 1999. V.203. P.28−32.
  81. Fukunaga H., Nakamura H. Micromagnetic approach for relationship between nanostructure and magnetic properties of nanocomposite magnets. // Scr. Mater. 2001. V.44. N.8−9. P.1341−1345.
  82. Pardavi-Horvath M. Characterization of nanostructured magnetic materials. // J. Magn. Magn. Mater. 1999. V.203. P. 57−59.
  83. Tejada J., Ziolo R.F., Zhang X.X. Quantum tunneling of magnetization in nanostructured materials. // Chem. Mat. 1996. V.8. N.8. P.1784−1792.
  84. Caneschi A., Gatteschi D., Sangregorio C., Sessoli R., Sorace L., Cornia A., Novak M.A., Paulsen C., Wernsdorfer W. The molecular approach to nanoscale magnetism. // J. Magn. Magn. Mater. 1999. V.200. N. l-3. P. 182−201.
  85. Kirk K.J. Nanomagnets for sensors and data storage. // Contemp. Phys. 2000. V.41. N.2. P.61−78.
  86. Hehn M., Ounadjela K., Bucher J.P., Rousseaux F., Decanini D., Bartenlian В., Chappert C. Nanoscale magnetic domains in mesoscopic magnets. // Science. 1996. V.272. N.5269. P.1782−1785.
  87. Kirk K.J., Chapman J.N., McVitie S., Aitchison P.R., Wilkinson C.D.W. Switching of nanoscale magnetic elements. // Appl. Phys. Lett. 1999. V.75. N.23. P.3683−3685.
  88. Cowburn R.P., Koltsov D.K., Adeyeye A.O., Welland M.E. Designing nanostructured magnetic materials by symmetry. // Europhys. Lett. 1999. V.48. N.2. P.221−227.
  89. Sellmyer D.J., Yu M., Kirby R.D. Nanostructured magnetic films for extremely high density recording. //Nanostruct. Mater. 1999. V.12. N.5−8. P.1021−1026.
  90. Nanoparticles in solids and solutions. Eds. Fendler J.H., Dekany I. Kluwer Acad. Publ. 1996.644 C.
  91. Lu J.S., Yang H.B., Yu S., Zou G.T. Synthesis and thermal properties of ultrafine powders of iron group metals. // Mater. Chem. Phys. 1996. V.45. N.3. P.197−202.
  92. Ananthapadmanabhan P.V., Taylor P.R., Zhu W.X. Synthesis of titanium nitride in a thermal plasma reactor. // J. Alloy. Compd. 1999. V.287. N. l-2. P. 126−129.
  93. Kammler H.K., Madler L., Pratsinis S.E. Flame synthesis of nanoparticles. // Chem. Eng. Technol. 2001. V.24. N.6. P.583−596.
  94. Shinde S.R., Banpurkar A.G., Adhi K.P., Limaye A.V., Ogale S.B., Date S.K., Marest G. Synthesis of ultrafine/nanosize powders of iron oxides by pulsed laser ablation and cold condensation. // Mod. Phys. Lett. B. 1996. V.10. N.30. P.1517−1527.
  95. BeginColin S., Wolf F., LeCaer G. Nanocrystalline oxides synthesized by mechanical alloying. // J. Phys. III. 1997. V.7. N.3. P.473−482.
  96. Froes F.H., Senkov O.N., Baburaj E.G. Some aspects of synthesis of nanocrystalline materials. //Mater. Sci. Technol. 2001. V.17. N.2. P. l 19−126.
  97. Fendler J.H. Self-assembled nanostructured materials. // Chem. Mat. 1996. V.8. N.8. P.1616−1624.
  98. Fendler J.H., Meldrum F.C. The colloid-chemical approach to nanostructures. // Adv. Mater. 1995. V.7. N.7. P.607−632.
  99. Meldrum F.C., Kotov N.A., Fendler J.H. Mono- and multiparticulate Langmuir-Blodgett films prepared from surfactant-stabilized silver particles. // Mater. Sci. Eng. C-Biomimetic Mater. Sens. Syst. 1995. V.3. N.2. P.149−152.
  100. .Д., Иванова Н. И. Объекты и методы коллоидной химии в нанохимии. // Успехи химии. 2000. Т.69. №.11. С.995−1008.
  101. Joly S., Kane R., Radzilowski L., Wang Т., Wu A., Cohen R.E., Thomas E.L., Rubner M.F. Multilayer nanoreactors for metallic and semiconducting particles. // Langmuir. 2000. V.16. N.3. P.1354−1359.
  102. Murray C.B., Kagan C.R., Bawendi M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. // Annu. Rev. Mater. Sci. 2000. V.30. P.545−610.
  103. Alivisatos A.P., Johnsson K.P., Peng X.G., Wilson Т.Е., Loweth C.J., Bruchez M.P., Schultz P.G. Organization of’nanocrystal molecules' using DNA. // Nature. 1996. V.382. N.6592. P.609−611.
  104. Kane R.S., Cohen R.E., Silbey R. Synthesis of doped ZnS nanoclusters within block copolymer nanoreactors. // Chem. Mat. 1999. V. l 1. N.l. P.90−93.
  105. Alivisatos A.P. Biomineralization Naturally aligned nanocrystals. // Science. 2000. V.289. N.5480. P.736−737.
  106. Meier W. Nanostructure synthesis using surfactants and copolymers. // Curr. Opin. Colloid Interface Sci. 1999. V.4. N.l. P.6−14.
