Помощь в написании студенческих работ
Антистрессовый сервис

Специфические приемы познавательной деятельности

РефератПомощь в написанииУзнать стоимостьмоей работы

Овладение общими методами познавательной деятельности позволяет учащимся не только самостоятельно анализировать новые частные явления, но часто и создавать их. Так, при изучении арифметических задач учащиеся свободно составляют все новые и новые их разновидности. При этом они вначале составляют абстрактную схему задачи, оперируя основными величинами, а потом легко придумывают сюжеты. Аналогичные… Читать ещё >

Специфические приемы познавательной деятельности (реферат, курсовая, диплом, контрольная)

Полноценное усвоение знаний предполагает также формирование таких познавательных действий, которые составляют специфические приемы, характерные для той или иной области знаний. Своеобразие этих приемов состоит в том, что их формирование возможно только на определенном предметном материале. Так, нельзя, например, сформировать приемы математического мышления, минуя математические знания; нельзя сформировать лингвистическое мышление без работы над языковым материалом. Без формирования специфических действий, характерных для данной области знаний, не могут быть сформированы и использованы и логические приемы. В частности, большинство рассмотренных нами приемов логического мышления связано с установлением наличия в предъявленных предметах и явлениях необходимых и достаточных свойств. Однако обнаружение этих свойств в разных предметных областях требует использования разных приемов, разных методов, т. е. требует применения уже специфических приемов работы: в математике они одни, в языке — другие и т. д.

Эти приемы познавательной деятельности, отражая специфические особенности данной научной области, менее универсальны, не могут быть перенесены на любой другой предмет. Так, например, человек, великолепно владеющий специфическими приемами мышления в области математики, может не уметь справиться с историческими задачами, и наоборот. Когда говорят про человека, что у него, допустим, технический склад ума, это и означает, что он овладел основной системой специфических приемов мышления в данной области. Однако и специфические виды познавательной деятельности нередко могут быть использованы в целом ряде предметов.

Примером может служить обобщенный прием получения графических изображений. Анализ частных видов проекционных изображений, изучаемых в школьных курсах геометрии, черчения, географии, рисования и соответствующих им частных видов деятельности, позволил выделить следующее инвариантное содержание умения по получению проекционных изображений:

  • а) установление способа проецирования;
  • б) определение способа изображения базисной конфигурации по условию задачи;
  • в) выбор базисной конфигурации;
  • г) анализ формы оригинала;
  • д) изображение элементов, выделенных в результате анализа формы оригинала и принадлежащих одной плоскости, с опорой на свойства проекций;
  • е) сравнение оригинала с его изображением.

Каждый конкретный способ изображения проекций в указанных предметах представляет собой лишь вариант данного. В силу этого формирование приведенного вида деятельности на материале геометрии обеспечивает учащимся самостоятельное решение задач на получение проекционных изображений в черчении, географии, рисовании. Это означает, что межпредметные связи должны реализовываться по линии не только общих, но и специфических видов деятельности. Что касается планирования работы по каждому отдельному предмету, то учителю необходимо заранее определить последовательность введения в учебный процесс не только знаний, но и специфических приемов познавательной деятельности.

В школе открываются большие возможности для формирования различных приемов мышления. Уже в начальных классах надо заботиться не только о математических и языковых приемах мышления, но и таких, как биологические, исторические. В самом деле, ведь учащиеся сталкиваются в начальных классах и с природоведческим и обществоведческим материалом. И вот при анализе его очень важно научить учащихся методам анализа, характерным для данных областей знаний. Если ученик просто запоминает несколько десятков природоведческих названий и фактов, то это мало дает ему для понимания законов природы. Если же его научат приемам наблюдения за объектами природы, помогут овладеть методами их анализа, установления причинно-следственных связей между ними, это будет началом формирования собственно биологического склада ума. Совершенно аналогично положение и с обществоведческими знаниями: надо учить не пересказывать их, а использовать для анализа различных социальных явлений.

