Изучение и подавление фоновых событий в неускорительных экспериментах по поиску редких процессов
Диссертация
В настоящее время есть два основных типа экспериментов: калориметрический и трековый. В калориметрическом детекторе вещество источника и вещество детектора обычно совладают, хотя возможно чередование слоев источника и детектора. Измеряется суммарное энергия, уносимая при распаде двумя электронами. При этом в идеале ожидается непрерывный спектр для двухнейтринного канала распада… Читать ещё >
Список литературы
- P.W. Higgs. Broken symmetries, massless particles and gauge fields. Physics Letters 12, 132−133 (1964).
- Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Physical Review Letters 81(8), 1562−1567 (1998).
- A. Bettini. Status and perspectives of neutrino physics. Nuclear Physics B — Proceedings Supplements 151(1), 270−278 (2006).
- E. Majorana. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento 14, 171−184 (1937).
- C. Arnaboldi et al. CUORE: a cryogenic underground observatory for rare events. Nuclear Instruments and Methods in Physics Research A 518, 775−798 (2004).
- C. Arnaboldi et al New limit on the neutrinoless 3(3 decay of 130Te. Physical Review Letters 95, 142 501 (2005).
- C. E. Aalseth et al. The proposed Majorana 76Ge double-beta decay experiment. Nuclear Physics B — Proceedings Supplements 138, 217−220 (2005).
- S.Schonert et al. The GERmanium Detector Array (Gerda) for the search of neutrinoless (3(3 decays of 76Ge at LNGS. Nuclear Physics B — Proceedings Supplements 145, 242−245 (2005).
- M.Danilov et al. Detection of very small neutrino masses in double-beta decay using laser tagging. Physics Letters B 480, 12−18 (2000).
- H. Nakamura et al. Multilayer scintillator responses for Mo observatory of neutrino experiment studied using a prototype detector MOON-1. Journal of the Physical Society of Japan 76, 114 201 (2007).
- R. Arnold et al. First results of the search for neutrinoless double-beta decay with the NEMO 3 detector. Physical Review Letters 95, 182 302 (2005).
- Ju. M. Gavriljuk el al. Results of a search for 2(3 decay of 136Xe with high-pressure copper proportional counters in Baksan Neutrino Observatory. Ядерная физика 69, 2174−2178 (2006).
- R.Bernabei et al. Investigation of /?/? decay modes in 134Xe and 136Xe. Physics Letters В 546, 23−28 (2002).
- G. Hinshaw el al. Five-year Wilkinson Microwave Anisotropy Probe Observations: data processing, sky maps, and basic results. The Astrophysical Journal Supplement Series 180, 225−245 (2009)
- M. Kamionkowski. Possible relics from new physics in the early universe: Inflation, the cosmic microwave background and particle dark matter. arXiv: astro-ph/980 9214vl
- D.Clowe et al. A direct empirical proof of the existence of dark matter. The Astrophysical Journal Letters 648, L109-L113 (2006).
- F. Iocco et al. Primordial nucleosynthesis: From precision cosmology to fundamental physics. Physics Reports 472(1−6), 1−76 (2009).
- D. Perkins. Particle Astrophysics. Oxford: Oxford University Press, 2003.
- H. V. Klapdor-Kleingrothaus et al. Latest results from the HEIDELBERG-MOSCOW double beta decay experiment. European Physical Journal A 12(2), 147−154 (2001).
- S.Abe et al. The KamLAND collaboration. Precision measurement of neutrino oscillation parameters with KamLAND. Physical Review Letters 100, 221 803 (2008).
- D.G.Michael et al. MINOS Collaboration. Observation of muon neutrion disappearance with the MINOS detectors in the NuMI neutrino beam. Physical Review Letters 97, 191 801 (2006).
- G. Bertone, D. Hooper, J. Silk. Particle dark matter: evidence, candidates and constraints. Physics Reports 405, 279−390 (2005).
- M. Milgrom. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal 270, 365−370 (1983).
- J. A. Aguilar et al Transmission of light in deep sea water at the site of the ANTARES neutrino telescope. Astroparticle Physics 23(1), 131−155 (2005).
- M. Ackermann et al. Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector. Astroparticle Physics 24(6), 459−466 (2006).
- H. Landsman. Icecube, the world’s largest dark matter detector. arXiv: astro-ph/612 239
- D. Hooper, B. L. Dingus. Limits on supersymmetric dark matter from EGRET observations of the Galactic center region. Physical Review D 70, 113 007 (2004).
- A. Jacholkowska et al. Indirect dark matter search with diffuse gamma rays from the Galactic Center with the Alpha Magnetic Spectrometer. Physical Review D 74 23 518 (2006).
- D. Elsasser, K. Mannheim. MAGIC and the search for signatures of supersymmetric dark matter. New Astronomy Reviews, 49, 297−301 (2005).
- M. Casolino et al. Launch of the space experiment PAMELA. Advances in Space Research 42, 455−466 (2008).
- M. Boezio et al. The cosmic-ray antiproton flux between 3 and 49 GeV. The Astrophysical Journal 561 787−799 (2001).
- D. S. Akerib et al. New results from the Cryogenic Dark Matter Search experiment. Physical Review D 68, 82 002 (2003).
- A. Broniatowski et al. A new high-background-rejection dark matter Ge cryogenic detector. Physics Letters В 681 305−309 (2009).
- W. J. Bolte et al Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils. Nuclear Instruments and Methods in Physics Research A 577, 569−573 (2007).
