Помощь в написании студенческих работ
Антистрессовый сервис

Радиоструктура квазаров

РефератПомощь в написанииУзнать стоимостьмоей работы

В 2000 году группа австралийских астроном во главе с Р. Уэбстер (R.Webster; Мельбурнский университет) пришла к весьма неожиданному выводу: среди всех существующих во Вселенной квазаров около 80% остаются неоткрытыми. Как известно, квазар — невероятно мощный точечный источник радиоизлучения; по одной из гипотез, он представляет собой удаленную активную галактику, которая получает энергию… Читать ещё >

Радиоструктура квазаров (реферат, курсовая, диплом, контрольная)

РАДИОСТРУКТУРА КВАЗАРОВ

Важным вопросом является принадлежность квазаров к скоплениям галактик. Долгое время нельзя было решить вопрос в положительном смысле. Это и понятно, ведь квазары излучают в сотни раз интенсивнее «нормальных «галактик, поэтому последние, находящиеся в том же скоплении, будут слишком слабы, чтобы изучаться спектроскопически. Ведь критерием принадлежности к одному скоплению является одинаковое красное смещение у галактик и квазаров. Только для немногих, сравнительно близких квазаров, удалось обнаружить скопления галактик, в которых они находятся.

В настоящее время известно и занесено в каталоги свыше тысячи квазаров, что и позволяет выполнить их статистический анализ. Прежде всего, удалось построить «функцию светимости «квазаров, т. е. их распределение по мощности излучения. Из нее следует, что относительное количество квазаров убывает по мере роста мощности их излучения. Важнейшим результатом таких статистических исследований является вывод о том, что на более ранних этапах эволюции Вселенной, когда ее размеры были в 3−5 раз меньше нынешних, квазаров было гораздо больше, чем сейчас. В ту отдаленную эпоху квазаров было почти столько же, сколько и «нормальных «галактик. Нельзя исключить гипотезу, что тогда все галактики были квазарами! Этот важный вывод, однако, нуждается для своего подтверждения в новых наблюдениях.

Обращает на себя внимание то обстоятельство, что количество квазаров, начиная со значения красного смещения, превосходящего некоторый предел (соответствующий увеличению длины волны в 4,5 — 5 раз), резко падает. Конечно, нельзя исключить чисто инструментальную причину этого явления, однако вполне возможно, что квазары с большими красными смещениями просто отсутствуют. Такое отсутствие естественнее всего объяснить тем, что как раз в эту эпоху развития Вселенной образовывались путем конденсации газа галактики. До этого (т.е. при большом красном смещении) ни галактик, ни квазаров просто не было. Такой вывод, конечно, имел бы очень большое значение для проблемы эволюции Вселенной, так как позволил бы уточнить эпоху формирования галактик, а следовательно, и звезд. Нужны, однако, еще новые высококачественные наблюдения, чтобы его подтвердить.

Выше мы уже говорили о переменности оптического излучения квазаров. Как крайнее проявление такой переменности следует упомянуть о «вспышке «квазара 3С 279. В настоящее время он наблюдается как слегка переменная слабая звездочка 18-й величины. Однако на старых астрономических фотографиях довоенного времени (т.е. задолго до открытия квазаров) этот объект оказался существенно более ярким — почти 13 величины! Это означает, что он был ярче, чем теперь, в сотню раз! Зная по красному смещению расстояние 3С 279, можно найти, что во время «вспышки «его светимость была почти в сотню раз больше, чем у 3С 273 и в десять тысяч раз больше, чем у нашей Галактики! И при этом размеры излучающей области ничтожно малы, меньше светового года. В настоящее время квазар 3С 279 считается самым мощным «маяком «Вселенной. Мы видим, что разброс значений светимостей метагалактических объектов чрезвычайно вели почти такой же, как у звезд!

Большое значение для понимания природы квазаров имеют исследования переменности их радиоизлучения, особенно на сантиметровом диапазоне. При этом было показано, что моменты максимума потока излучения должны меняться закономерным образом с изменением длины волны. Так же должен меняться и сам характер радиоспектра (диаграмма на 15 стр., где приведены результаты наблюдений спектров квазаров в разные моменты времени). На основании теории синхротронного излучения можно по известной частоте, соответствующей максимуму радиоизлучения, и величине максимального потока определить угловые размеры источников радиоизлучения, которые оказываются порядка тысячных долей секунды дуги. Зная (по величине красного смещения) расстояния до квазаров, можно теперь найти линейные размеры связанных с ними компактных радиоистоников. Установлено, что их размеры меньше одного светового года, в согласии с оценками, полученными на основе анализа переменности потока.

