Π‘ΡΡΡΠΊΡΡΡΠ½ΠΎ-ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎ-ΠΌΠ°ΡΡΠΈΡΠ½ΠΎΠΉ Π ΠΠ Escherichia coli
Π Π°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠ΅ Π ΠΠ ΠΈ Π ΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡ Π΄Π»Ρ ΠΏΡΠΎΡΠ΅ΠΊΠ°Π½ΠΈΡ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². Π’Π°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π±ΠΈΠΎΡΠΈΠ½ΡΠ΅Π· Π±Π΅Π»ΠΊΠ° ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π½Π° ΡΠΈΠ±ΠΎΡΠΎΠΌΠ΅ Π±ΠΎΠ»ΡΡΠΎΠΌ ΡΠΈΠ±ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ΄Π½ΠΎΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ΅. Π ΡΡΠΎΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ°ΡΡΠΈΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ ΠΠ ΠΈ ΡΠ ΠΠ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎ Ρ ΠΎΠ΄Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΎΡΠΌΠΈΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΡΠΌΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ°ΠΌΠΈ Π°ΠΌΠΈΠ½ΠΎΠ°ΡΠΈΠ»-ΡΠ ΠΠ-ΡΠΈΠ½ΡΠ΅ΡΠ°Π·Π°ΠΌΠΈ, ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Crick, F.H., Barnett, L., Brenner, S. & Watts-Tobin, R.J. General nature of the genetic code for proteins. Nauchni Tr. Vissh. Med. Inst. Sofiia. 192, 1227−1232 (1961).
- Brenner, S., Stretton, A.O.W. & Kaplan, S. Genetic code: the 'nonsense' triplets for chain termination and their suppression. Nature 206, 994−998 (1965).
- Weigert, M.G. & Garen, A. Base composition of non-sense codons in E.coli. Nature 206, 992(1965).
- Brenner, S., Barnett, L., Katz, E.R. & Crick, F.H.C. UGA: A third nonsense triplet in the genetic code. Nature 213, 449−450 (1967).
- Khorana, H.G. et al. Polynucleotide synthesis and the genetic code, in Cold Spring Harbor Symposia on Quantitative Biology, Vol. XXXI 39−49 (Cold Spring Harbour Laboratory of Quantitative Biology, New York, 1966).
- Takanami, M. & Yan, Y. The release of polypeptide chains from ribosomes in cell-free amino acid-incorporating systems by specific combinations of bases in synthetic polyribonucleotides. Proc. N.A.S. 54, 1450−1458 (1965).
- Capecchi, M.R. Polypeptide chain termination in vitro: isolation of a release factor. Proc. Natl. Acad. Sci., USA 58,1144−1151 (1967).
- Scolnick, E., Tompkins, R., Caskey, T. & Nirenberg, M. Release factors differing in specificity for terminator codons. Proc. Nat. Acad. Sci., USA. 61, 768−774 (1968).
- Milman, G., Goldstein, J., Scolnick, E. & Caskey, T. Peptide chain termination. III. Stimulation of in vitro termination. Proc. Nat. Acad. Sci. USA. 63, 183−190 (1969).
- Goldstein, J.L. & Caskey, C.T. Peptide chain termination: effect of protein S on ribosomal binding of RFs. Proc. Natl. Acad. Sci. USA 67, 537-?. (1970).
- Arkov, A.L., Mankin, A. & Murgola, E.J. An rRNA Fragment and Its Antisense Can Alter Decoding of Genetic Information. J. Bacteriol. 180, 2744−2748 (1998).
- Arkov, A.L. & Murgola, E.J. Ribosomal RNAs in translation termination: facts and hypotheses. Biochemistry (Mosc) 64, 1354−9 (1999).
- Green, R. & Noller, H.F. Ribosomes and translation. Annu. Rev. Biochem. 66, 679−716(1997).
- Velichutina, I.V., Hong, J.Y., Mesecar, A.D., Chernoff, Y.O. & Liebman, S.W. Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA. J. Mot. Biol. 305, 715−727 (2001).
- Poole, E. & Tate, W. Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. Biochim Biophys Acta 1493, 1 -11 (2000).
- Chavatte, L., Frolova, L., Kisselev, L. & Favre, A. The polypeptide chain release factor eRF1 specifically contacts the s (4)UGA stop codon located in the A site of eukaryotic ribosomes. Eur. J. Biochem. 268, 2896−904 (2001).
- Chavatte, L., Seit-Nebi, A., Dubovaya, V. & Favre, A. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome. EMBO J 21, 5302−5311 (2002).
- Ivanov V, Beniaminov A, Mikheyev A & E, M. Hypothesis A mechanism for stop codon recognition by the ribosome: A bioinformatic approach. RNA 7, 1683−1692 (2001).
