ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число

ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°ΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ПозТС Евдокс Книдский (410 ΠΈΠ»ΠΈ 408 Π³. Π΄ΠΎ Π½. э. — 355 ΠΈΠ»ΠΈ 347 Π³. Π΄ΠΎ Π½.э.) Ρ€Π°Π·Π²ΠΈΠ» Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΉ, которая ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»Π° Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ. Π­Ρ‚ΠΎ послуТило основаниСм для понимания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ сути ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° стала ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π½Π΅ Ρ‡ΠΈΡΠ»ΠΎΠΌ, Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ сущностСй, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, ΡƒΠ³Π»Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ±ΡŠΡ‘ΠΌΡ‹, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

1. Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ числом

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°ΠΌΠ»ΡŒΠ½ΠΎΠ΅ числом — это вСщСствСнноС число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ ΡΠ²Π»ΡΠ΅Ρ‚ся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСнным Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, Π³Π΄Π΅ m — Ρ†Π΅Π»ΠΎΠ΅ число, n -Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ число. О ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², нСсоизмСримых с ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, Π·Π½Π°Π»ΠΈ ΡƒΠΆΠ΅ Π΄Ρ€Π΅Π²Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ: ΠΈΠΌ Π±Ρ‹Π»Π° извСстна, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ ΡΡ‚ΠΎΡ€ΠΎΠ½Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Ρ‡Ρ‚ΠΎ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ числа. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ обозначаСтся Π·Π°Π³Π»Π°Π²Π½ΠΎΠΉ латинской Π±ΡƒΠΊΠ²ΠΎΠΉ «i» Π² ΠΏΠΎΠ»ΡƒΠΆΠΈΡ€Π½ΠΎΠΌ Π½Π°Ρ‡Π΅Ρ€Ρ‚Π°Π½ΠΈΠΈ Π±Π΅Π· Π·Π°Π»ΠΈΠ²ΠΊΠΈ —. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:, Ρ‚. Π΅. мноТСство ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ мноТСств вСщСствСнных ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.

ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π±Ρ‹Π»Π° нСявным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ воспринята индийскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ Π² VII Π²Π΅ΠΊΠ΅ Π΄ΠΎ Π½Π°ΡˆΠ΅ΠΉ эры, ΠΊΠΎΠ³Π΄Π° Манава (ΠΎΠΊ. 750 Π³. Π΄ΠΎ Π½. э. — ΠΎΠΊ. 690 Π³. Π΄ΠΎ Π½. э.) выяснил, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ 2 ΠΈ 61, Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ явно Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹.

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ сущСствования ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ приписываСтся Гиппасу ΠΈΠ· ΠœΠ΅Ρ‚Π°ΠΏΠΎΠ½Ρ‚Π° (ΠΎΠΊ. 500 Π³Π³. Π΄ΠΎ Π½. э.), ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°ΡˆΡ‘Π» это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, изучая Π΄Π»ΠΈΠ½Ρ‹ сторон ΠΏΠ΅Π½Ρ‚Π°Π³Ρ€Π°ΠΌΠΌΡ‹. Π’ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π΅Π² ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ сущСствуСт Сдиная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π΄Π»ΠΈΠ½Ρ‹, достаточно малая ΠΈ Π½Π΅Π΄Π΅Π»ΠΈΠΌΠ°Ρ, которая Ρ†Π΅Π»ΠΎΠ΅ число Ρ€Π°Π· Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² Π»ΡŽΠ±ΠΎΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ. Однако Гиппас обосновал, Ρ‡Ρ‚ΠΎ Π½Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΠ΅Ρ‚ Π΅Π΄ΠΈΠ½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Π΄Π»ΠΈΠ½Ρ‹, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Π΅Ρ‘ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡŽ. Он ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ссли Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° содСрТит Ρ†Π΅Π»ΠΎΠ΅ число Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², Ρ‚ΠΎ ΡΡ‚ΠΎ число Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΈ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ, ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ выглядСло ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ ΠΊ Π΄Π»ΠΈΠ½Π΅ ΠΊΠ°Ρ‚Π΅Ρ‚Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ ΠΊΠ°ΠΊ a: b, Π³Π΄Π΅ a ΠΈ b Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ наимСньшими ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ….

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°: a? = 2b?.