  107. Corriu R.J.P. Ceramics and nanostructures from molecular precursors. // Angew. Chem. Int. Ed. 2000. V.39. N.8. P.1376−1398.
  108. Yu S.H. Hydrothermal/solvothermal processing of advanced ceramic materials. // J. Ceram. Soc. Jpn. 2001. V.109. N.5. P. S65-S75.
  109. Tretyakov Y.D., Oleinikov N.N., Shlyahtin A.A. Cryochemical technology of advanced materials. Chapman&Hall, London. 1997. 304 C.
  110. Moszner N., Salz U. New developments of glass-doped composites. // Prog. Polym. Sci. 2001. V.26. N.4. P.535−576.
  111. Min K.S., Shcheglov K.V., Yang C.M., Atwater H.A., Brongersma M.L., Polman A. The role of quantum-confined excitons vs defects in the visible luminescence of SiC>2 films containing Ge nanocrystals. // Appl. Phys. Lett. 1996. V.68. N.18. P.2511−2513.
  112. Peng X.G., Manna L., Yang W.D., Wickham J., Scher E., Kadavanich A., Alivisatos A.P. Shape control of CdSe nanocrystals. //Nature. 2000. V.404. N.6773. P.59−61.
  113. Fendler J.H. Colloid chemical approach to nanotechnology. // Korean J. Chem. Eng. 2001. V.18. N.l. P.1−13.
  114. Jin X.H., Gao L. Preparation, microstructure and properties of nanocomposite ceramics. // J. Inorg. Mater. 2001. V. l6. N.2. P.200−206.
  115. Donescu D. Polymer-inorganic nanocomposites. // Mater. Plast. 2001. V.38. N.l. P.3−16.
  116. Caseri W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. // Macromol. Rapid Commun. 2000. V.21. N.ll. P.705−722.
  117. Gomez-Romero P. Hybrid organic-inorganic materials In search of synergic activity. // Adv. Mater. 2001. V. l3. N.3. P. 163−174.
  118. Huczko A. Template-based synthesis of nanomaterials. // Appl. Phys. A-Mater. Sci. Process. 2000. V.70. N.4. P.365−376.
  119. Bronstein L., Kramer E., Berton В., Burger C., Forster S., Antonietti M. Successive use of amphiphilic block copolymers as nanoreactors and templates: Preparation of porous silica with metal nanoparticles. // Chem. Mat. 1999. V. l 1. N.6. P.1402−1409.
  120. Eliseev A.A., Lukashin A.V., Vertegel A.A., Heifets L.I., Zhirov A.I., Tretyakov Y.D. Complexes of Cu (II) with polyvinyl alcohol as precursors for the preparation of CuO/SiCh nanocomposites. // Mater. Res. Innov. 2000. V.3. N.5. P.308−312.
  121. Gunter P.L.J., Niemantsverdriet J.W., Ribeiro F.H., Somorjai G.A. Surface science approach to modeling supported catalysts. // Catal. Rev.-Sci. Eng. 1997. V.39. N. l-2. P.77−168.
  122. Ihlein G., Junges В., Junges U., Laeri F., Schuth F., Vietze U. Ordered porous materials as media for the organization of matter on the nanoscale. // Appl. Organomet. Chem. 1998. V.12. N.5. P.305−314.
  123. А.С., Ильин В. Г., Филиппов О. П. Мезопористые молекулярные сита и нанопериодичные материалы. // Теор. эксп. химия. 1997. Т.33. №.5. С.322−337.
  124. Pinnavaia T.J. Nanoporous layered meterials. // Adv. Chem. Ser. Mater. Chem. 1995. V.245. P.283−300.
  125. Horvath D., Polisset-Thfoin M., Fraissard J., Guczi L. Novel preparation method and characterization of Au-Fe/HY zeolite containing highly stable gold nanoparticles inside zeolite supercages. // Solid State Ion. 2001. V.141. P.153−156.
  126. Dantsin G., Suslick K.S. Sonochemical preparation of a nanostructured bifunctional catalyst. //J. Am. Chem. Soc. 2000. V.122. N.21. P.5214−5215.
  127. Gallis K.W., Landry C.C. Rapid calcination of nanostructured silicate composites by microwave irradiation. // Adv. Mater. 2001. V. 13. N.l. P.23−31.
  128. Kim D.W., Blumstein A., Downey M., Kumar J., Tripathy S.K. Nanocomposite derived from layered aluminosilicate intercalated with organic laser dye. // Abstr. Pap. Am. Chem. Soc. 2000. V.220. P.84-PMSE.
  129. Herron N. Zeolites as hosts for novel optical and electronic materials. // J. Incl. Phenom. Mol. Recogn. Chem. 1995. V.21. N. l-4. P.283−298.
  130. Szostak R., Ingram C. Pillared Layered Structures (PLS): From microporous to nano-phase materials. // Stud. Surf. Sci. Catal. 1995. V.94. P. 13−38.
  131. Schollhorn R. Intercalation systems as nanostructured functional materials. // Chem. Mat. 1996. V.8. N.8. P.1747−1757.