Таким образом, каждый раз, когда учитель знакомит детей с новой предметной областью, он должен задуматься над теми специфическими приемами мышления, которые характерны для данной области, и постараться сформировать их у обучаемых.

Учитывая, что наибольшие затруднения вызывает математика, более подробно остановимся на приемах математического мышления. Дело в том, что если эти приемы не формируются у учащихся, то они, изучив весь курс математики, так и не научаются думать математически. А это означает, что математика изучена формально, что учащиеся не поняли ее специфических особенностей.

Так, учащиеся III класса уверенно и быстро складывают многозначные числа столбиком, уверенно указывая, что писать под чертой, что «замечать» наверху. Но задайте вопрос: «А почему надо так делать? Может быть, лучше наоборот: замеченное записать под чертой, а записанное заметить?» Многие ученики теряются, не знают, что ответить. Это означает, что такие ученики выполняют арифметические действия успешно, но их математического смысла не понимают. Правильно производя сложение и вычитание, они не понимают принципов, лежащих в основе системы счисления и в основе выполняемых ими действий. Для того чтобы производить арифметические действия, надо прежде всего понять принципы построения системы счисления, в частности зависимость величины числа от его места в разрядной сетке.

Не менее важно научить учеников понимать, что число — это отношение, что числовая характеристика — результат сравнения интересующей величины с каким-то эталоном. Это означает, что одна и та же величина будет получать разную числовую характеристику при сравнении ее с разными эталонами: чем больше эталон, которым мы будем измерять, тем меньше будет число, и наоборот. Значит, не всегда 3 меньше 5. Это верно лишь в том случае, когда величины измерены одним и тем же эталоном (мерой). Для понимания этого необходимо научить школьников прежде всего выделять те стороны в объекте, которые в данном случае подлежат количественной оценке. Если на это не обратить внимания, то у детей сформируется неправильное представление о числе. Так, если показать учащимся I класса ручку и спросить: «Дети, скажите, это сколько?» — они обычно отвечают, что одна. Но ведь этот ответ верен только в том случае, когда за «эталон» берется отдельность. Если же за измеряемую величину взять длину ручки, то числовая характеристика может быть разной, она будет зависеть от выбранного для измерения эталона: см, мм, дм и т. д.

Следующее, что должны усвоить учащиеся: сравнивать, складывать, вычитать можно только измеренное одной и той же мерой. Если ученики это понимают, то они смогут и обосновать, почему при сложении столбиком одно записывается под чертой, а другое замечается над следующим разрядом: единицы остаются на своем месте, а образованный из них десяток должен суммироваться с десятками, поэтому его и «замечают» над десятками и т. д. Понимание этого обеспечивает полноценные действия и с дробями.

Если учащиеся с I класса усвоили, что действия можно производить только над числами, полученными при измерении одной и той же мерой, то они поймут, почему необходимо приведение к общему знаменателю: это фактически приведение к общей мере. В самом деле, когда мы складываем, допустим, 1/3 и ½, это означает, что в одном случае единицу разделили на 3 части и взяли одну из них, в другом — на две части и тоже взяли одну из них. Очевидно, что это разные «меры». Складывать их нельзя. Для сложения необходимо привести их к единой «мере» — к общему знаменателю.

Наконец, если учащиеся усвоят, что величины можно измерять различными мерами и поэтому их числовая характеристика может быть разной, то они не будут испытывать трудностей и при движении по разрядной сетке системы счисления: от единицы — к десяткам, от десятков — к сотням, тысячам и т. д. Для них это будет выступать всего лишь как переход к измерению все большими и большими мерами: измеряли единицами, а теперь меру увеличили в 10 раз, поэтому то, что обозначалось как 10, теперь стало обозначаться как 1. Собственно, только величиной меры и отличается один разряд системы счисления от другого. В самом деле, три плюс пять всегда будет восемь, но это может быть и восемь сотен, и восемь тысяч и т. д. То же самое и при десятичных дробях. Но в этом случае мы меру не увеличиваем в 10 раз, а уменьшаем, поэтому получаем три плюс пять тоже восемь, но уже десятых, сотых, тысячных и т. д.

