Совмещенная атомно-силовая и сканирующая резистивная микроскопия полимерных и неорганических материалов
Диссертация
С помощью атомно-силовой микроскопии был впервые охарактеризован комплекс ПАН-ПАМПС (1:2) и показана возможность его молекулярной растворимости до ассоциатов состоящих из нескольких молекул причем: а. Наблюдаемые отдельные ассоциаты молекул комплекса имеют вытянутую форму с размерами по высоте 2−10 нм, ширине 20−40 нм, длине 100−200 нм. b. Молекулярный раствор комплекса стабилен на временном… Читать ещё >
Список литературы
- Binnig G., Rohrer H. Surface imaging by Scanning Tunneling Microscopy. //Ultramicroscopy, vol. 11, pp. 157−160,1983.
- H.K.Wickramasinghe, Progress in scanning probe microscopy, Acta mater. 2000, 48, 347−358.
- Binnig G., Quate C. F., and Geber C. // Atomic force microscope, Phys. Rev. Lett., vol. 56, no. 9, pp. 930−933, Mar 1986.
- Zlatanova J., Lindsay S.M., Leuba S.H. Single Molecule Force Spectroscopy in Biology Using the Atomic Force Microscope // Prog. Biophys. Mol. Biol, vol. 74, pp. 37−61, 2000.
- Boussey J., Stripping Hall effect, sheet and spreading resistance techniques for electrical evaluation of implanted silicon layers // Microelectronic Engineering, 40,1998, 275−284
- P. De Wolf, T. Clarysse, and W. Vandervorst Quantification of nanospreading resistance profiling data//J. Vac. Sci. Technol. В 16(1), 1998, pp. 320−326
- Morita S., Ishizaka Т., Sugavara Y., Okada Т., Mishima S., Imai S., Mikoshiba N., Surface conductance of metal surfaces in air studied with a force microscope Jpn. J. Appl. Phys., 28 (9), L1634-L1636, (1989).
- Sugawara Y., Ishizaka Т., Morita S., Imai S., Mikoshiba N., Simultaneous observation of atomically resolved AFM/STM images of a graphite surface Jpn. J. Appl. Phys., 29 (1), L157-L159, (1990).
- Sugawara Y., Ishizaka Т., Morita S., Simultaneous imaging of a graphite surface with atomic force/scanning tunneling microscope (AFM/STS) Jpn. J. Appl. Phys., 29 (8), 1539−1543,(1990).
- Sugawara Y., Fukano Y., Nakano A., Ida Т., Morita S., Oxidation site of polycrystalline silicon surface studied using scanning force/tunneling microscope (AFM/STM) in air Jpn. J. Appl. Phys., 31, L725-L727, (1992).
- Shafai C., Thomson D.J., Simard-Normandin M., Two-dimensional delineation of semiconductor doping by scanning resistance microscopy J. Vac. Sci. Technol., В 12 (1), 378−382, (1994).
- Shafai C., Thomson D.J., Simard-Normandin M., Mattiussi G., Scanlon P.J., Delineation of semiconductor doping by scanning resistance microscopy Appl. Phys. Lett., 64 (3), 342−344, (1994).
- O’Shea S J., Atta R M., Murrell M.P., Welland M E, Conducting atomic force microscopy study of silicon dioxide breakdown J. Vac. Sci. Technol., В 13 (5), 1945−1952, (1995).
- Nxumalo J.N., Shimizu D.T., Thomson D.J., Cross-sectional imaging of semiconductor dcvicc structures by scanning resistance microscopy J. Vac. Sci. Technol., B 14 (1), 386−389, (1996).
- De Wolf P., Clarysse T., Vandervorst W., Snauwaert J., Hellemans L., One- and two-dimensional carrier profiling in semiconductors by nanospreding resistance profiling J. Vac. Sci. Technol., B 14 (1), 380−385, (1996).
- O.Vatel, M. Tanimoto, Kelvin probe force microscopy for potential distribution measurement of semiconductor devices, J.Appl.Phys., 1995, 77(6), 2358−2362.
- M.Nonnenmacher, M P. O'Boyle, H.K.Wickramasinghe, Kelvin probe force microscopy, Appl. Phys Lett. 1991,58 (25), 2921−2923.
- A.K.Henning, T. Hochwitz, J. Slinkman, Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy, J.Appl.Phys., 1995, 77(5), 1888−1896.
- T.Hochwitz, A.K.Henning, C. Levery, Imaging integrated circuit dopant profiles with force-based scanning Kelvin probe microscope, J.Vac.Sci.Technol.B, 1996, 14(1), 440−446.