  132. Carlino S. Chemistry between the sheets. // Chem. Br. 1997. V.33. N.9. P.59−62.
  133. Sato Т., Fukugami Y., Shu Y. Photochemical properties of nanoparticles of semiconductors fabricated utilizing nanospaces of layered compounds. // Scr. Mater. 2001. V.44. N.8−9. P.1905 -1910.
  134. Tunney J.J., Detellier C. Aluminosilicate nanocomposite materials. Poly (ethylene glycol)-kaolinite intercalates. // Chem. Mat. 1996. V.8. N.4. P.927−935.
  135. Zerda A.S., Lesser A.J. Intercalated clay nanocomposites: Morphology, mechanics, and fracture behavior. // J. Polym. Sci. Pt. B-Polym. Phys. 2001. V.39. N. l 1. P. l 137−1146.
  136. Kim D.W., Blumstein A., Kumar J., Tripathy S.K. Layered aluminosilicate/chromophore nanocomposites and their electrostatic layer-by-layer assembly. // Chem. Mat. 2001. V.13. N.2. P.243−246.
  137. Szucs A., Berger F., Dekany I. Preparation and structural properties of Pd nanoparticles in layered silicate. // Colloid Surf. A-Physicochem. Eng. Asp. 2000. V.174. N.3. P.387−402.
  138. Fischer H.R., Gielgens L.H., Koster T.P.M. Nanocomposites from polymers and layered minerals. //Acta Polym. 1999. V.50. N.4. P. 122−126.
  139. Sato Т., Masaki К., Sato K.I., Fujishiro Y., Okuwaki A. Photocatalytic properties of layered hydrous titanium oxide CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer. // J. Chem. Technol. Biotechnol. 1996. V.67. N.4. P.339−344.
  140. Giannelis E.P. Polymer-layered silicate nanocomposites: Synthesis, properties and applications. // Appl. Organomet. Chem. 1998. V.12. N.10−11. P.675−680.
  141. Ma Y., Tong W., Zhou H., Suib S.L. A review of zeolite-like porous materials. // Microporous Mesoporous Mat. 2000. V.37. N. l-2. P.243−252.
  142. Cavani F., Trifiro F., Vaccari A. Preparation, properties and structure of layered double hydroxides. // Catal Today. 1991. V.11.N.2. P.173−195.
  143. Basile F., Basini L., Fornasari G., Gazzano M., Trifiro F., Vaccari A. Anionic clays as precursors of noble metal based catalysts for methane activation. // Stud. Surf. Sci. Catal. 1998. V.118. P.31−40.
  144. Fernandez J.M., Barriga C., Ulibarri M.A., Labajos F.M., Rives V. New hydrotalcite-like compounds containing yttrium. // Chem. Mat. 1997. V.9. N.l. P.312−318.
  145. Labajos F.M., Rives V., Malet P., Centeno M.A., Ulibarri M.A. Synthesis and characterization of hydrotalcite-like compounds containing V3+ in the layers and of their calcination products. // Inorg. Chem. 1996. V.35. N.5. P. l 154−1160.
  146. Aramendia M.A., Borau V., Jimenez C., Marinas J.M., Romero F.J., Ruiz J.R. Synthesis, characterization, and H-l and Ca-71 MAS NMR spectroscopy of a novel Mg/Ga double layered hydroxide. // J. Solid State Chem. 1997. V. 131. N.l. P.78−83.
  147. Vichi F.M., Alves O.L. Preparation of Cd/Al layered double hydroxides and their intercalation reactions with phosphonic acids. // J. Mater. Chem. 1997. V.7. N.8. P. 16 311 634.
  148. Aramendia M.A., Borau V., Jimenez C., Marinas J.M., Romero F.J., Urbano F.J. Synthesis and characterization of a novel Mg/In layered double hydroxide. // J. Mater. Chem. 1999. V.9. N.10. P.2291−2292.
  149. Serna C.J., Rendon J.L., Iglesias J.E. Lithium containing layered double hydroxides. // Clays Clay Miner. 1982. V.10. N.2. P. 180−186.
  150. Velu S., Sabde D.P., Shah N., Sivasanker S. New hydrotalcite-like anionic clays containing Zr4+ in the layers: Synthesis and physicochemical properties. // Chem. Mat. 1998. V.10. N. l 1. P.3451−3458.
  151. Velu S., Suzuki K., Okazaki M., Osaki Т., Tomura S., Ohashi F. Synthesis of new Sn-incorporated layered double hydroxides and their thermal evolution to mixed oxides. // Chem. Mat. 1999. V.ll. N.8. P.2163−2172.
  152. Velu S., Swamy C.S. Synthesis and physicochemical properties of a new copper-manganese-aluminium ternary hydrotalcite-like compound. // J. Mater. Sci. Lett. 1996. V.15. N.19. P.1674−1677.
  153. Friedrich H.B., Khan F., Singh N., van Staden M. The Ru-Cu-Al-hydrotalcite-catalysed oxidation of alcohols to aldehydes or ketones. // Synlett. 2001. N.6. P.869−871.
  154. Basile F., Fornasari G., Gazzano M., Vaccari A. Synthesis and thermal evolution of hydrotalcite-type compounds containing noble metals. // Appl. Clay Sci. 2000. V.16. N.3−4. P. 185−200.
  155. Bellotto M., Rebours В., Clause O., Lynch J., Bazin D., Elkaim E. A reexamination of hydrotalcite crystal chemistry. // J. Phys. Chem. 1996. V.100. N.20. P.8527−8534.