Таким образом, если учащимся раскрыть все эти «секреты» математики, то они легко будут понимать и усваивать ее. Если же этого не сделать, то учащиеся будут брать памятью, будут механически производить различные арифметические действия, не понимая их сути и, следовательно, не развивая своего математического мышления. Таким образом, формирование уже самых начальных знаний должно быть организовано так, чтобы это было одновременно и формированием мышления, определенных умственных способностей учащихся. Если этого нет, то усвоение знаний и умений оказывается формальным: учащиеся выполняют действия, совсем не понимая их специфического математического смысла.

Аналогичное положение и с другими предметами. Так, успешное овладение русским языком также невозможно без овладения специфическими языковыми приемами мышления. Нередко учащиеся, изучая части речи, члены предложения, не понимают их языковой сущности, а ориентируются на их место в предложении, или учитывают лишь формальные признаки. В частности, учащиеся не всегда понимают суть главных членов предложений, не умеют их узнавать в несколько непривычных для них предложениях. Попробуйте дать ученикам средних и даже старших классов предложения типа «Ужин только что подали», «Басни Крылова читали все», «Листовки разносит ветром по городу». Многие ученики назовут подлежащим прямое дополнение.

Почему ученики затрудняются в определении подлежащего в предложениях, где подлежащего нет, где оно лишь подразумевается? Да потому, что они до сих пор имели дело только с такими предложениями, где подлежащие были. И это привело к тому, что они фактически не научились ориентироваться на все существенные признаки подлежащего одновременно, а довольствуются лишь одним: или смысловым, или формальным. Собственно грамматические приемы работы с подлежащим у учащихся не сформированы.

Язык, как и математику, можно изучать по существу, т. е. с пониманием его специфических особенностей, с умением опираться на них, пользоваться ими. Но это будет только в том случае, когда учитель формирует необходимые приемы языкового мышления. Если же об этом должной заботы не проявляется, то язык изучается формально, без понимания сути, а поэтому и не вызывает интереса у учащихся.

Следует отметить, что иногда необходимо формировать такие специфические приемы познавательной деятельности, которые выходят за рамки изучаемого предмета и в то же время определяют успех в его овладении. Особо рельефно это выступает при решении арифметических задач.

Для того чтобы понять особенности работы с арифметическими задачами, прежде всего ответим на вопрос: в чем состоит отличие решения задачи от решения примеров? Известно, что ученики гораздо легче справляются с примерами, чем с задачами. Известно также, что главное затруднение состоит обычно в выборе действия, а не в его выполнении. Почему так происходит и что значит выбрать действие? Вот первые вопросы, на которые надо ответить.

Отличие решения задач от решения примеров состоит в том, что в примерах все действия указаны, и ученик должен лишь выполнить их в определенном порядке. При решении же задачи ученик прежде всего должен определить, какие действия необходимо совершить. В условии задачи всегда описана та или иная ситуация: заготовка корма, изготовление деталей, продажа товаров, движение поездов и т. д. За этой конкретной ситуацией ученик должен увидеть определенные арифметические отношения. Другими словами, он должен фактически математическим языком описать приведенную в задаче ситуацию.

Естественно, что для правильного описания ему надо не только знать саму арифметику, но и понимать сущность основных элементов ситуации, их отношения. Так, при решении задач на «куплю-продажу» ученик может правильно действовать только тогда, когда понимает, что такое цена, стоимость, какие отношения между ценой, стоимостью и количеством товара. Учитель часто полагается на житейский опыт учеников и не всегда уделяет достаточное внимание анализу описанных в задачах ситуаций. Вот это и приводит к одному из главных затруднений при решении задач.