- Tanaka, I. Kamiya, H. Sakaki, Local surface band modulation with MBE-grown InAs quantum dots measured by atomic force microscopy with conductive tip, Journal of Crystal Growth, 1999, 201/202, 1194−1197.
- E.Z. Luo, J.X.Ma, J.B.Xu, I.H.Wilsony, A.B.Pakhomov, X. Yan, Probing the conducting paths in a metal-insulator composite by conducting atomic force microscopy, // J. Phys. D: Appl. Phys., 1996, 29,3169−3172.
- J.Planes, F. Houze, P. Chretien, O. Schneegans, Conducting probe atomic force microscopy applied to organic conducting blends, Appl. Phys. Lett., 2001, 79,18, 2993−2995.
- Kikukawa, S. Hosaka, R. Imura Silicon pnjunction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy, Appl. Phys. Lett. 1995, 66(25), 3510
- B.Bushan, A.V. Goldade, Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear, 2000, 244,104−117.
- J.M.R.Weaver, D.W.Abraham, High resolution atomic force microscopy potentiomctry, J.Vac.Sci.Technol.B, 1991,9(3), 1559−1561.
- Martin Y., Abraham D. W., Wickramasinghe H. K., High-resolution capacitance measurement and potentiometry by force microscopy, // Applied Physics Letters (1988), 52, 13, pp. 1103−1105.
- Wolter 0., Bayer Th., and Greschner J., Micromachined silicon sensors for scanning force microscopy // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures March 1991 -- Volume 9, Issue 2, pp. 1353−1357
- Held R., Heinzel T., Studerus P., Ensslin K., Nanolithography by local anodic oxidation of metal films using an atomic force microscope //Physica E, vol.2, pp. 748−752, 1998
- Stie’venard D., Fontaine P. A., and Dubois E., Nanooxidation using a scanning probe microscope An analytical model based on field induced oxidation. Appl. Phys. Lett. vol. 70, pp. 3272,1997.
- Avouris P., Hertel T., and Martel R., Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication // Appl. Phys. Lett. vol. 71, pp. 285, 1997.
- Dagata J. A., Inoue T., Itoh J., Matsumoto K., and Yokoyama H., Role of space charge in scanned probe oxidation //J. Appl. Phys. vol 84, pp. 6891,1998.
- Dubois E. and Bubendorff J.-L., Kinetics of scanned probe oxidation Space-charge limited growth // J. Appl. Phys. vol 87, pp. 8148−8156,2000.
- Garcia R., Calleja M., and Perez-Murano P., Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation // Appl. Phys. Lett. vol. 72, pp. 2295, 1998
- Dagata J. A., Perez-Murano P., Martin C., Kuramochi H., Yokoyama H. Current, charge, and capacitance during scanning probe oxidation of silicon. 1. Maximum charge density and lateral diffusion // J. Appl. Phys. vol. 96 no.4, pp. 2386,2004.
- Cabrera N. and Mott N. F., Theory of the oxidation of metals // Rep. Prog. Phys vol 12, pp. 163,1948.
- Massoud H. Z., Plummer J. D., and Irene E. A., Thermal oxidation, of silicon in dry oxygen: Growth-rate enhancement in the thin regime // J. Electrochem. Soc., vol. 132, pp 2685, 1985.
- Ley L., Teuschler T., Mahr K., Miyazaki S., Hundhausen M., Nanomcter-scalc field-induced oxidation of Si (lll).H by a conducting-probe scanning force microscope: Doping dependence and kinetics//J. Vac.Sci. Technol. B, vol.14, pp.2845,1996.
- Garcia R., Calleja M, and Rohrer H., Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges // J.Appl. Phys. vol.86, pp. 1898,1999
- Beaglehole D., Radlinska E. Z., Ninham B. W., Chnstenson H. K., Inadequacy of Lif-shitz theory for thin liquid films //Phys. Rev. Lett., vol.66, pp.2084,1991.
- Rogge M. C., Fuhner C., Keyser U. F., Haug R. J., Spin blockade in capacitively coupled quantum dots // Appl. Phys.Lett. vol.85, pp. 606, 2004.
- Luscher S., Fuhner A., Held R., Heinzel T., Ensslin K., Bichler M., Quantum wires and quantum dots defined by lithography with an atomic force microscope //Microelectronics Journal, vol.33, pp.319−321,2002.