  156. Rives V., Ulibarri M.A. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. // Coord. Chem. Rev. 1999. V.181. P.61−120.
  157. Hawthorne F.C., Krivovichev S.V., Burns P.C. The crystal chemistry of sulfate minerals. // Rev. Mineral Geochem. 2000. V.40. P. l-112.
  158. Han S.H., Zhang C.G., Hou W.G., Sun D.J., Wang G.T. Studies on structure of magnesium aluminium hydroxide positive sol. // Chem. J. Chin. Univ.-Chin. 1996. V.17. N. l 1. P. 17 851 787.
  159. А. Структурная неорганическая химия (в 3-х томах). М.: Мир. 1987. 1515 С.
  160. А.В., Пущаровский Д. Ю., Расцветаева Р. К., Любман Г. Ю. Кристаллическая структура нового минерала из группы гидроталькита-манассеита А4(0Н)12(С0з)зН20. //Кристаллография. 1996. Т.41. №.6. С.1024−1034.
  161. Aicken A.M., Bell I.S., Coveney P.V., Jones W. Simulation of layered double hydroxide intercalates. // Adv. Mater. 1997. V.9. N.6. P.496−504.
  162. Tagaya H., Ogata A., Kuwahara Т., Ogata S., Karasu M., Kadokawa J., Chiba K. Intercalation of colored organic anions into insulator host lattices of layered double hydroxides. //Microporous Mater. 1996. V.7. N.2−3. P.151−158.
  163. Newman S.P., Jones W. Synthesis, characterization and applications of layered double hydroxides containing organic guests. //New J. Chem. 1998. V.22. N.2. P. 105−115.
  164. Evans J., Pillinger M., Zhang J.J. Structural studies of polyoxometalate-anion-pillared layered double hydroxides. // J. Chem. Soc.-Dalton Trans. 1996. N.14. P.2963−2974.
  165. Yun S.K., Pinnavaia T.J. Layered double hydroxides intercalated by polyoxometalate anions with Keggin (alpha-I I2Wi20, m6), Dawson (alpha-P2Wis0626~), and Finke (C04(H20)2(PW9034)210″) structures. // Inorg. Chem. 1996. V.35. N.23. P.6853−6860.
  166. Xu Z.P., Zeng H.C. Abrupt structural transformation in hydrotalcite-like compounds Mgi-xAlx (0H)2(N03)x-nH20 as a continuous function of nitrate anions. // J. Phys. Chem. B. 2001. V.105.N.9. P.1743−1749.
  167. Gardner E.A., Yun S.K., Kwon Т.Н., Pinnavaia T.J. Layered double hydroxides pillared by macropolyoxometalates. // Appl. Clay Sci. 1998. V.13. N.5−6. P.479−494.
  168. Carlino S. The intercalation of carboxylic acids into layered double hydroxides: A critical evaluation and review of the different methods. // Solid State Ion. 1997. V.98. N. l-2. P.73−84.
  169. Meyn M., Beneke K., Lagaly G. Anion-exchange reactions of hydroxy double salts. // Inorg. Chem. 1993. V.32. N.7. P.1209−1215.
  170. Meyn M., Beneke K., Lagaly G. Anion-exchange reactions of layered double hydroxides. // Inorg. Chem. 1990. V.29. N.26. P.5201−5207.
  171. Whilton N.T., Vickers P.J., Mann S. Bioinorganic clays: Synthesis and characterization of amino- and polyamino acid intercalated layered double hydroxides. // J. Mater. Chem. 1997. V.7. N.8. P.1623−1629.
  172. Oriakhi C.O., Farr I.V., Lerner M.M. Incorporation of poly (acrylic acid), poly (vinylsulfonate) and poly (styrenesulfonate) within layered double hydroxides. // J. Mater. Chem. 1996. V.6. N.l. P. 103−107.
  173. Reichle W.T. Synthesis of anionic clay-minerals (mixed metal-hydroxides, hydrotalcite). // Solid State Ion. 1986. V.22. N.l. P.135−141.
  174. Newman S.P., Jones W. Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. // J. Solid State Chem. 1999. V.148. N.l. P.26−40.
  175. Carrado K.A., Kostapapas A., Suib S.L. Layered double hydroxides (LDHs). // Solid State Ion. 1988. V.26.N.2. P.77−86.
  176. Han S.H., Hou W.G., Zhang C.G., Sun D.J., Huang X.R., Wang G.T. Structure and the point of zero charge of magnesium aluminium hydroxide. // J. Chem. Soc.-Faraday Trans. 1998. V.94. N.7. P.915−918.
  177. Kannan S., Jasra R.V. Microwave assisted rapid crystallization of Mg-M (III) hydrotalcite where M (III) = Al, Fe or Cr. // J. Mater. Chem. 2000. V.10. N.10. P.2311−2314.
  178. Hussein M.Z.B., Zainal Z., Ming C.Y. Microwave-assisted synthesis of Zn-Al-layered double hydroxide- sodium dodecyl sulfate nanocomposite. // J. Mater. Sci. Lett. 2000. V.19. N.10. P.879−883.
  179. Kameda Т., Yoshioka Т., Uchida M., Okuwaki A. Synthesis of hydrotalcite using magnesium from seawater and dolomite. // Mol. Cryst. Liquid Cryst. 2000. V.341. P.1211−1216.