Π’Π°ΠΊ ΠΊΠ°ΠΊ a? Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, a Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ (Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ³ΠΎ числа Π±Ρ‹Π» Π±Ρ‹ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ).

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ a: b Π½Π΅ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΠΌΠ°, b ΠΎΠ±ΡΠ·Π°Π½ΠΎ Π±Ρ‹Ρ‚ΡŒ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ.

Π’Π°ΠΊ ΠΊΠ°ΠΊ a Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ a = 2y.

Π’ΠΎΠ³Π΄Π° a? = 4y? = 2b?.

b? = 2y?, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ b? Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, Ρ‚ΠΎΠ³Π΄Π° ΠΈ b Ρ‡Π΅Ρ‚Π½ΠΎ.

Однако Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ b Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ΅. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

ГрСчСскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π½Π°Π·Π²Π°Π»ΠΈ это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ нСсоизмСримых Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ алогос (Π½Π΅Π²Ρ‹Ρ€Π°Π·ΠΈΠΌΡ‹ΠΌ), ΠΎΠ΄Π½Π°ΠΊΠΎ согласно Π»Π΅Π³Π΅Π½Π΄Π°ΠΌ Π½Π΅ Π²ΠΎΠ·Π΄Π°Π»ΠΈ Гиппасу Π΄ΠΎΠ»ΠΆΠ½ΠΎΠ³ΠΎ уваТСния. БущСствуСт Π»Π΅Π³Π΅Π½Π΄Π°, Ρ‡Ρ‚ΠΎ Гиппас ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΠ» ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅, Π½Π°Ρ…ΠΎΠ΄ΡΡΡŒ Π² ΠΌΠΎΡ€ΡΠΊΠΎΠΌ ΠΏΠΎΡ…ΠΎΠ΄Π΅, ΠΈ Π±Ρ‹Π» Π²Ρ‹Π±Ρ€ΠΎΡˆΠ΅Π½ Π·Π° Π±ΠΎΡ€Ρ‚ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π°ΠΌΠΈ «Π·Π° ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ элСмСнта всСлСнной, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π΅Ρ‚ Π΄ΠΎΠΊΡ‚Ρ€ΠΈΠ½Ρƒ, Ρ‡Ρ‚ΠΎ всС сущности Π²ΠΎ Π²ΡΠ΅Π»Π΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ свСдСны ΠΊ Ρ†Π΅Π»Ρ‹ΠΌ числам ΠΈ ΠΈΡ… ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌ». ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Гиппаса поставило ΠΏΠ΅Ρ€Π΅Π΄ пифагорСйской ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ, Ρ€Π°Π·Ρ€ΡƒΡˆΠΈΠ² лСТавшСС Π² ΠΎΡΠ½ΠΎΠ²Π΅ всСй Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ числа ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚ричСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π΅Π΄ΠΈΠ½Ρ‹ ΠΈ Π½Π΅Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌΡ‹.

Π€Π΅ΠΎΠ΄ΠΎΡ€ ΠšΠΈΡ€Π΅Π½ΡΠΊΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΄ΠΎ 17 (ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ, СстСствСнно, Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ — 1, 4, 9 ΠΈ 16), Π½ΠΎ ΠΎΡΡ‚ановился Π½Π° ΡΡ‚ΠΎΠΌ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ имСвшаяся Π² Π΅Π³ΠΎ инструмСнтарии Π°Π»Π³Π΅Π±Ρ€Π° Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ»Π° Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· 17. По ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, историками ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π±Ρ‹Π»ΠΎ высказано нСсколько Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Богласно Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌΡƒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π–Π°Π½Π° Π˜Ρ‚Π°Ρ€Π° (1961), ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ основано Π½Π° ΠΏΠΈΡ„агорСйской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… ΠΈ Π½Π΅Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… чисСл, Π² Ρ‚ΠΎΠΌ числС — Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число Π·Π° Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ дСлится Π½Π° Π²ΠΎΡΠ΅ΠΌΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… чисСл.