- Keyser U. F., Schumacher H. W., Zeitler U., and Haug R. J., Fabrication of a single-electron transistor by current-controlled local oxidation of a two-dimensional electron system //Appl. Phys.Lett., vol.76, pp.457, 2000.
- Campbell P. M., Snow E. S., and McMarr P. J., Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope //Appl. Phys. Lett. vol. 66, no. 11, pp.1388, 1995
- Mamin H. J., Guethner P. H., and Rugar D., Atomic emission from a gold scanning-tunneling-microscope tip // Phys. Rev. Lett. vol. 65, pp. 2418−2422, 1990.
- Chung D. D. L., Review Graphite // Journal of materials science vol. 37, pp. 1475, 2002.
- Kuk Y., Sulverman P.J., Scanning tunneling microscope instrumentation. Rev. Sci. Instrum. 1989, 60, 2,165−180.
- Paredes J.I., Martinez-Alonso A., Tascon J.M.D., Triangular versus honeycomb structure in atomic-resolution STM images of graphite. Carbon/Letters to the Editor, 2001, 39,473−481.
- Gwo S., Shih C.K., Site-selective imaging in scanning tunneling microscopy of graphite: The nature of site asymmetry. Phys. Rev. B, 1993, 47,19.
- Moiseev Yu. N., Panov V.I., Savinov S.V., Yaminsky I.V., Local probing instrumentation at Advanced Technologies Center: Surface and force devices with tunneling sensor. J. Vac. Sci. Technol. B 1994,12(3).
- Gallyamov M.O., Yaminsky I.V., Visualization of atomic structure using AFM: theoretical description, published in Journal of LDS.
- Bernhardt T.M., Kaiser B., Rademann K., Formation of superperiodic patterns on highly oriented pyrolytic graphite by manipulation of nanosized graphite sheets with the STM tip. Surface Science, 1998,408, 86−94.
- Patrick D.L., Beebe T.P., On the origin of large-scale periodicities observed during scanning tunneling microscopy studies of highly ordered pyrolytic graphite. Surface Science Letters, 1993, 297,119−121.
- Osing J., Shvets I.V., Bulk defects in graphite observed with a scanning tunnelling microscope. Surface Science, 1998,417,145−150
- Liu С., Chang H., Bard A.J., Large scale hexagonal domainlike structures superimposed on the atomic corrugation of a graphite surface observed by scanning tunneling microscopy, Langmuir, 1991, 7, 1138−1142.
- Valenzuela-Benavides J., Morales de la Garza L., Electonic superstructures on the graphite surface observed by scanning tunneling microscopy: an interference model. Surface Science, 1995,330, 227−233.
- Ouseph P.J., Scanning tunneling microscopy observation of dislocations with superlattice structure in graphite, Applied Surface Science, 2000, 165,3813.
- N.Sasaki, M. Tsukada, Theory for the effect of the tip-surface interaction potential on atomic resolution in forced vibration system of noncontact AFM, Applied Surface Science, 1999, 140, 339−343.
- Амелинкс С А. Методы прямою наблюдения дислокаций. Москва, Мир, 1968
- Ouseph P. J .Observation of Prismatic Dislocation Loops in Graphite by Scanning Tunneling MicroscopePhys. Stat. Sol. A, 169, 1998, pp. 25−32.
- Snyder S.R., Gerberich W.W., White H.S. Scanning-tunneling-microscopy study of tip-induced transitions of dislocation-network structures on the surface of highly oriented pyrolytic graphite. Phys. Rev. B, vol. 47,1993, pp. 10 823−10 831.
- Ouseph P.J. Transformation of a graphite superlattice into triangular dislocations. Phys. Rev. B, vol. 53, 1996, pp. 9610−9613.
- Snyder S.R., Foecke T., White H.S., Gerberich W.W. Imaging of Stacking Faults in Highly Oriented Pyrolytic Graphite using Scanning Tunneling Microscopy. J. Mater. Res., vol. 7, 1992, pp. 341−344.
- Y. Kobayashi, K. Takai, K. Fukui, T. Enoki, K. Harigaya, Y. Kaburagi, Y. Hishiyama. STM observation of electronic wave interference effect in finite-sized graphite with dislocation-network structures. Phys. Rev. B, vol. 69, 2004,35 418.
- Moore A.W., Highly oriented pyrolytic graphite //Chem. Phys. Carb., vol. 11, pp. 69, 1973
- Hiura H., Tailoring graphite layers by scanning tunneling microscopy //Applied Surface Science, vol. 222, pp. 374−381, 2004.
