Помощь в написании студенческих работ
Антистрессовый сервис

Задача о парковке

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Лингвистической называется переменная, принимающая значения из множества слов или словосочетаний некоторого естественного или искусственного языка. Множество допустимых значений лингвистической переменной называется терм-множеством. Задание значения переменной словами, без использования чисел, для человека более естественно. Ежедневно мы принимаем решения на основе лингвистической информации… Читать ещё >

Задача о парковке (реферат, курсовая, диплом, контрольная)

Нечёткая логика (англ. fuzzy logic) — раздел математики, являющийся обобщением классической логики и теории множеств, базирующее на понятии нечёткого множества, впервые введённого Лотфи Заде в 1965 году как объекта с функцией принадлежности элемента к множеству, принимающей любые значения в интервале, а не только 0 или 1. На основе этого понятия вводятся различные логические операции над нечёткими множествами и формулируется понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Предметом нечёткой логики считается исследование рассуждений в условиях нечёткости, размытости, сходных с рассуждениями в обычном смысле, и их применение в вычислительных системах

Началом практического применения теории нечетких множеств можно считать 1975 г., когда Мамдани и Ассилиан построили первый нечеткий контролер для управления простым паровым двигателем.

В 1982 Холмблад и Остергад (Holmblad and Osregaad) разработали первый промышленный нечеткий контроллер, который был внедрен в управление процессом обжига цемента на заводе в Дании. Успех первого промышленного контролера, основанного на нечетких лингвистических правилах «Если-то» привел к всплеску интереса к теории нечетких множеств среди математиков и инженеров. Несколько позже Бартоломеем Коско (Bart Kosko) была доказана теорема о нечеткой аппроксимации (Fuzzy Approximation Theorem), согласно которой любая математическая система может быть аппроксимирована системой, основанной на нечеткой логике. Другими словами, с помощью естественно-языковых высказываний-правил «Если-то», с последующей их формализацией средствами теории нечетких множеств, можно сколько угодно точно отразить произвольную взаимосвязь «входы-выход» без использования сложного аппарата дифференциального и интегрального исчислений, традиционно применяемого в управлении и идентификации.

Системы, основанные на нечетких множествах разработаны и успешно внедрены в таких областях, как: управление технологическими процессами, управление транспортом, медицинская диагностика, техническая диагностика, финансовый менеджмент, биржевое прогнозирование, распознавание образов. Спектр приложений очень широкий — от видеокамер и бытовых стиральных машин до средств наведения ракет ПВО и управления боевыми вертолетами. Практический опыт разработки систем нечеткого логического вывода свидетельствует, что сроки и стоимость их проектирования значительно меньше, чем при использовании традиционного математического аппарата, при этом обеспечивается требуемый уровень робастности и прозрачности моделей.

1. Теоретические сведенья

1.1 Нечеткая логика

Нечеткая логика это обобщение традиционной аристотелевой логики на случай, когда истинность рассматривается как лингвистическая переменная, принимающая значения типа: «очень истинно», «более-менее истинно», «не очень ложно» и т. п. Указанные лингвистические значения представляются нечеткими множествами.

Лингвистической называется переменная, принимающая значения из множества слов или словосочетаний некоторого естественного или искусственного языка. Множество допустимых значений лингвистической переменной называется терм-множеством. Задание значения переменной словами, без использования чисел, для человека более естественно. Ежедневно мы принимаем решения на основе лингвистической информации типа: «очень высокая температура»; «длительная поездка»; «быстрый ответ»; «красивый букет»; «гармоничный вкус» и т. п. Психологи установили, что в человеческом мозге почти вся числовая информация вербально перекодируется и хранится в виде лингвистических термов. Понятие лингвистической переменной играет важную роль в нечетком логическом выводе и в принятии решений на основе приближенных рассуждений. Формально, лингвистическая переменная определяется следующим образом.

1.2 Нечеткие множества

Пусть E — универсальное множество, x — элемент E, а R — определенное свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары A = {mA (х)/х}, где mA (х) — характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 — в другом случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа «нет» относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченной пари A = {mA (х)/х}, где mA (х) — характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]).

Функция принадлежности указывает степень (или уровень) принадлежности элемента x к подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество A может рассматриваться как обычное или четкое множество.

1.3 Системы нечеткого вывода

Нечеткий вывод занимает центральное место в нечеткой логике и системах нечеткого управления. Процесс нечеткого вывода представляет собой некоторую процедуру или алгоритм получения нечетких заключений на основе нечетких условий или предпосылок с использованием рассмотренных выше понятий нечеткой логики. Этот процесс соединяет в себе все основные концепции теории нечетких множеств: функции принадлежности, лингвистические переменные, нечеткие логические операции, методы нечеткой импликации и нечеткой композиции. Системы нечеткого вывода предназначены для реализации процесса нечеткого вывода и служат концептуальным базисом всей современной нечеткой логики.