ПозТС Евдокс Книдский (410 ΠΈΠ»ΠΈ 408 Π³. Π΄ΠΎ Π½. э. — 355 ΠΈΠ»ΠΈ 347 Π³. Π΄ΠΎ Π½.э.) Ρ€Π°Π·Π²ΠΈΠ» Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΉ, которая ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»Π° Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ. Π­Ρ‚ΠΎ послуТило основаниСм для понимания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ сути ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° стала ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π½Π΅ Ρ‡ΠΈΡΠ»ΠΎΠΌ, Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ сущностСй, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, ΡƒΠ³Π»Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ±ΡŠΡ‘ΠΌΡ‹, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ — сущностСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ (Π² ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ этого слова). Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π±Ρ‹Π»ΠΈ противопоставлСны числам, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ лишь «ΠΏΡ€Ρ‹ΠΆΠΊΠ°ΠΌΠΈ» ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ числа ΠΊ ΡΠΎΡΠ΅Π΄Π½Π΅ΠΌΡƒ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, с 4 Π½Π° 5. Числа ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠ΅ΠΉ Π½Π΅Π΄Π΅Π»ΠΈΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ бСсконСчно.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½ΠΈΠΊΠ°ΠΊΠΎΠ΅ количСствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΠ»ΠΎΡΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Евдокс смог ΠΎΡ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ ΠΈ ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΡ‹Π΅, ΠΈ Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΡ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΄Ρ€ΠΎΠ±ΠΈ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π΄Π²ΡƒΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΈ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ ΠΊΠ°ΠΊ равСнства Π΄Π²ΡƒΡ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π£Π±Ρ€Π°Π² ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ количСствСнныС значСния (числа), ΠΎΠ½ ΠΈΠ·Π±Π΅ΠΆΠ°Π» Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, состоящСй Π² Π½Π΅ΠΎΠ±Ρ…одимости Π½Π°Π·Π²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ числом. ВСория Евдокса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° грСчСским ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌ ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΡ‚ΡŒ нСвСроятный прогрСсс Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, прСдоставив ΠΈΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ логичСскоС обоснованиС для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΡ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ. «ΠšΠ½ΠΈΠ³Π° 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ²» Π•Π²ΠΊΠ»ΠΈΠ΄Π° посвящСна классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° ознамСновались принятиСм Ρ‚Π°ΠΊΠΈΡ… понятий ΠΊΠ°ΠΊ ноль, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа, Ρ†Π΅Π»Ρ‹Π΅ ΠΈ Π΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ числа, спСрва индийскими, Π·Π°Ρ‚Π΅ΠΌ китайскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ. ПозТС ΠΏΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ»ΠΈΡΡŒ арабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌΠΈ стали ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа алгСбраичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ (наряду ΠΈ Π½Π° Ρ€Π°Π²Π½Ρ‹Ρ… ΠΏΡ€Π°Π²Π°Ρ… с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами), Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΡŒ дисциплину, Π½Ρ‹Π½Π΅ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π°Π»Π³Π΅Π±Ρ€ΠΎΠΉ.

АрабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ соСдинили дрСвнСгрСчСскиС понятия «Ρ‡ΠΈΡΠ»Π°» ΠΈ «Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹» Π² Π΅Π΄ΠΈΠ½ΡƒΡŽ, Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΡƒΡŽ идСю вСщСствСнных чисСл. Они критичСски ΠΎΡ‚Π½ΠΎΡΠΈΠ»ΠΈΡΡŒ ΠΊ ΠΏΡ€Π΅Π΄ΡΡ‚авлСниям Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΎΠ± ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΡ…, Π² ΠΏΡ€ΠΎΡ‚ивовСс Π΅ΠΉ ΠΎΠ½ΠΈ Ρ€Π°Π·Π²ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΠ»ΠΈ понятиС числа Π΄ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π’ ΡΠ²ΠΎΠΈΡ… коммСнтариях Π½Π° ΠšΠ½ΠΈΠ³Ρƒ 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π•Π²ΠΊΠ»ΠΈΠ΄Π°, пСрсидский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль ΠœΠ°Ρ…Π°Π½ΠΈ (ΠΎΠΊ 800 Π³Π³. Π½. э.) исслСдовал ΠΈ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π» ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа (числа Π²ΠΈΠ΄Π°) ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΠΈΠ΅ кубичСскиС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа. Он Π΄Π°Π» ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Он Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π» этими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, Π½ΠΎ Ρ€Π°ΡΡΡƒΠΆΠ΄Π°Π» ΠΊΠ°ΠΊ ΠΎΠ± ΠΎΠ±ΠΎΡΠΎΠ±Π»Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ [Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ] являСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 10, 12, 3%, 6% ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ произнСсСны ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ количСствСнно. Π§Ρ‚ΠΎ Π½Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ произнСсти ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ количСствСнно. НапримСр, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ чисСл Ρ‚Π°ΠΊΠΈΡ… Ρ‚Π°ΠΊ 10, 15, 20 — Π½Π΅ ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°ΠΌΠΈ.