В самом деле, если при решении задач на «куплю-продажу» учащиеся имеют еще какой-то житейский опыт, то при решении задач, например, на «движение» этот опыт оказывается явно недостаточным, что вызывает особенно большие затруднения у учащихся. Эти трудности объясняются прежде всего тем, что учащиеся часто не понимают сути основных понятий, указанных в задаче, и существующих между ними отношений.

Анализ указанных видов задач, как и многих других, показывает, что основу описываемого в них сюжета составляют величины, связанные с процессами: скорость поездов, время протекания процесса, продукт (результат), к которому приводит этот процесс или который он уничтожает. Это может быть путь, проделанный поездом; это может быть израсходованный корм и т. д. Успешное решение этих задач предполагает правильное понимание не только этих величин, но и существующих между ними отношений. Так, например, ученики должны понимать, что величина пути или производимого продукта прямо пропорциональна скорости и времени, а время, необходимое для получения какого-либо продукта или для прохождения пути, прямо пропорционально величине заданного продукта (или пути), но обратно пропорционально скорости: чем больше скорость, тем меньше время, требуемое для получения этого продукта или прохождения пути. Если учащиеся усвоят отношения, существующие между этими величинами, то они легко поймут, что по двум величинам, относящимся к одному и тому же участнику процесса, всегда можно найти третью. Наконец, в процессе может участвовать не одна, а несколько сил. Для решения этих задач необходимо понимать отношения между участниками: помогают они друг другу или противодействуют, одновременно или разновременно включились в процессы и т. д.

Указанные величины и их отношения и составляют сущность всех задач на процессы. Если учащиеся понимают эту систему величин и их отношения, то они легко смогут и записать их с помощью арифметических действий. Если же они их не понимают, то действуют путем слепого перебора действий. По школьной программе учащиеся изучают эти понятия в курсе физики в VI классе, причем изучают эти величины в частном виде — применительно к движению. В арифметике же задачи на различные процессы решаются уже в начальной школе. Этим и объясняются затруднения учеников при решении задач, связанных с различными процессами.

Работа с отстающими учениками III класса показала, что ни одно из указанных понятий ими не усвоено. Ученики не понимают и отношений, существующих между этими понятиями.

На вопросы, касающиеся скорости, ученики давали ответы такого типа: «Скорость у машины имеется, когда она идет». На вопрос, как можно узнать скорость, учащиеся отвечали: «Не проходили», «Нас не учили». Некоторые предлагали путь умножить на время. Задачу: «За 30 дней была построена дорога длиной 10 км. Как узнать, сколько километров строилось за 1 день?» — ни один из учащихся не смог решить.

Процесс решения шел хаотично: «Умножим 30 на 10… Или вначале прибавим». Не владели учащиеся понятием «время процесса»: они не дифференцировали таких понятий, как момент начала, допустим, движения и время движения. Если в задаче говорилось, что поезд вышел из какого-то пункта в 6 часов утра, то учащиеся принимали это за время движения поезда и при нахождении пути скорость умножали на 6 часов. Оказалось, что испытуемые не понимают и отношений между скоростью процесса, временем и продуктом (пройденным путем, например), к которому этот процесс приводит. Никто из учащихся не смог сказать, что ему надо знать, чтобы ответить на вопрос задачи. (Даже те ученики, которые справляются с решением задач, не всегда умеют ответить на этот вопрос.) Значит, для учащихся величины, содержащиеся в условии и в вопросе задачи, не выступают как система, где эти величины связаны определенными отношениями. А именно понимание этих отношений и дает возможность сделать правильный выбор арифметического действия.

Все сказанное приводит нас к выводу: трудности в решении арифметических задач часто лежат за пределами арифметики как таковой. Главным условием, обеспечивающим успешное решение арифметических задач, является понимание учениками той ситуации, которая описана в задаче. Отсюда следует, что при изучении арифметических задач необходимо формировать приемы анализа таких ситуаций, которые являются не арифметическими, а физическими, экономическими и т. д.