Достигнутые успехи в применении этих систем для решения широкого класса задач управления послужили основой становления нечеткой логики как прикладной науки с богатым спектром приложений. Системы нечеткого вывода позволяют решать задачи автоматического управления, классификации данных, распознавания образов, принятия решений, машинного обучения и многие другие.

Поскольку разработка и применение систем нечеткого вывода имеет междисциплинарный характер, данная проблематика исследований тесно взаимосвязана с целым рядом других научно-прикладных направлений, таких как: нечеткое моделирование, нечеткие экспертные системы, нечеткая ассоциативная память, нечеткие логические контроллеры, нечеткие регуляторы и просто нечеткие системы Системы нечеткого вывода предназначены для преобразования значений входных переменных процесса управления в выходные переменные на основе использования нечетких правил продукций. Для этого системы нечеткого вывода должны содержать базу правил нечетких продукций и реализовывать нечеткий вывод заключений на основе посылок или условий, представленных в форме нечетких лингвистических высказываний.

Таким образом, основными этапами нечеткого вывода являются:

Формирование базы правил систем нечеткого вывода.

Фаззификация входных переменных.

Агрегирование подусловий в нечетких правилах продукций.

Активизация или композиция подзаключений в нечетких правилах продукций.

Аккумулирование заключений нечетких правил продукций.

Целью этапа фаззификации является установление соответствия между конкретным (обычно — численным) значением отдельной входной переменной системы нечеткого вывода и значением функции принадлежности соответствующего ей терма входной лингвистической переменной. После завершения этого этапа для всех входных переменных должны быть определены конкретные значения функций принадлежности по каждому из лингвистических термов, которые используются в подусловиях базы правил системы нечеткого вывода. Агрегирование представляет собой процедуру определения степени истинности условий по каждому из правил системы нечеткого вывода.

Формально процедура агрегирования выполняется следующим образом. До начала этого этапа предполагаются известными значения истинности всех подусловий системы нечеткого вывода, т. е. множество значений В={bi'}.

Активизация в системах нечеткого вывода представляет собой процедуру или процесс нахождения степени истинности каждого из подзаключений правил нечетких продукций. Активизация в общем случае во многом аналогична композиции нечетких отношений, но не тождественна ей. Поскольку в системах нечеткого вывода используются лингвистические переменные, то формулы для нечеткой композиции теряют свое значение. В действительности при формировании базы правил системы нечеткого вывода задаются весовые коэффициенты Fi для каждого правила (по умолчанию предполагается, если весовой коэффициент не задан явно, то его значение равно 1).

Аккумуляция или аккумулирование в системах нечеткого вывода представляет собой процедуру или процесс нахождения функции принадлежности для каждой из выходных лингвистических переменных множества W = {w1, w2,…, ws}.

Цель аккумуляции заключается в том, чтобы объединить или аккумулировать все степени истинности заключений (подзаключений) для получения функции принадлежности каждой из выходных переменных. Причина необходимости выполнения этого этапа состоит в том, что подзаключения, относящиеся к одной и той же выходной лингвистической переменной, принадлежат различным правилам системы нечеткого вывода. Дефаззификация в системах нечеткого вывода представляет собой процедуру или процесс нахождения обычного (не нечеткого) значения для каждой из выходных лингвистических переменных множества W = {w1, w2,…, ws}.

Цель дефаззификации заключается в том, чтобы, используя результаты аккумуляции всех выходных лингвистических переменных, получить обычное количественное значение (crisp value) каждой из выходных переменных, которое может быть использовано специальными устройствами, внешними по отношению к системе нечеткого вывода.

1.4 Правила нечетких продукций в системах нечеткого вывода

Основная особенность нечетких правил, используемых в системах нечеткого вывода, — условия и заключения отдельных нечетких правил формулируются в форме нечетких высказываний относительно значений тех или иных лингвистических переменных.

Таким образом, всюду далее под правилом нечеткой продукции или просто — нечеткой продукцией будем понимать выражение следующего вида: (i): Q; Р; А В; S, F, N, в котором все компоненты определены согласно (7.17), за исключением того, что условие ядра (антецедент) и заключение ядра (консеквент) представляют собой нечеткие лингвистические высказывания.

База правил систем нечеткого вывода предназначена для формального представления эмпирических знаний или знаний экспертов в той или иной проблемной области. В системах нечеткого вывода используются правила нечетких продукций, в которых условия и заключения сформулированы в терминах нечетких лингвистических высказываний рассмотренных выше видов. Совокупность таких правил будем далее называть базами правил нечетких продукций.

Простейший вариант правила нечеткой продукции, который наиболее часто используется в системах нечеткого вывода, может быть записан в форме:

ПРАВИЛО

Показать весь текст
Заполнить форму текущей работой