- H.Wang. The ZEPLIN II dark matter detector status. Nuclear Physics В — Proceedings Supplements 138 52−55 (2005).
- D. Yu. Akimov et al. The ZEPLIN-III dark matter detector: Instrument design, manufacture and commissioning. Astroparticle Physics 27(1), 46−60 (2007).
- J. Angle et al. First results from the XENONIO dark matter experiment at the Gran Sasso National Laboratory. Physical Review Letters 100, 21 303 (2008).
- В. А. Артемьев и др. Девиз трековый детектор ИТЭФ для исследования двойного /3-распада. Приборы и техника эксперимента № 2, 49−60 (2005).
- В. А. Белов и др. Измерение фона от 222Rn в эксперименте «ДЕВИЗ». Ядерная физика 72, 1−5 (2009).
- В. А. Белов, О. Я. Зельдович, А. С. Кобякин. Исследование источников фона, связанных с образованием радиоактивных изотопов в эксперименте «ДЕВИЗ» (2/3-распад). Ядерная физика 71, 1057−1061 (2008).
- S. Agostinelli et al. Geant4 — a simulation toolkit. Nuclear Instruments and Methods in Physics Research A 506(3), 250−303 (2003).
- J.Allison et al Geant4 developments and applications. IEEE Transactions on Nuclear Science 53(1), 270−278 (2006).
- R. Brun, F. Rademakers. ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research A 389(1−2), 81−86 (1997).
- W.-M. Yao et al. Review of Particle Physics. Journal of Physics G 33 (2006).
- О. C. Allkofer, K. Carstensen, W. D. Dau. The absolute cosmic ray muon spectrum at sea level. Physics Letters В 36(4), 425−427 (1971).
- В. А. Белов и др. Измерение нейтронного фона в эксперименте ДЕВИЗ. Приборы и техника эксперимента № 5, 13−18 (2010).
- Г. С. Видякин и др. Нейтронный пропорциональный счетчик с пониженным уровнем собственного фона. Приборы и техника эксперимента № 4, 70−73 (1989).
- В. Т. Price, С. С. Horton, К. Т. Spinney. Radiation shielding. London — New York — Paris: Pergamon press, 1957.
- JI. P. Вишняков и др. Под редакцией Д. М. Карпиноса. Композиционные материалы. Киев: Наукова Думка, 1985.
- W. N. Hess el al. Cosmic-ray neutron energy spectrum. Physical Review 116(2), 445−457 (1959).
- G. Heusser. Low-radioactivity background techniques. Annual Review of Nuclear and Particle Science 45, 543−590 (1995).
- F. Arneodo et al. Calibration of BC501A liquid scintillator cells with monochromatic neutron beams. Nuclear Instruments and Methods in Physics Research A 418, 285−299 (1998).
- M.J.Carson et al. Neutron background in large-scale xenon detectors for dark matter searches. Astroparticle Physics 21, 667−687 (2004).
- E. Browne et al. Edited by С. M. Lederer, V. S. Shirley. Table of isotopes, 7th edition. New-York — Chichester — Brisbane — Toronto: A Wiley-Interscience Publication, John Wiley & sons, inc., 1978.
- Evaluated Nuclear Structure Data File (ENSDF). http: //www.nndc.bnl.gov/ensdf.
- Б. С. Джелепов, JI. H. Зырянова. Влияние электрического поля атома на бета-распад. Москва — Ленинград: Издательство АН СССР, 1956.
- V. N. Lebedenko et al. Results from the first science run of the ZEPLIN-III dark matter search experiment. Physical Review D 80, 52 010 (2009).
- V. N. Lebedenko el, al. Limits on the spin-dependent WIMP-nucleon cross sections from the first science run of the ZEPLIN-III experiment. Physical Review Letters 103, 151 302 (2009).
- R. Trotta et al. The impact of priors and observables on parameter inferences in the constrained MSSM. Journal of High Energy Physics 12, 24 (2008).
- Б.А.Долгошеин, В.H. Лебеденко, Б. У. Родионов. Новый метод регистрации следов ионизирующих частиц в конденсированном веществе. Письма в ЖЭТФ 11(11), 513−515 (1970).
- D. Yu. Akimov et al. The ZEPLIN-III anti-coincidence veto detector. Astroparticle Physics 34, 151−163 (2010).
- Amcrys-H. Scintillation Materials and Detectors, http: //www.amcrys-h.com/ index.html.
- E. J. Barnes. A high efficiency veto to increase the sencitivity of ZEPLIN-III, a WIMP detector. AIP Conf. Proc. 1166, 230−235 (2009).
- Electron Tubes Ltd. 9302KB series datasheet. http://electrontubes.com/pdf/9302KB.pdf.
- Г. С. Ландсберг. Оптика. М.:ФИЗМАТЛИТ, 2003.
- V. Senchyshyn et al. Accounting for self-absorption in calculation of light collection in plastic scintillators. Nuclear Instruments and Methods in Physics Research A 566(2), 286−293 (2006).
- H. M. Araujo et al. The ZEPLIN-III dark matter detector: Perfomance study using an end-to-end simulation tool. Astroparticle Physics, 26(2), 140−153 (2006).
- W.B.Wilson et al. Sources: A code for calculating (alpha, n), spontaneous fission, and delayed neutron sources and spectra. Progress in Nuclear Energy 51(4−5), 608−613 (2009).