В школе этого обычно не делают, поэтому многие ученики и затрудняются в решении арифметических задач.

Важно также отметить, что приемы решения задач должны формироваться по возможности в обобщенном виде.

Так, в арифметике существует более 30 разновидностей задач, связанных с различными процессами. Большинство из них в школе усваивается как самостоятельные типы. Особенности ситуации, описанной в задаче, определяют способ ее решения.

Элементы ситуации можно выделить в том частном виде, в каком они описаны в той или иной задаче: корм, израсходованный за день; путь, пройденный пешеходом за час; вода, вытекающая в течение минуты, и т. д. Но эти же элементы могут быть сразу рассмотрены как частные проявления более общих величин и их отношений, характерных для любого процесса: каждая конкретная задача данного типа связана с протеканием какого-то частного процесса. Следовательно, учеников надо научить видеть в ней то, что характеризует любой процесс: действующие силы, скорость процесса (V), время протекания его (Т) и результат, продукт, к которому приводит этот процесс или который он уничтожает (S). В этом случае все названные задачи выступают перед учениками всего лишь как варианты задач на процессы. Умение решать эти задачи предполагает усвоение определенной системы понятий — скорость, время, продукт процесса, а также отношений между ними.

После этого ученикам может быть дан общий метод анализа условий задачи на языке процессов, составления схемы ситуации и плана решения. В любой задаче на процессы ученик выделяет теперь действующие силы, характер их взаимодействия (помогают или противодействуют друг другу), скорость их действия и т. д. В результате учащиеся овладевают умением видеть за разнообразием сюжетов, описанных в задачах, одну и ту же сущность: величины, характеризующие процесс, и их отношения.

Следующий шаг — научить находить одни величины через другие в общей же форме. В частности, при одной действующей силе любая величина из трех основных (V, Г, S) может быть найдена при наличии двух остальных. Допустим, решается задача, где искомым является количество деталей, которые изготовляют три бригады за час. Учащиеся обозначают это как общую скорость процесса (У0). Затем они в общей же форме находят величины, с помощью которых это искомое можно получить. Ученики после усвоения основных элементов и их отношений знают, что V0 может быть получена только двумя путями: или через общее время (Т0) и общий продукт (S0), или через скорости отдельных участников. И они изображают следующее:

Т0.

Т0

Затем они анализируют условие задачи дальше и устанавливают, допустим, что Г0 есть, a S0 нет и т. д. Тогда схема приобретает такой вид (сплошная линия — знак известного, пунктирная — знак неизвестного):

Специфические приемы познавательной деятельности.
Специфические приемы познавательной деятельности.

Теперь учащийся должен установить, можно ли найти S0 или V3. Он знает, что S0 можно найти двумя путями: через Т0 и через V0 или через S частные. Поскольку первый путь в данном случае невозможен (V0 не известно), то остается один — через частные S.

Так, продолжая анализ на языке процесса, ученик получал в дан ном случае такую схему:

Специфические приемы познавательной деятельности.

На схеме видно, что путь, намеченный справа, приводит к решению. Другой решения не дает (Г3 узнать невозможно).

На основе схемы ситуации учащиеся составляют план решения задачи и реализуют его. Исполнительные операции никакого труда для них не составляют, так как они в предыдущем обучении уже усвоили математическое выражение тех отношений, которые существуют между основными элементами.

Опыт показал, что при таком обучении даже самые слабые ученики III класса усваивают общий прием решения задач на процессы и успешно применяют его.