  180. Jitianu M., Balasoiu M., Zaharescu M., Jitianu A., Ivanov A. Comparative study of sol-gel and coprecipitated Ni-Al hydrotalcites. // J. Sol-Gel Sci. Technol. 2000. V.19. N. l-3. P.453−457.
  181. Prinetto F., Ghiotti G., Graffin P., Tichit D. Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. //Microporous Mesoporous Mat. 2000. V.39. N. l-2. P.229−247.
  182. Ogawa M., Asai S. Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compounds. // Chem. Mat. 2000. V.12. N. l 1. P.3253−3258.
  183. Hickey L., Kloprogge J.Т., Frost R.L. The effects of various hydrothermal treatments on magnesium- aluminium hydrotalcites. //J. Mater. Sci. 2000. V.35. N.17. P.4347−4355.
  184. Beres A., Palinko I., Kiricsi I., Nagy J.B., Kiyozumi Y., Mizukami F. Layered double hydroxides and their pillared derivatives materials for solid base catalysis- synthesis and characterization. //Appl. Catal. A-Gen. 1999. V. l 82. N.2. P.237−247.
  185. Kanezaki E. Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. // Solid State Ion. 1998. V.106. N. 3−4. P.279−284.
  186. Olanrewaju J., Newalkar B.L., Mancino C., Komarneni S. Simplified synthesis of nitrate form of layered double hydroxide. // Mater. Lett. 2000. V.45. N.6. P.307−310.
  187. Messersmith P.В., Stupp S.I. High-temperatrure chemical and microstructural transformations of a nanocomposite organoceramic. // Chem. Mat. 1995. V.7. N.3. P.454−460.
  188. Crepaldi E.L., Valim J.B. Layered double hydroxides: Structure, synthesis, properties and applications.//Quim. Nova 1998. V.21.N.3. P.300−311.
  189. Drezdzon M.A. Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillared precursors. // Inorg. Chem. 1988. V.27. N.25. P.4628−4632.
  190. Serwicka E.M., Nowak P., Bahranowski K., Jones W., Kooli F. Insertion of electrochemically reduced Keggin anions into layered double hydroxides. // J. Mater. Chem. 1997. V.7. N.9. P.1937−1939.
  191. Hansen H.C.B., Taylor R.M. The use of glycerol intercalates in exchange of C032- with S042″, N03″ or СГ in pyroaurite-type compounds. // Clay Min. 1991. V.26. N.3. P.311−327.
  192. Crepaldi E.L., Pavan P.C., Valim J.B. A new method of intercalation by anion exchange in layered double hydroxides. // Chem. Comm. 1999. N.2. P.155−156.
  193. Newman S.P., Jones W. Organic-inorganic hybrids based on anionic clays. // Mol. Cryst. Liquid Cryst. 2001. V.356. P.41−51.
  194. Tronto J., Crepaldi E.L., Pavan P.C., De Paula C.C., Valim J.B. Organic anions of pharmaceutical interest intercalated in magnesium aluminum LDHs by two different methods. // Mol. Cryst. Liquid Cryst. 2001. V.356. P.227−237.
  195. Kooli F., Jones W., Rives V., Ulibarri M.A. An alternative route to polyoxometalate-exchanged layered double hydroxides: The use of ultrasound. // J. Mater. Sci. Lett. 1997. V.16. N.l. P.27−29.
  196. Kooli F., Jones W. Direct synthesis of polyoxovanadate-pillared layered double hydroxides. // Inorg. Chem. 1995. V.34. N.25. P.6237−6241.
  197. Menetrier M., Han K.S., GuerlouDemourgues L., Delmas C. Vanadate-inserted layered double hydroxides: A V-51 NMR investigation of the grafting process. // Inorg. Chem. 1997. V.36. N.11.P.2441−2445.
  198. Chibwe K., Jones W. Reversible thermal dehydrotation of Mg/Al layered double hydroxides. // J. Mater. Chem. 1989. V.l. N.2. P.489−492.
  199. Chibwe K., Jones W. Intercalation of organic and inorganic anions into layered double hydroxide. // J. Chem. Soc.-Chem. Commun. 1989. N. l4. P.926−927.
  200. Puttaswamy N.S., Kamath P.V. Reversible thermal behaviour of layered double hydroxides: A thermogravimetric study. // J. Mater. Chem. 1997. V.7. N.9. P. l941−1945.
  201. Carlino S., Hudson M.J. Reaction of molten sebacic acid with a layered (Mg/Al) double hydroxide. // J. Mater. Chem. 1994. V.4. N.l. P.99−104.
  202. Pergher S.B.C., Corma A., Fornes V. Pillared layered materials: Preparation and properties. //Quim. Nova 1999. V.22. N.5. P.693−709.
  203. Bera P., Rajamathi M., Hegde M.S., Kamath P.V. Thermal behaviour of hydroxides, hydroxysalts and hydrotalcites. // Bull. Mat. Sci. 2000. V.23. N.2. P.141−145.
  204. Rajamathi M., Nataraja G.D., Ananthamurthy S., Kamath P.V. Reversible thermal behavior of the layered double hydroxide of Mg with Al: mechanistic studies. // J. Mater. Chem. 2000. V.10. N.12. P.2754−2757.