Π’ ΠΏΡ€ΠΎΡ‚ивовСс ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Π•Π²ΠΊΠ»ΠΈΠ΄Π°, Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡΡƒΡ‚ΡŒ Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, Аль ΠœΠ°Ρ…Π°Π½ΠΈ считал Ρ†Π΅Π»Ρ‹Π΅ числа ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΈ ΠΊΡƒΠ±ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΊΠΎΡ€Π½ΠΈ — ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Он Ρ‚Π°ΠΊΠΆΠ΅ Π²Π²Π΅Π» арифмСтичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Ρƒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½: Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ слоТСния ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ.

ЕгипСтский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Абу Камил (ΠΎΠΊ. 850 Π³. Π½. э. — ΠΎΠΊ. 930 Π³. Π½.э.) Π±Ρ‹Π» ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ, ΠΊΡ‚ΠΎ счСл ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ коэффициСнтами Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡΡ… — Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ, Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΈΠ»ΠΈ кубичСских ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠΉ стСпСни. Π’ X Π²Π΅ΠΊΠ΅ иракский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль Π₯ашими Π²Ρ‹Π²Π΅Π» ΠΎΠ±Ρ‰ΠΈΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° (Π° Π½Π΅ Π½Π°Π³Π»ΡΠ΄Π½Ρ‹Π΅ гСомСтричСскиС дСмонстрации) ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ произвСдСния, частного ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ½Ρ‹Ρ… матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π°Π΄ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Ал Π₯Π°Π·ΠΈΠ½ (900 Π³. Π½.э. — 971 Π³. Π½.э.) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹:

ΠŸΡƒΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° содСрТится Π² Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ нСсколько Ρ€Π°Π·, Ρ‚ΠΎΠ³Π΄Π° эта [данная] Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° соотвСтствуСт Ρ†Π΅Π»ΠΎΠΌΡƒ числу… КаТдая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая составляСт ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ, ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒ, ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΈΠ»ΠΈ, сравнСнная с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ составляСт Ρ‚Ρ€ΠΈ пятых ΠΎΡ‚ Π½Π΅Π΅, это Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°. И Π² Ρ†Π΅Π»ΠΎΠΌ, всякая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая относится ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎ число ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ. Если ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСна ΠΊΠ°ΠΊ нСсколько ΠΈΠ»ΠΈ Ρ‡Π°ΡΡ‚ΡŒ (l/n), ΠΈΠ»ΠΈ нСсколько частСй (m/n) Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΎΠ½Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ нСвыразимая ΠΈΠ½Π°Ρ‡Π΅ ΠΊΠ°ΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ€Π½Π΅ΠΉ.