- Kisselev, L., Ehrenberg, M. & Frolova, L. Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J. 22, 175−182. (2003).
- Moffat, J.G., Timms, K.M., Trotman, C.N.A. & Tate, W.P. Interaction of the Release Factors with the Escherichia co/i Ribosome Structurally and Functionally-Important Domains. Biochimie 73, 1113−1120 (1991).
- Moffat, J.G., Donly, B.C., Mccaughan, K.K. & Tate, W.P. Functional Domains in the Escherichia coli Release Factors Activities of Hybrids Between RF-1 and RF-2. Eur. J. Biochem. 213, 749−756 (1993).
- Moffat, J.G. & Tate, W.P. A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. J. Biol. Chem. 269, 18 899−18903(1994).
- Nakamura, Y., Ito, K. & Isaksson, L.A. Emerging understanding of translation termination. Cell 87, 147−150 (1996).
- Bulygin, K.N. et al. Positioning of the mRNA stop signal with respect to polypeptide chain release factors and ribosomal proteins in 80S ribosomes. FEBS Lett. 514, 96 101 (2002).
- Nakamura, Y. & Ito, Π. How protein reads the stop codon and terminates translation. Genes Cells 3, 265−278. (1998).
- Bertram, G., Bell, H.A., Ritchie, D.W., Fullerton, G. & Stansfield, I. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA 6, 1236−47. (2000).
- Frolova, L., Seit-Nebi, A. & Kisselev, L. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA 8, 129 136 (2002).
- Seit-Nebi, A., Frolova, L. & Kisselev, L. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1. EMBO Rep. 3, 881−886 (2002).
- Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897−902 (2001).
- Velichutina, I.V. et al. Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome. RNA 6, 11 741 184 (2000).
- Fraser, C.M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397−403(1995).
- Inamine, J.M., Π. Ho, S. Loechel & Hu, P. Evidence that UGA is read as tryptophan rather than stop by Mycoplasma pneumoniae, Mycoplasma genitalium, Mycoplasma gallisepticum. J. Bacteriol. 172, 504−506 (1990).
- Caskey, C.T., Forrester, W.C., Tate, W. & Ward, C.D. Cloning of the Escherichia coli release factor 2 gene. J. Bacteriol. 158, 365−168 (1984).
- Weiss, R.B., Murphy, J.P. & Gallant, J.A. Genetic screen for cloned release factor genes. J. Bacteriol. 158, 362−364 (1984).
- Frolova, L. et al. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372, 701−703 (1994).
- Bult, C.J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcusjannaschii. Science 273, 1058−1073 (1996).
- Smith, D.R. et al. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179, 7135−55. (1997).
- Klenk, H.P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364−370 (1997).
- Dontsova, M. et al. Translation termination factor aRF1 from the archaeon Methanococcus jannaschii is active with eukaryotic ribosomes. FEBS Lett. 472, 213 216. (2000).
- Liu, D. et al. Solution structure of a TBP-TAF (11)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94, 573−583 (1998).
- Savva, R. & Pearl, L.H. Nucleotide mimicry in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex. Nat. Struct. Biol. 2, 752−757 (1995).
- Mol, C.D. et al. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701−708 (1995).
- Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, anda GTP analog. Science 270, 1464−1472 (1995).
- Ito, K., Ebihara, K., Uno, M. & Nakamura, Y. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc. Natl. Acad. Sci. USA 93, 5443−5448 (1996).
- Wilson, K.S. & Noller, H.F. Mapping the Position of Translational Elongation Factor EF-G in the Ribosome by Directed Hydroxyl Radical Probing. Cell 92, 131−139 (1998).
- Agrawal, R., Penczek, P., Grassucci, R. & Frank, J. Visualization of elongation factor
- G on The Escherichia coli 70S ribosome: The mechanism of translocation. Proc. Natl. Acad. Sci. USA 95, 6134 6138 (1998).
- Selmer, M., Al-Karadaghi, S., Hirakawa, G., Kaji, A. & Liljas, A. Crystal structure of Thermotoga maritima ribosome recycling factor: A tRNA mimic. Science 286, 23 492 352 (1999).
- Frolova, L. et al. Mutations in the highly conserved GGQ motif of class 1 polypeptide ^ release factors abolish the ability of human eRF1 to trigger peptidyl-tRNA hydrolysis.1. RNA 5, 1014−1020(1999).
- Ito, K., Uno, M. & Nakamura, Y. A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature 403, 680−4. (2000).
- Kervestin, S., Frolova, L., Kisselev, L. & Jean-Jean, O. Stop codon recognition in ciliates: Euplotes release factor does not respond to reassigned UGA codon. EMBO Rep. 2, 680−684 (2001).
- Vestergaard, B. et al. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol. Cell 8,1375−1382 (2001).
- Rawat, U.B. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87−90 (2003).