Замена частных приемов познавательной деятельности обобщенными существенно повышает развивающий эффект обучения, способствует формированию теоретического мышления учащихся. Вместе с тем это связано с заменой частных знаний новыми, раскрывающими сущность, стоящую за конкретными ее проявлениями. Так, например, в русском языке имеется около 250 пунктуационных правил. Анализ показал, что все они могут быть заменены тремя обобщенными. Но при этом учащихся необходимо учить новым знаниям, раскрывающим сущность тех функций, которые выполняют частные правила. Оказалось, что с этой точки зрения все множество этих правил можно разделить на три группы: обеспечивающие выделение, разделение и соединение слов или предложений. Эти три правила и отражают суть пунктуации, а многочисленные частные правила — это разные виды проявления этой сути. Так, например, правило обособления и правило выделения деепричастного оборота — это частные случаи выделения. Когда учащихся научили ориентироваться на эти новые знания, то они безошибочно расставляли знаки препинания, не заучивая ни одного правила из 250[1].

Это означает, что обобщенные виды познавательной деятельности могут быть сформированы только при соответствующем построении учебных предметов. Их содержанием должны быть не частные явления, следующие друг за другом и усваиваемые по отдельности, а стоящая за ними сущность. Частные же явления в этом случае будут выступать уже не как предметы специального усвоения, а всего лишь как средства усвоения данной сущности, которая познается через явление. Принципиальная разница состоит в том, что с самого начала ученик учится смотреть на каждое частное явление глазами сущности, понимает это явление как одно из ее проявлений.

Например, арифметические задачи на движение выступают перед учеником не как самостоятельный вид, а как разновидность, вариант задач, связанных с процессами.

Овладение общими методами познавательной деятельности позволяет учащимся не только самостоятельно анализировать новые частные явления, но часто и создавать их. Так, при изучении арифметических задач учащиеся свободно составляют все новые и новые их разновидности. При этом они вначале составляют абстрактную схему задачи, оперируя основными величинами, а потом легко придумывают сюжеты. Аналогичные данные получены при изучении современных металлорежущих станков. Когда учащиеся при работе с несколькими станками усвоили метод, ориентированный на то общее, фундаментальное, на чем основано все множество современных станков для холодной обработки металлов резанием, то они предложили варианты новых станков данного класса, которых нет, но которые могут быть сконструированы и успешно будут работать. В данном случае это открывает путь к подлинному политехнизму обучения. Если учитель умеет строить обобщенные виды познавательной деятельности, то он сможет эффективно оказывать помощь и тем ученикам, которые в предыдущем обучении не овладели ими.

В качестве примера возьмем решение тех же арифметических задач на процессы. Когда ученик не может решить задачу, ему нередко или показывают, как это делать, или просто советуют получше подумать. Совет дать легко, но выполнить его ученик не всегда может, так как часто задача не выходит именно потому, что ученик не умеет думать. Учитель, желая помочь ему, должен показать, что же надо сделать, чтобы «подумалось». Но для этого и надо знать, из каких умственных действий состоит процесс решения любой задачи данного класса, в каком порядке они должны выполняться.

Естественно, что овладение обобщенными приемами познавательной деятельности не только повышает уровень познавательных возможностей учащихся, качество усвоения знаний, но и сокращает время, необходимое для обучения.

Итак, нельзя заботиться о знаниях, не заботясь о деятельности, в которую эти знания входят. При изучении любого предмета надо заботиться не о количестве изученных фактов и не о количестве выработанных навыков, а о формировании основных обобщенных видов познавательной деятельности — логических и специфических.

Если мы формируем частные познавательные приемы, то у обучаемых будет эмпирическое мышление. Если же мы даем приемы, ориентированные на сущность, характерную для целей системы частных случаев, то ученики получают возможность теоретически мыслить, овладевают умением видеть за частными проявлениями сущность, умением ориентироваться на нее и в силу этого самостоятельно продвигаться в данной области знаний[2].

  • [1] См.: Микулинская М. Я. Формирование обобщенных пунктуационных навыков //Управление познавательной деятельностью учащихся. М., 1972. С. 134—163.
  • [2] Подробнее об этом см.: Давыдов В. В. Виды обобщения в обучении. М., 1972.
Показать весь текст
Заполнить форму текущей работой