МногиС ΠΈΠ· ΡΡ‚ΠΈΡ… ΠΈΠ΄Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ·ΠΆΠ΅ пСрСняты СвропСйскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ послС ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° Π½Π° Π»Π°Ρ‚Ρ‹Π½ΡŒ арабских тСкстов Π² XII Π²Π΅ΠΊΠ΅. Аль Π₯ассар, арабский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ ΠΈΠ· ΠœΠ°Π³Ρ€ΠΈΠ±Π°, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΠΉΡΡ Π½Π° ΠΈΡΠ»Π°ΠΌΡΠΊΠΈΡ… Π·Π°ΠΊΠΎΠ½Π°Ρ… ΠΎ Π½Π°ΡΠ»Π΅Π΄ΡΡ‚Π²Π΅, Π² XII Π²Π΅ΠΊΠ΅ Π²Π²Π΅Π» ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΡΠΈΠΌΠ²ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½ΠΎΡ‚Π°Ρ†ΠΈΡŽ для Π΄Ρ€ΠΎΠ±Π΅ΠΉ, Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ² Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ. Π’Π° ΠΆΠ΅ Π½ΠΎΡ‚ация появилась Π·Π°Ρ‚Π΅ΠΌ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π€ΠΈΠ±ΠΎΠ½Π°Ρ‡Ρ‡ΠΈ Π² XIII Π²Π΅ΠΊΠ΅. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ XIV—XVI Π²Π². ΠœΠ°Π΄Ρ…Π°Π²Π° ΠΈΠ· Π‘Π°Π½Π³Π°ΠΌΠ°Π³Ρ€Π°ΠΌΡ‹ ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΠΈ ΠšΠ΅Ρ€Π°Π»ΡŒΡΠΊΠΎΠΉ ΡˆΠΊΠΎΠ»Ρ‹ астрономии ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ исслСдовали бСсконСчныС ряды, сходящиСся ΠΊ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числам, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊ Ρ€, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ДТСстадСва ΠΏΡ€ΠΈΠ²Π΅Π» эти Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² ΠΊΠ½ΠΈΠ³Π΅ Π™ΡƒΠΊΡ‚ΠΈΠ±Ρ…Π°Π·Π°.

Π’ XVII Π²Π΅ΠΊΠ΅ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΡ‡Π½ΠΎ ΡƒΠΊΡ€Π΅ΠΏΠΈΠ»ΠΈΡΡŒ комплСксныС числа, Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… внСсли Абрахам Π΄Π΅ ΠœΡƒΠ°Π²Ρ€ (1667−1754) ΠΈ Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ (1707−1783). Когда тСория комплСксных чисСл Π² XIX Π²Π΅ΠΊΠ΅ стала Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ ΠΈ Ρ‡Ρ‘Ρ‚ΠΊΠΎΠΉ, стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° Π°Π»Π³Π΅Π±Ρ€Π°ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΈ Ρ‚рансцСндСнтныС (Π΄ΠΎΠΊΠ°Π·Π°Π² ΠΏΡ€ΠΈ этом сущСствованиС трансцСндСнтных чисСл), Ρ‚Π΅ΠΌ самым пСрСосмыслив Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΏΠΎ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. По ΡΡ‚ΠΎΠΉ Ρ‚Π΅ΠΌΠ΅ Π² 1872 Π±Ρ‹Π»ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°, Π“Π΅ΠΉΠ½Π΅, ΠšΠ°Π½Ρ‚ΠΎΡ€Π° ΠΈ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄Π°. Π₯отя Π΅Ρ‰Ρ‘ Π² 1869 Π³ΠΎΠ΄Ρƒ ΠœΠ΅Ρ€Ρ Π½Π°Ρ‡Π°Π» рассмотрСния, схоТиС с Π“Π΅ΠΉΠ½Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ 1872 Π³ΠΎΠ΄ принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π³ΠΎΠ΄ΠΎΠΌ роТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ. Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡ, ΠšΠ°Π½Ρ‚ΠΎΡ€ ΠΈ Π“Π΅ΠΉΠ½Π΅ обосновывали свои Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ бСсконСчных рядов, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ Ρ€Π°Π±ΠΎΡ‚Π°Π» с (Π½Ρ‹Π½Π΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌ) Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ΠΌ сСчСниСм мноТСства вСщСствСнных чисСл, раздСляя всС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° Π΄Π²Π° мноТСства с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹ΠΌΠΈ характСристичСскими свойствами.

Π¦Π΅ΠΏΠ½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, тСсно связанныС с ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами (цСпная Π΄Ρ€ΠΎΠ±ΡŒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Π΄Π°Π½Π½ΠΎΠ΅ число, бСсконСчна Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ), Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ исслСдованы ΠšΠ°Ρ‚Π°Π»ΡŒΠ΄ΠΈ Π² 1613 Π³ΠΎΠ΄Ρƒ, Π·Π°Ρ‚Π΅ΠΌ снова ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ»ΠΈ ΠΊ ΡΠ΅Π±Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π­ΠΉΠ»Π΅Ρ€Π°, Π° Π² Π½Π°Ρ‡Π°Π»Π΅ XIX Π²Π΅ΠΊΠ° — Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π›Π°Π³Ρ€Π°Π½ΠΆΠ°. Π”ΠΈΡ€ΠΈΡ…Π»Π΅ Ρ‚Π°ΠΊΠΆΠ΅ внёс Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ.

