Модель теории очередей, или модель массового обслуживания
Задача администратора сводится к тому, чтобы минимизировать убытки как в первом, так и во втором случае. Иначе говоря, администратору нужно добиться самых коротких очередей при минимальном числе работающих кассиров. Он посчитал, что универсам не теряет ни одного клиента в течение первых четырех минут ожидания в очереди. Каждая дополнительная минута обходится универсаму в 10 долларов, так как… Читать ещё >
Модель теории очередей, или модель массового обслуживания (реферат, курсовая, диплом, контрольная)
Проблема очередей — одна из наиболее острых для многих организаций. Люди каждый день стоят в очередях у кассы в продуктовом магазине или у театральной кассы, сидят в ожидании приема у врача, в приемной комиссии вузов или в бюро занятости населения. Модель теории очередей позволяет, повысив эффективность работы организации, уменьшить очереди и подсчитать время ожидания в очереди и приблизительные убытки, которые несет организация из-за наличия очередей. Модель может быть полезна при решении самых разных проблем: менеджерам авиакомпаний (самолеты приземляются и обслуживаются в порядке очереди), работникам магазинов (очереди у кассы), директорам заводов (этапы прохождения сырья через различные производственные циклы), работникам медицинских учреждений (контроль оборачиваемости койко-мест).
Существует большое количество моделей теории очередей из-за необходимости описывать различные ситуации очередей. Очереди при «обслуживании одиночнъос требований», т. е. когда обслуживание происходит в одной точке, бывают, например, у стойки кассира в ресторане или у единственного операционного окна на почте. Очереди при «обслуживании многочисленных требований» наблюдаются, например, на той же почте при одновременном обслуживании несколькими операторами одной очереди.
Ситуации с очередями становятся более сложными при наличии большого количества очередей и большого количества служащих (как в супермаркете) либо когда люди или организационные единицы, нуждающиеся в обслуживании, должны пройти через несколько точек обслуживания (что типично, например, при получении водительских прав).
Выделяют четыре основных типа очередей, схемы которых приведены на рис. 6.15.
Очередь у врачебного кабинета представляет хороший пример одноканалъной однофазовой очереди. Очередь только одна — существует только один канал обслуживания; врач только один — существует только одна зона обслуживания. Пациенты ожидают приема и допускаются к врачу в соответствии со временем, указанном в талончике.
Ожидание у кассы в продовольственном магазине — типичный пример многоканальной однофазовой очереди.
Примером одноканальной многофазовой очереди служит очередь на мойке автомобилей. Машины стоят в одной очереди, но проходят несколько фаз обслуживания: мойка, ополаскивание, сушка и полировка.
Рис. 6.15. Типы очередей:
а — одноканальная; б — многоканальная однофазовая очередь; в — одноканальная многофазовая очередь; г — многоканальная многофазовая очередь Примеры многофазовых многоканальных очередей в изобилии встречаются на производстве, где выпускается несколько видов продукции. Количество каналов, как правило, соответствует количеству выпускаемых наименований продукции, а количество фаз определяется количеством технологических операций от начала до конца производства.
В отличие от линейного программирования, модель теории очередей, или модель массового обслуживания, не обеспечивает оптимального решения. Более того, модели позволяют менеджерам разнообразить параметры ситуаций и определять возможные последствия.
Например, представьте себя менеджером банка, где есть четыре кассира, которые обслуживают клиентов, заключающих сделки. У каждого из четырех окон существует отдельная очередь. Клиенты всегда склонны выбирать самую короткую очередь. Однако часто случается так, что самая короткая очередь оказывается самой медленной, из-за того что с кем-то в ее начале проводят операцию, требующую длительного времени. Банк обеспокоен тем, что клиенты раздражаются, когда они задерживаются в длинной очереди; от коллег из других банков вы узнаете, что они установили системы, в которых все машины по обработке заявок ожидают в единой очереди, поэтому каждый следующий клиент из очереди направляется к первому освободившемуся окну.
При изучение ситуации оказывается, что клиенты прибывают в среднем со скоростью 16 человек в час, а каждый кассир справляется со сделками со средней скоростью 8 сделок за час.
В этом случае вы могли бы использовать модели теории очередей в качестве помощи, для того чтобы оценить разницу во времени ожидания в действующей системе и в альтернативной системе единой очереди для всех клиентов. Предположим, что анализ модели теории очередей показал, что клиентам приходится ждать обслуживания в среднем 7,5 минут в условиях существующей системы, но они бы ждали в среднем только 0,654 минуты в единой очереди для всех клиентов, и тогда вы, возможно, захотите изменить существующий порядок в целях достижения значительных улучшений в обслуживании. Таким образом, хотя модели теории очередей не подсказывают оптимального решения, они предоставляют данные, необходимые менеджерам для планирования наиболее эффективного обслуживания клиентов и покупателей. Модели теории очередей являются дорогими, если их разрабатывать для уникальных и сложных ситуаций. Однако существующее разнообразие моделей соответствует многим ситуациям, которыми могут заинтересоваться менеджеры. Возрастающее количество таких моделей в пакетах программного обеспечения делает их использование экономнее и проще. Приведем пример, позволяющий понять, каким образом производятся расчеты матрицы массового обслуживания.
Администратор универсама должен обеспечить работу необходимого количества кассиров. Это количество определяется двумя факторами:
- • убытками, которые несет универсам вследствие оплаты простоя кассиров из-за отсутствия покупателей;
- • убытками от потери клиентов из-за долгого ожидания в очередях.
Задача администратора сводится к тому, чтобы минимизировать убытки как в первом, так и во втором случае. Иначе говоря, администратору нужно добиться самых коротких очередей при минимальном числе работающих кассиров. Он посчитал, что универсам не теряет ни одного клиента в течение первых четырех минут ожидания в очереди. Каждая дополнительная минута обходится универсаму в 10 долларов, так как покупатели устают ждать и покидают магазин. Затем он высчитал, сколько времени покупатели будут стоять в очереди при условии одновременной работы одного, двух, трех и четырех кассиров, а также стоимость работы кассиров. Результаты этих вычислений приведены в табл. 6.5. Подсчитав стоимость каждого варианта, администратор выбирает самый дешевый. Как видно из таблицы, работа одного кассира стоит дешевле, чем работа двух, но работа четырех кассиров обходится магазину дешевле всего.
Описанная ситуация относится к разряду самых простых, в которых может применяться модель массового обслуживания. Вычисления администратора были бы более сложными, если бы он принимал во внимание разницу в покупательских потоках (в часы пик и в спокойные часы) и разницу в оплате труда кассиров при найме на неполный рабочий день. Тем не менее, даже на таком простом примере можно понять полезность использования модели массового обслуживания.
Таблица 6.5
Расчет альтернативных издержек при моделировании массового обслуживания.
1. Количество работающих кассовых аппаратов. | ||||
2. Среднее время ожидания (мин). | ||||
3. Время ожидания сверх четырех мин. | ||||
4. Убыток на одну минуту ожидания сверх четырех мин (в долл.). | ||||
5. Общий убыток от ожидания (3×4) (в долл.). | ||||
6. Оплата труда кассиров (в долл.). | ||||
7. Суммарные издержки (5 + 6) (в долл.). |