До сих пор мы говорили только о радиои оптическом излучении квазаров и радиогалактик. Между тем, в последнее десятилетие все большее значение приобретает исследование рентгеновского излучения этих метагалактических объектов. Впервые рентгеновское излучение от внегалактического объекта было обнаружено еще в 1971 г. на первом специализированном рентгеновском спутнике «Ухуру », заложившем основы современной рентгеновской астрономии. Этим объектом сказалась одна из ближайших радиогалактик NGC 4486. Другим метагалактическим рентгеновским источником оказалась яркая сейфертовская галактика NGC 4151. Не подлежит сомнению, что излучает активное ядро этой галактики. Вскоре был обнаружен слабый поток рентгеновского излучения и от первого открытого квазара 3С 273, а также от радиогалактики Лебедь-А. Новый этап в изучении внегалактических рентгеновских источников наступил в 1979 г., после запуска космической лаборатории имени Эйнштейна. На этой обсерватории чувствительность приемной рентгеновской аппаратуры была в 1000 раз выше, чем на «Ухуру », при очень хорошей угловой разрешающей способности. В результате оказалось возможным осуществить массовое определение рентгеновского излучения большого количества квазаров, а также сейфертовских галактик. Кроме того, был получен большой наблюдательный материал по рентгеновскому излучению скоплений галактик, представляющий особый интерес.

Всего было исследовано рентгеновское излучение более чем 100 квазаров и большого количества сейфертовских галактик и скоплений. Практически все квазары являются источниками рентгеновского излучения, мощность которого меняется в широких пределах, от сотых долей полного излучения нашей Галактики до значений, в тысячу раз превосходящих полную мощность Галактики. Как правило, рентгеновское излучение квазаров переменно; это указывает (как в случае радиоизлучения), что оно возникает в малой области. Наличие мощного рентгеновского излучения квазаров и активных ядер галактик свидетельствует о происходящих там грандиозных процессах, связанных с нагревом газа до температуры порядка сотни миллионов градусов. По-видимому, часть рентгеновского излучения не связана с горячей плазмой, а создается релятивистскими электронами, взаимодействующими с полем излучения большой плотности (явление Комптона). В настоящее время, комбинируя только рентгеновские и оптические наблюдения, удалось открыть ряд новых квазаров. Это наглядно демонстрирует, что «проникающая «способность рентгеновской астрономии может быть даже выше, чем у радиоастрономии.

Нашлись «» пропавшие «» квазары.

В 2000 году группа австралийских астроном во главе с Р. Уэбстер (R.Webster; Мельбурнский университет) пришла к весьма неожиданному выводу: среди всех существующих во Вселенной квазаров около 80% остаются неоткрытыми. Как известно, квазар — невероятно мощный точечный источник радиоизлучения; по одной из гипотез, он представляет собой удаленную активную галактику, которая получает энергию в результате аккреции вещества на сверхмассивную черную дыру, находящуюся в центре квазара. Проведя наблюдения нескольких сот квазаров, австралийские ученые обнаружили, что излучение около 80% из них необычайно сильно сдвинуто в красную часть спектра. Астрономы же, работающие с оптическими приборами, ищут квазары, как правило, среди голубых объектов. Если большинство квазаров — красные, значит, основная их масса нам все еще неизвестна. Однако в марте 1996 г. английские астрономы С. Серджент и С. Ролингс «успокоили «своих коллег, показав, что квазары, наблюдавшиеся австралийскими учеными, «нетипичны ». Уэбстер и ее сотрудники полагали, что «покраснение «изучаемых объектов вызвано космической пылью, присутствующей в любой околоквазарной области. Однако английские астрономы указывают, что квазары, наблюдавшиеся австралийцами, обладают плоским, «сплющенным «радиоспектром. Другими словами, спектральная яркость их излучения в радиодиапазоне с повышением частоты понижается очень медленно. А это считается важным признаком таких объектов. Квазары, изучавшиеся группой Уэбстер, сильно излучают на высоких радиочастотах — в красной области оптического спектра. В таком случае наблюдаемое красное излучение вызывается не космической пылью, а имеет ту же синхротронную природу, что и радиоизлучение квазаров: заряженные электроны излучают, двигаясь с релятивистской скоростью по спирали вдоль магнитно-силовых линий. Но при этом возбуждается лишь плоский спектр красного излучения, что характерно лишь для небольшой группы квазаров. Таким образом, число «упущенных «астрономами квазаров никак не может быть значительным.

