Исследования и теории Габриеля Крамера
Крамер рассмотрел систему произвольного количества линейных уравнений с квадратной матрицей. Решение системы он представил в виде столбца дробей с общим знаменателем — определителем матрицы. Термина «определитель» (детерминант) тогда ещё не существовало (его ввёл Гаусс в 1801 году), но Крамер дал точный алгоритм его вычисления: алгебраическая сумма всевозможных произведений элементов матрицы… Читать ещё >
Исследования и теории Габриеля Крамера (реферат, курсовая, диплом, контрольная)
МИНИСТЕРСТВО ТРАНСПОРТА Российской федерации
Государственное образовательное учреждение высшего профессионального образования
«Петербургский государственный университет путей сообщения»
Кафедра Высшая математика"
Реферат на тему: «Габриель Крамер»
Санкт-Петербург
Габриэль Крамер алгебраическая кривая матрица Швейцарский математик31 июля 1704 — 4 января 1752.
Габриэль Крамер родился 31 июля 1704 года в Женеве (Швейцария) в семье врача. Уже в детстве он опережал своих сверстников в интеллектуальном развитии и демонстрировал завидные способности в области математики. В 18 лет он успешно защитил диссертацию. Через 2 года Крамер выставил свою кандидатуру на должность преподавателя в Женевском университете. Юноша так понравился магистрату, что специально для него и ещё одного одного кандидата на место преподавателя была учреждена отдельная кафедра математики, где Крамер и работал в последующие годы.
Учёный много путешествовал по Европе, перенимая опыт у знаменитых математиков своего времени — Иоганна Бернулли и Эйлера в Базеле, Галлея и де Муавра в Лондоне, Мопертюи и Клеро в Париже и других. Со многими из них он продолжал переписываться всю жизнь.
В 1729 году Крамер возобновляет преподавательскую работу в Женевском университете. В это время он участвует в конкурсе Парижской Академии и занимает второе место. Талантливый учёный написал множество статей на самые разные темы: геометрия, история, математика, философия. В 1730 году он опубликовал труд по небесной механике. В 1740-е гг. Иоганн Бернулли поручает Крамеру подготовить к печати сборник своих работ. В 1742 году Крамер публикует сборник в 4-х томах. В 1744 году он выпускает посмертный сборник работ Якоба Бернулли (брата Иоганна Бернулли), а также двухтомник переписки Лейбница с Иоганном Бернулли. Эти работы вызвали большой интерес со стороны учёных всего мира. Крамер является одним из создателей линейной алгебры. Одной из самых известных его работ является «Введение в анализ алгебраических кривых», опубликованный на французском языке в 1750 году. В ней Крамер строит систему линейных уравнений и решает её с помощью алгоритма, названного позже его именем — метод Крамера. 1751: Крамер получает серьёзную травму после дорожного инцидента с каретой. Доктор рекомендует ему отдохнуть на французском курорте, но там его состояние ухудшается, и 4 января 1752 года Крамер умирает.
«Введение в анализ алгебраических кривых»
Самая известная из работ Крамера — изданный незадолго до кончины трактат «Введение в анализ алгебраических кривых», опубликованный на французском языке («Introduction a l’analyse des lignes courbes algebraique», 1750 год). В нём впервые доказывается, что алгебраическая кривая n-го порядка в общем случае полностью определена, если заданы её n (n + 3)/2 точек. Для доказательства Крамер строит систему линейных уравнений и решает её с помощью алгоритма, названного позже его именем: метод Крамера.
Крамер рассмотрел систему произвольного количества линейных уравнений с квадратной матрицей. Решение системы он представил в виде столбца дробей с общим знаменателем — определителем матрицы. Термина «определитель» (детерминант) тогда ещё не существовало (его ввёл Гаусс в 1801 году), но Крамер дал точный алгоритм его вычисления: алгебраическая сумма всевозможных произведений элементов матрицы, по одному из каждой строки и каждого столбца. Знак слагаемого в этой сумме, по Крамеру, зависит от числа инверсий соответствующей подстановки индексов: плюс, если чётное. Что касается числителей в столбце решений, то они подсчитываются аналогично: n-й числитель есть определитель матрицы, полученной заменой n-го столбца исходной матрицы на столбец свободных членов.
Методы Крамера сразу же получили дальнейшее развитие в трудах Безу, Вандермонда и Кэли, которые и завершили создание основ линейной алгебры. Теория определителей быстро нашла множество приложений в астрономии и механике (вековое уравнение), при решении алгебраических систем, исследовании форм и т. д.
Крамер провёл классификацию алгебраических кривых до пятого порядка включительно. Любопытно, что во всём своём содержательном исследовании кривых Крамер нигде не использует математический анализ, хотя он бесспорно владел этими методами.