- Химические и физические свойства углерода. Ред. Уокер Ф. Москва, Мир, 1969, стр 10−77.
- Уббелоде АР, Льюис Ф. А, Графит и ею кристаллические соединения, Москва, Мир, 1965
- Иоссель Ю Я., Кочанов Э. С, Струнский М. Г., Расчет электрической емкости, Ленинград, Энергоиздат 1981
- JIД Ландау, Е. М. Лифшиц, 1еория упругости, М. Наука, 1987
- S. Banerjee, М. Sardar, N. Gayathri, А. К. Tyagi, and Baldev Raj, Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges // PHYSICAL REVIEW В 72, 75 418 (2005).
- Genies E.M., Tsintavis C., J. Electroanal. Chem., 1985, V. 195, p. 109−128.
- L. Berger, Phys. Rev. B 54, 9353 (1996)
- Barker J., // Hybrid Circuits. 1987. V. 14 p. 19
- Tan C.K., Blackwood D.J., // Corrosion Science. 2003. V. 45. p. 545.
- Yoshino K., Takahashi H., Muro К., Ohmori Y., Sugimoto R., // J. Appl. Phys. 1991. V. 70. p. 5035.
- Gardner J.W., Bartlett P.N., // Sensors and Actuators A. 1995. V. 51(1). p. 57.
- Albrecht T.R., Dovek M.M., Lang C.A., Grutter P., Quate C.F., Kuan S.W.J., Frank C.W., Pease R.F.W., //J. Appl. Phys. 1988. V. 64 (3). p. 1178.
- Yang R., Evans D.F. Christensen L., Hendrickson W.A., // J. Phys. Chem. 1990. V. 94 (15). p. 6117.
- Handbook of Conducting Polymers, 2nd Ed. / Ed. by Skotheim T.J., Elsenbaumer R.D., Reynolds J.R. New York: Marcell Dekker Inc., 1998.
- Yang C.Y., Cao Y., Smith P., Heeger A., // J. Synth. Met. 1992. V. 53. p. 293.
- Reghu M., Cao Y.- Moses D.- Heeger A., // J. Phys. Rev. B. 1993. V. 497. p. 1758.
- Гусева M A, Исакова A.A., Грибкова O.Jl., 1верской B.A., Иванов В Ф, Ванников, А В, Федотов Ю. А. Матричная полимеризация анилина в присутствии полиамидов, содержащих сульфокислотные группы. Высокомолекулярные соединения, серия А, 2007, т 49, № 1, с. 5.
- Грибкова О Л, Структура и свойства напыленных слоев полианилина, Диссертация на соискание ученой степени кандидата химических наук, Институт электрохимии им, А П. Фрумкина, М. 1998
- M.C.Payne, J.C.Inkson, Measurement of workfunctions by tunneling and the effect of the image potential, Surface Science, 1985,159, 485−495.
- P.Eyben, M. Xu, T. Clarysse, Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling, J.Vac.Sci.Technol.B, 2002, 20(1), 471−478,
- V.F.Ivanov, A.A.Nekrasov, O. LGnbkova, A.A.Vannikov, Spectroelectrochemical, EPR and conductivity investigations of thin films of vacuum deposited polyaniline, Electrochimica Acta, 1996,41(11/12), 1811−1814,
- Gardner J.W., Bartlett P.N., Application of conducting polymer technology in microsystems Sensors and Actuators, A 51 (1), 57−66, (1995).
- Houze F., Meyer R., Schneegans 0., Boyer L., Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes Appl. Phys. Lett., 69 (13), 1975−1977,(1996).
- Thomson R.E., Moreland J., Developement of highly conductive cantilevers for atomic force microscopy point contact measurements J. Vac. Sci. Technol., B, 1995, 13 (3), 11 231 125.
- Cui N.-Y., Brown N.M.D. Crystallinity effects on primary beam and Auger electron signal intensities observed for graphite. J. Electron Spectr. and Rel. Phenom., vol. 127, 2002, pp. 93−101.
- Pong W.T., Durkan C. A review and outlook for an anomaly of scanning tunnelling microscopy (STM): superlattices on graphite // J. Phys. D: Appl. Phys., vol. 38, 2005, pp. R329-R355.
- A.C Филонов, ДIO. Гаврилко, И В. Яминский Программное обеспечение для обработки трехмерных изображений «ФемтоСкан Онлайн». М: Центр перспективных тех-И0Л01ИЙ, 2005 89 с. (httpV/www nanoscopy net)