  205. Aramendia M.A., Aviles Y., Borau V., Luque J.M., Marinas J.M., Ruiz J.R., Urbano F.J. Thermal decomposition of Mg Al and Mg Ga layered-double hydroxides: a spectroscopic study. // J. Mater. Chem. 1999. V.9. N.7. P. 1603−1607.
  206. Millange F., Walton R.I., O’Hare D. Time-resolved in situ X-ray diffraction study of the liquid- phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds. // J. Mater. Chem. 2000. V.10. N.7. P.1713−1720.
  207. Aramendia M.A., Borau V., Jimenez C., Marinas J.M., Ruiz J.R., Urbano F.J. XRD and H-1 MAS NMR spectroscopic study of mixed oxides obtained by calcination of layered-double hydroxides. // Mater. Lett. 2000. V.46. N.6. P.309−314.
  208. Hibino Т., Kosuge K., Tsunashima A. Synthesis of carbon-hydrotalcite complex and its thermal degradation behavior. // Clay Clay Min. 1996. V.44. N.l. P.151−154.
  209. Hibino Т., Tsunashima A. Calcination and rehydration behavior of Mg-Fe-C03 hydrotalcite- like compounds. // J. Mater. Sci. Lett. 2000. V.19. N.16. P.1403−1405.
  210. Sato Т., Okuyama H., Endo Т., Shimada M. Preparation and photochemical properties of cadmium suphide zinc sulphide incorporated into the interlayer of hydrotalcite. // React. Solids. 1990. V.8. P.63−72.
  211. Fujishiro Y., Uchida S., Sato T. Synthesis and photochemical properties of semiconductor pillared layered compounds. // Int. J. Inorg. Mater. 1999. V.l. N.l. P.67−72.
  212. Sato Т., Sato K.I., Fujishiro Y., Yoshioka Т., Okuwaki A. Photochemical reduction of nitrate to ammonia using layered hydrous titanate/cadmium sulphide nanocomposites. // J. Chem. Technol. Biotechnol. 1996. V.67.N.4. P.345−349.
  213. Sato Т., Masaki K., Yoshioka Т., Okuwaki A. Photocatalytic properties of CdS and CdS-ZnS mixtures incorporated into the interlayer of layered compounds. // J. Chem. Technol. Biotechnol. 1993. V.58. N.4. P.315−319.
  214. В.П., Тарасов К. А., Чупахина Л. Э., Митрофанова Р. П., Скворцова Л. И., Болдырев В. В. Синтез и термическое разложение интеркаляционных соединений гидроксида алюминия. //Журн. неорг. химии. 1995. Т.40. №.1. С.22−26.
  215. Isupov V.P., Chupakhina L.E., Mitrofanova R.P., Tarasov K.A., Rogachev A.Y., Boldyrev V.V. The use of intercalation compounds of aluminium hydroxide for the preparation of nanoscale systems. // Solid State Ion. 1997. V.101. P.265−270.
  216. В.П., Чупахина Л. Э., Митрофанова Р. П., Тарасов К. А. Использование интеркаляционных соединений гидроксида алюминия для синтеза нанофазных систем. // Журн. структ. химии. 1998. Т. 12. №.8. С.454−459.
  217. K.A., Исупов В. П., Чупахина Л. Э. Термическое разложение на воздухе интеркаляционных соединений гидроксида алюминия с комплексами ЭДТА переходных металлов. // Журн. неорг. химии. 2000. Т.45. №.11. С.1804- 1810.
  218. Adachi-Pagano М., Forano С., Besse J.P. Delamination of layered double hydroxides by use of surfactants. // Chem. Comm. 2000. N.l. P.91−92.
  219. Leroux F., Adachi-Pagano M., Intissar M., Chauviere S., Forano C., Besse J.P. Delamination and restacking of layered double hydroxides. // J. Mater. Chem. 2001. V. l 1. N1. P.105−112.
  220. Hibino Т., Jones W. New approach to the delamination of layered double hydroxides. // J. Mater. Chem. 2001. V. l 1. N.5. P.1321−1323.
  221. Depege C., ElMetoui F.Z., Forano C., deRoy A., Dupuis J., Besse J.P. Polymerization of silicates in layered double hydroxides. // Chem. Mat. 1996. V.8. N.4. P.952−960.
  222. Hou X.Q., Kirkpatrick R.J. Solid-state Se-77 NMR and XRD study of the structure and dynamics of seleno-oxyanions in hydrotalcite-like compounds. // Chem. Mat. 2000. V. l2. N.7. P. 1890−1897.
  223. Rocha J., del Arco M., Rives V., Ulibarri M.A. Reconstruction of layered double hydroxides from calcined precursors: a powder XRD and Al-27 MAS NMR study. // J. Mater. Chem. 1999. V.9. N.10. P.2499−2503.
  224. Frost R.L., Ding Z., Kloprogge J.T. The application of near-infrared spectroscopy to the study of brucite and hydrotalcite structure. // Can. J. Anal. Sci. Spectrosc. 2000. V.45. N.4. P.96−102.
  225. Lopez Т., Bosch P., Asomoza M., Gomez R., Ramos E. DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: Aluminum source effect on physicochemical properties. //Mater. Lett. 1997. V.31.N.3−6. P.311−316.
  226. Okuhara Т., Mizuno N., Misono M. Catalytic chemistry of heteropoly compounds. //1996. V.41.P.113−252.
  227. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. // Chem. Rev. 1997. V.97. N.6. P.2373−2419.