- Caskey, C.T., Beaudet, A.L., Scolnick, E.M. & Rosman, M. Hydrolysis of f-Met-tRNA by peptidyl transferase. Proc. Natl. Acad. Sci. USA 68, 3163−3167. (1971).
- Polacek, N. et al. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell 11,103−112(2003).
- Freistroffer, D.V., Pavlov, M.Y., MacDougall, J., Buckingham, R.H. & Ehrenberg, M. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16, 4126−4133 (1997).
- Wilson, P.G. & Cuthbertson, M.R. SUF12 suppressor protein in yeast, a fusion protein related to the EF-1 family of elongation factors. J. Mol. Biol. 199, 559−573 (1988).
- Zhouravleva, G. et al. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J14, 40 654 072 (1995).
- Stansfield, I. et al. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J14, 4365−4373 (1995).
- Ito, K., Ebihara, K. & Nakamura, Y. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4, 958−972 (1998).
- Merkulova, T.I., Frolova, L.Y., Lazar, M., Camonis, J. & Kisselev, L.L. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 443, 41−47. (1999).
- Buckingham, R.H., Grentzmann, G. & Kisselev, L. Polypeptide chain release factors. Mol. Microbiol. 24, 449−456 (1997).
- Kisselev, L.L. & Buckingham, R.H. Translational termination comes of age. Trends Biochem. Sci. 25, 561−566 (2000).
- Zavialov, A.V., Buckingham, R.H. & Ehrenberg, M. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107, 115−124 (2001).
- Grentzmann, G., Brechemierbaey, D., Heurgue, V., Mora, L. & Buckingham, R.H. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc. Nat. Acad. Sci. USA 91, 5848−5852 (1994).
- Mikuni, O. et al. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc. Natl. Acad .Sci. USA 91, 5798−5802 (1994).
- Kushnirov, V.V. et al. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66, 45−54 (1988).
- Grentzmann, G. et al. Release factor RF-3 GTPase activity acts in disassembly of the ribosome termination complex. RNA 4, 973−983 (1998).
- Frolova, L. et al. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2, 334−341 (1996).
- Hoshino, S. et al. Molecular cloning of a novel member of the eukaryotic polypeptide chain- releasing factors (eRF). Its identification as eRF3 interacting with eRF1. J. Biol. Chem. 273, 22 254−22 259. (1998).
- Jakobsen, C.G., Segaard, T.M., Jean-Jean, O., Frolova, L. & Justesen, J. Identification of a novel termination release factor eRF3b expressing the eRF3 activity in vitro and in vivo. Mol Biol (Mosk) 35, 672−681 (2001).
- Hoshino, S. et al. Novel function of the eukaryotic polypeptide-chain releasing factor 3 (eRF3/GSPT) in the mRNA degradation pathway. Biochemistry (Moscow) 64,136 772. (1999).
- Cosson, Π. et al. Poly (A)-binding protein and eRF3 are associated in vivo in human and Xenopus cells. Biol. Cell. 94, 205−216 (2002).
- Paulin, F.E., Campbell, L.E., O’Brien, K., Loughlin, J. & Proud, C.G. Eukaryotic translation initiation factor 5 (elF5) acts as a classical GTPase-activator protein. Curr. Biol. 11, 55−59 (2001).
- Scheffzek, K" Klebe, C., Fritzwolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378−381 (1995).
- Scheffzek, K. et al. Structural analysis of the GAP-related domain from neurofibroma and its implications. EMBO J17, 4313−4327 (1998).
- Karimi, R., Pavlov, M., Buckingham, R. & Ehrenberg, M. Novel roles for classical factors at the interface between translation termination and initiation. Mol. Cell 3, 601−609(1999).
- Ishino, T. et al. Interaction of ribosome recycling factor and elongation factor EF-G with E. coli ribosomes studied by the surface plasmon resonance technique. Genes to Cells 5, 953−963. (2000).
- Schilling-Bartetzko, S., Franceschi, F., Sternbach, H. & Nierhaus, K.H. Apparent Association Constants of Transfer RNAs for the Ribosomal A-Site, P-Site, and E-Site. J. Biol. Chem. 267, 4693−4702 (1992).
- Brierley, I. Ribosomal frameshifting on viral RNAs. J. Gen. Virol. 76, 1885−18 921 995).
- Farabaugh, PJ. Programmed translational frameshifting. Microbiol. Rev. 60,103−1 341 996).
- Fbtterer, J., Kisslaszlo, Z. & Hohn, T. Nonlinear Ribosome Migration on Cauliflower Mosaic Virus-35S RNA. Cell 73, 789−802 (1993).
- Maia, I.G., Seron, K., Haenni, A.L. & Bernardi, F. Gene expression from viral RNA genomes. Plant Mol. Biol. 32, 367−391 (1996).