Астрономы наконец-то увидели квазары второго типа.

Предположение о существовании квазаров второго типа было впервые озвучено в начале 80-х годов, когда была построена единая модель квазаров и других ярких объектов, подпитывающихся энергией от массивных черных дыр.

Обычные квазары находятся на расстоянии нескольких миллиардов световых лет от Земли. Квазар второго типа, как и обычный квазар, является очень ярким источником рентгеновского и другого излучения, но в отличие от первых окружены облаком газа и пыли, которое уменьшает его яркость в видимом диапазоне длин волн. Иначе говоря, до недавнего времени увидить квазар второго типа никому не удавалось.

И вот на днях человеческий взгляд впервые взглянул на этот астрономический объект. По заявлению астрономов, эта находка является важным шагом на пути к пониманию того как на заре существования Вселенной образовали черные дыры и галактики. В работах принимали участие специалисты из нескольких обсерваторий из разных стран мира, в том числе из университета Джонса Хопкинса и Южной Европейской Обсерватории. Для поиска квазара второго типа были использованы рентгеновский космический телескоп «Chandra «и наземный Большой Телескоп Very Large Telescope (VLT) из Южной Европейской обсерватории в Чили. Найденный квазар второго типа расположен в южном созвездии Печь на расстоянии 9 миллиардов световых лет от Земли.

В КАЖДОЙ ГАЛАКТИКЕ КВАЗАР В ЦЕНТРЕ.

Квазары — это яркие источники излучения в оптической и других частях спектра. Обычно они находятся в центре какой-либо галактики. Среди астрофизиков распространено мнение, что квазар представляет собой сравнительно небольшой горячий газовый диск, окружающий черную дыру, масса которой может составлять 1011 масс Солнца.

Недавно специалисты полагали, что радиогалактики устроены иначе, чем «квазарные». Однако, после того как обнаружили в центре радиогалактики Лебедь А, расположенной в 750 млн. св. лет от нас, крошечный источник инфракрасного излучения, совпадающий с радиоисточником, мнение кардинально поменялось относительно устройства всех галактик. Инфракрасный источник похож на квазар, но он удивительно слаб и невидим в оптической области.

Известно, что яркость квазара в инфракрасных лучах пропорциональна его интенсивности в рентгеновском диапазоне. Галактика Лебедь, А — мощный источник рентгеновского излучения.

Соответствующий ему, но интенсивности квазар должен бы излучать в инфракрасном диапазоне в 200 раз сильнее, чем наблюдается. Такой квазар можно было бы легко наблюдать в оптическом диапазоне.

В дальнейшем, ученые пришли к выводу, что в центре радиогалактики Лебедь, А расположен именно квазар, однако, он экранируется тороидальным облаком газа и космической пыли («бубликом»).

Установлено, что инфракрасный источник в центре Лебедя, А лежит за плотным водородным облаком. Очевидно, оно и есть часть того же «бублика» с диаметром около 10 св. лет, который был ранее обнаружен. С Земли «бублик» виден с торца, поэтому излучение, идущее к нам из центра галактики, должно пройти сквозь довольно плотное скопление материи. Согласно наблюдениям астрономов, скопление пропускает не более 1/200 всего инфракрасного излучения, поступающего из находящегося внутри него объекта. Если бы не это обстоятельство, квазар, лежащий в центре Лебедя А, выглядел бы в 10 раз ярче, чем окружающая его галактика. Этот квазар — заурядный среди подобных объектов, но он, по-видимому, самый близкий к нам. Следующий за ним по расстоянию квазар ЗС 273 обладает в 30 раз большей светимостью.

Открытие подтверждает бывшее до сих пор чисто теоретическим утверждение, согласно которому все активные галактики устроены в основном одинаково, но при наблюдении с Земли они могут выглядеть различно — в зависимости от своей ориентации относительно нас.

Показать весь текст
Заполнить форму текущей работой