  228. Kozhevnikov I.V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. // Chem. Rev. 1998. V.98. N.l. P.171−198.
  229. Kwon Т., Tsigdinos G.A., Pinnavaia T.J. Pillared of layered double hydroxides (LDHs) by polyoxometalate anions. //J. Am. Chem. Soc. 1988. V.110. N.ll. P.3653−3654.
  230. Twu J., Dutta P.K. Decavanadate ion-pillared hydrotalcite spectroscopic studies of the thermal-decomposition process. // J. Catal. 1990. V.124. N.2. P.503−510.
  231. Bhattacharyya A., Hall D.B., Barnes T.J. Novel oligovanadate-pillared hydrotalcites. // Appl. Clay Sci. 1995. V.10. N. l-2. P.57−67.
  232. Depege C., Bigey L., Forano C., deRoy A., Besse J.P. Synthesis and characterization of new copper-chromium layered double hydroxides pillared with polyoxovanadates. // J. Solid State Chem. 1996. V.126. N.2. P.314−323.
  233. Tichit D., Medina F., Coq В., Dutartre R. Activation under oxidizing and reducing atmospheres of Ni- containing layered double hydroxides. // Appl. Catal. A-Gen. 1997. V.159. N. l-2. P.241−258.
  234. Rodeghiero E.D., Chisaki J., Giannelis E.P. In situ micro structural control of М/А^Оз and Ni/NiAl204 composites from layered double hydroxides. // Chem. Mat. 1997. V.9. N.2. P.478−484.
  235. Tichit D., Vaccari A. Recent catalytic applications of hydrotalcite-type anionic clays (layered double hydroxides). //Appl. Clay Sci. 1998. V.13. N.5−6. P.311−315.
  236. Tichit D., Fajula F. Layered double hydroxides as solid base catalysts and catalyst precursors. //1999. V.125. P.329−340.
  237. Sels В., De Vos D., Buntinx M., Pierard F., Kirsch-De Mesmaeker A., Jacobs P. Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination. // Nature. 1999. V.400. N.6747. P.855−857.
  238. Indira L., Kamath P.V. Electrogeneration of base by cathodic reduction of anions novel one-step route to unary and layered double hydroxides (LDHs). // J. Mater. Chem. 1994. V.4. N.9. P.1487−1490.
  239. Kamath P.V., Dixit M., Indira L., Shukla A.K., Kumar V.G., Munichandraiah N. Stabilized alpha-Ni (OH)2 as electrode material for alkaline secondary cells. // J. Electrochem. Soc. 1994. у. 141. N. 11. P.2956−2959.
  240. Caravaggio G.A., Detellier C., Wronski Z. Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. // J. Mater. Chem. 2001. V. l 1. N.3. P.912−921.
  241. Morigi M., Scavetta E., Berrettoni M., Giorgetti M., Tonelli D. Sulfate-selective electrodes based on hydrotalcites. // Anal. Chim. Acta 2001. V.439. N.2. P.265−272.
  242. Schollhorn R., Otto B. Quasi-two-dimentional electrolytes. // Chem. Comm. 1986. V.9. N.4. P.1222−1237.
  243. Ballarin В., Morigi M., Scavetta E., Seeber R., Tonelli D. Hydrotalcite-like compounds as ionophores for the development of anion potentiometric sensors. // J. Electroanal. Chem.2000. V.492. N. l.P.7−14.
  244. Scavetta E., Berrettoni M., Seeber R., Tonelli D. Ni/Al-Cl.-based hydrotalcite electrodes as amperometric sensors: preparation and electrochemical study. // Electrochim. Acta2001. V.46. N.17. P.2681−2692.
  245. Houri В., Legrouri A., Barroug A., Forano C., Besse J.P. Use of the ion-exchange properties of layered double hydroxides for water purification. // Collect. Czech. Chem. Commun. 1998. V.63. N.5. P.732- 740.
  246. Houri В., Legrouri A., Barroug A., Forano C., Besse J.P. Removal of chromate ions from water by anionic clays. // J. Chim. Phys.-Chim. Biol. 1999. V.96. N.3. P.455−463.
  247. M.T., Bosch P., Acosta D., Bulbulian S. 131 Г sorption by thermally treated hydrotalcites. // Clay Clay Min. 1998. V.46. N.5. P.567−573.
  248. G., Olguin M.T., Bosch P., Lara V.H., Bulbulian S. 131I" sorption from aqueous solutions by nitrated hydrotalcites. // J. Radioanal. Nucl. Chem. 1999. V.241. N.3. P.595−599.
  249. Справочник Видаль 1997 (лекарственные препараты). М.: АстраФармСервис. 1997. 1504 С.
  250. В.М. Дитиокарбаматы. М.: Наука. 1984. 342 С.
  251. Т.А., Криворучко О. П., Плясова JI.M., Буянов Р. А. Структура аморфных гидрогелей Al(III). // Изв. СО АН СССР. Сер. хим. наук. 1979. №.7. С. 126−132.
  252. А.В., Калинин С. В., Никифоров М. П., Привалов В. П., Елисеев А. А., Вертегел А. А., Третьяков Ю. Д. Влияние условий синтеза на структуру слоистых двойных гидроксидов. //ДАН. 1999. Т.364. №.1. С.11−19.