- Chandler, M. & Fayet, O. Translational Frameshifting in the Control of Transposition in Bacteria. Mol. Microbiol. 7, 497−503 (1993).
- Tsuchihashi, Z. Translational Frameshifting in the Escherichia-Coli dnaX Gene Invitro. Nucleic Acids Res 19, 2457−2462 (1991).-4:
- Tsuchihashi, Z. & Brown, P.O. Sequence Requirements for Efficient Translational Frameshifting in the Escherichia co//-dnaX Gene and the Role of an Unstable Interaction Between transfer RNA (Lys) and an AAG Lysine Codon. Gene Develop. 6, 511−519(1992).
- Jacks, T. & Varmus, H.E. Expression of the Rous Sarcoma virus pol gene by ribosomal frameshifting. Science 230,1237−1242. (1985).
- Jacks, Π’., Madhani, H.D., Masiarz, F.R. & Varmus, H.E. Signals for ribosomal frameshifting in the Rous Sarcoma virus gag pol region. Celi 55, 447−458. (1988).
- Weiss, R.B., Dunn, D.M., Shuh, M., Atkins, J.F. & Gesteland, R.F. E. coli ribosomes Re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. The New Biologist 1, 159−169 (1989).
- Garcia, A., Vanduin, J. & Pleij, C.W.A. Differential Response to Frameshift Signals in Eukaryotic and Prokaryotic Translational Systems. Nucleic Acids Res 21, 401−406 (1993).
- Jacks, Π’., Townsley, K., Varmus, H.E. & Majors, J. Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag related polyproteins. Proc. Natl. Acad. Sci. USA 84, 4298−4302. (1987).
- Jacks, T. et al. Characterization of ribosomal frameshifting in HIV 1 gag pol expression. Nature 331, 280−283. (1988).
- Sekine, Y. & Ohtsubo, E. DNA sequences required for translational frameshifting in production of the transposase encoded by IS1. Mol Gen Genet 235, 325−32 (1992).
- Parkin, N.T., Chamorro, M. & Varmus, H.E. Human Immunodeficiency Virus Type-1 gag-pol Frameshifting Is Dependent on Downstream messenger RNA Secondary Structure Demonstration by Expression in vivo. J. Virol. 66, 5147−5151 (1992).
- Marczinke, Π., Fisher, R., Vidakovic, M., Bloys, A.J. & Brierley, I. Secondary structure and mutational analysis of the ribosomal frameshift signal of rous sarcoma virus. J. Mol. Biol. 284, 205−225 (1998).
- Tu, C.L., Tzeng, Π’.Π. & Bruenn, J.A. Ribosomal Movement Impeded at a Pseudoknot Required for Frameshifting. Proc. Natl. Acad. Sci. USA 89, 34−38 (1992).
- Somogyi, P., Jenner, A.J., Brierley, I. & Inglis, S.C. Ribosomal Pausing During Translation of an RNA Pseudoknot. Mol. Cell. Biol. 13, 6931−6940 (1993).
- Hatfield, D.L., Levin, J.G., Rein, A. & Oroszalan, S. Translational Suppression in Retroviral Gene Expression. Advances in Virus Research 41, 193−239 (1992).
- Carlson, B.A. et al. Transfer RNA modification status influences retroviral ribosomal frameshifting. Virology 255, 2−8 (1999).
- Brierley, I., Meredith, M.R., Bloys, A.J. & Hagervall, T.G. Expression of a coronavirus ribosomal frameshift signal in Escherichia colt Influence of tRNA anticodon modification on frameshifting. J. Mol. Biol. 270, 360−373 (1997).
- Cassan, M., Delaunay, N., Vaquero, C. & Rousset, J.P. Translational Frameshifting at the GAG-Pol Junction of Human Immunodeficiency Virus Type 1 Is Not Increased in Infected T-Lymphoid Cells. J Virol 68, 1501−1508 (1994).
- Reil, H., Hoxter, M., Moosmayer, D., Pauli, G. & Hauser, H. CD4 expressing human 293 cells as a tool for studies in HIV-1 replication: The efficiency of translational frameshifting is not altered by HIV-1 infection. Virology 205, 371−375 (1994).
- Craigen, W.J. & Caskey, T. Expression of peptide chain release factor 2 requires a high efficiency frameshift. Nature 322, 273−275. (1986).
- Belcourt, M.F. & Farabaugh, P.J. Ribosomal Frameshifting in the Yeast Retrotransposon Π’Ρ Transfer-RNAs Induce Slippage on a 7-Nucleotide Minimal Site. Cell 62, 339−352 (1990).
- Matsufuji, S. et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80, 51−60 (1995).
- Ivanov, I.P., Matsufuji, S., Murakami, Y., Gesteland, R.F. & Atkins, J.F. Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J19, 1907−1917(2000).