  253. А.А., Лукашин А. В., Вертегел А. А., Третьяков Ю. Д. Исследование процессов формирования слоистой структуры в процессе кристаллизации слоистых двойных гидроксидов. // Вест. ВГТУ, серия материаловедение. 2000. Т. 1.8. С.6−10.
  254. Lukashin A.V., Kalinin S.V., Vertegel А.А., Tretyakov Y.D. Layered double hydroxides as a new precursor for preparing nanostructured materials. // Proc. VII Europ. Conf. on Solid State Chem., Sept. 15−18, Madrid, Spain. 1999. p. 62.
  255. Lukashin A.V., Lukashina E.V., Badun G.A., Vertegel A.A. Investigation of anion exchange in intercalated layered double hydroxides. // Proc. 2000 MRS Spring Meeting, Apr. 24−28, San Francisco, USA. 2000. p. 422.
  256. Lukashin A.V., Kalinin S.V., Lee S.R., Knot’ko A.V., Vertegel A.A., Tretyakov Y.D. Cationic and anionic substitution in layered double hydroxides as a way for the preparation of nanocomposite materials. //NATO Sci. Ser. II. 2001. V.18. P.228−235.
  257. Sima J., Makanova J. Photochemistry of iron (III) complexes. // Coord. Chem. Rev. 1997. V.160. P.161−189.
  258. A.A., Лукашин А. В., Томашевич К. В. Интеркаляция в слоистые двойные гидроксиды новый путь к получению функциональных наноматериалов. // Тез. научн. конф. МГУ «Ломоносовские чтения-1999», 26−28 апр., Москва 1999. с. 24.
  259. Lukashin A.V., Vertegel А.А., Kalinin S.V., Nikiforov M.P., Tretyakov Y.D. Synthesis of low-dimensional nanostructures using layered double hydroxides as nanoreactors. // Proc. 1999 MRS Fall Meeting, Nov. 29 Dec. 3, Boston, USA. 1999. p. 105.
  260. A.B., Калинин С. В., Вертегел А. А., Третьяков Ю. Д. Химическая модификация слоистых двойных гидроксидов новый путь к получению функциональных нанокомпозитных материалов. // ДАН. 1999. Т.369. №.6. С.781−783.
  261. Vertegel А.А., Lukashin A.V., Eliseev А.А., Tretyakov Y.D. Preparation of Ni and Fe nanoparticles with tailor-made morphology using intercalated layered double hydroxides. // Proc. 2000 MRS Fall Meeting, Nov. 27 Dec. 1, Boston, USA. 2000. p. 56.
  262. Lukashin A.V., Tretyakov Y.D. Use of layered double hydroxides as a new route to prepare nanocomposite materials with controlled nanostructures. // Proc. IV Steinfurter-Keramic-Seminar, Dec. 6−9, Steinfurt, Germany. 2000. p. 25.
  263. А.А., Лукашин А. В., Третьяков Ю. Д. Химический дизайн наноструктур на основе слоистых гидроксидов. // Тез. III Межд. конф. «Химия высокоорганизованных веществ и научные основы нанотехнологии», 26−29 июн., С.-Петербург. 2001. с. 64.
  264. Lukashin A.V., Vertegel А.А., Eliseev А.А., Zhuravleva N.G., Nikiforov M.P., Tretyakov Y.D. Layered double hydroxides as two-dimensional solid state nanoreactors. // Proc. VIII Europ. Conf. on Solid State Chem., Jul. 3 8, Oslo, Norway. 2001. p. 21.
  265. Butty J., Peyghambarian N., Kao Y.H., Mackenzie J.D. Room temperature optical gain in sol-gel derived CdS quantum dots. // Appl. Phys. Lett. 1996. V.69. N.21. P.3224−3226.
  266. Ricolleau C., Gandais M., Gacoin Т., Boilot J.P. Correlation between structural and optical properties of PbS nanocrystals. // J. Cryst. Growth. 1996. V.166. N. l-4. P.769−773.
  267. Robles J., Mayorga O., Lee T.S., Diaz D. PM3 semiempirical electronic structure calculation of capped and uncapped CdS nanoparticles. // Nanostruct. Mater. 1999. V.ll. N.2. P.283−286.
  268. Ai X.C., Guo L., Zou Y.H., Li Q.S., Zhu H.S. The effect of surface modification on femtosecond optical Kerr effect of PBS nanoparticles. // Mater. Lett. 1999. V.38. N.2. P.131−135.
  269. Mingyuan G.A.O., Yang Y., Xicheng A.I. Exciton-phonon coupling in PbS quantum dots. //J. Chem. Soc. Faraday Trans. 1995. V.91. P.4121−4135.
  270. Lukashin A.V., Vertegel А.А., Zhuravleva N.G., Tretyakov Y.D. Synthesis of MS/LDH (M = Pb, Cd, Zn) nanocomposites using layered double hydroxides as nanoreactors. // Proc. 2000 MRS Fall Meeting, Nov. 27 Dec. 1, Boston, USA. 2000. p. 236−237.
  271. Н.Г., Елисеев А. А., Лукашин А. В., Вертегел А. А., Третьяков Ю. Д. Синтез полупроводниковых нанокомпозитов PbS/СДГ. // Вест. ВГТУ, серия материаловедение. 2000. Т.1.8. С.11−15.
Заполнить форму текущей работой