Π’ 1761 Π³ΠΎΠ΄Ρƒ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ρ€ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‡Ρ‚ΠΎ en ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈ любом Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΌ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ n. Π₯отя Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π½Π΅Π·Π°Π²Π΅Ρ€ΡˆΡ‘Π½Π½Ρ‹ΠΌ, принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Π³ΠΎ достаточно строгим, особСнно учитывая врСмя Π΅Π³ΠΎ написания. Π›Π΅ΠΆΠ°Π½Π΄Ρ€ Π² 1794 Π³ΠΎΠ΄Ρƒ, послС ввСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ БСссСля-ΠšΠ»ΠΈΡ„Ρ„ΠΎΡ€Π΄Π°, ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ρ€Π† ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€ ΡΠ»Π΅Π΄ΡƒΠ΅Ρ‚ Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΠΎ (Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ Π΄Π°Π»ΠΎ Π±Ρ‹ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅). БущСствованиС трансцСндСнтных чисСл Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π›ΠΈΡƒΠ²ΠΈΠ»Π»Π΅ΠΌΠ² 1844—1851 Π³ΠΎΠ΄Π°Ρ…. ПозТС Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€ (1873) ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ… ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π», Ρ‡Ρ‚ΠΎ любой ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» вСщСствСнного ряда содСрТит бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ трансцСндСнтных чисСл. Π¨Π°Ρ€Π»ΡŒ Π­Ρ€ΠΌΠΈΡ‚ Π΄ΠΎΠΊΠ°Π·Π°Π» Π² 1873 Π³ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ e Ρ‚рансцСндСнтно, Π° Π€Π΅Ρ€Π΄ΠΈΠ½Π°Π½Π΄ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½ Π² 1882 Π³ΠΎΠ΄Ρƒ, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° ΡΡ‚ΠΎΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅, ΠΏΠΎΠΊΠ°Π·Π°Π» Ρ‚Ρ€Π°Π½ΡΡ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ρ€. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½Π½Π° Π±Ρ‹Π»ΠΎ Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠΎΠΌ Π² 1885 Π³ΠΎΠ΄Ρƒ, Π΅Ρ‰Ρ‘ Π±ΠΎΠ»Π΅Π΅ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π”Π°Π²ΠΈΠ΄ΠΎΠΌ Π“ΠΈΠ»ΡŒΠ±Π΅Ρ€Ρ‚ΠΎΠΌ Π² 1893 Π³ΠΎΠ΄Ρƒ ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΄ΠΎ ΠΏΠΎΡ‡Ρ‚ΠΈ элСмСнтарного ΠΠ΄ΠΎΠ»ΡŒΡ„ΠΎΠΌ Π“ΡƒΡ€Π²ΠΈΡ†Π΅ΠΌ ΠΈ ΠŸΠ°ΡƒΠ»Π΅ΠΌ Π“ΠΎΡ€Π΄Π°Π½ΠΎΠΌ.

Бвойства ВсякоС вСщСствСнноС число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ бСсконСчной дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ, ΠΏΡ€ΠΈ этом ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ½ΠΈ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ нСпСриодичСскими бСсконСчными дСсятичными дробями.

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ сСчСния Π² ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² Π½ΠΈΠΆΠ½Π΅ΠΌ классС Π½Π΅Ρ‚ наибольшСго, Π° Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΌ Π½Π΅Ρ‚ наимСньшСго числа.

КаТдоС трансцСндСнтноС число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ.

КаТдоС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число являСтся Π»ΠΈΠ±ΠΎ алгСбраичСским, Π»ΠΈΠ±ΠΎ трансцСндСнтным.

ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π²ΡΡŽΠ΄Ρƒ ΠΏΠ»ΠΎΡ‚Π½ΠΎ Π½Π° Ρ‡ΠΈΡΠ»ΠΎΠ²ΠΎΠΉ прямой: ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя числами имССтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.

ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл нСсчётно, являСтся мноТСством Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ.

Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠšΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 2 — ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ нСсократимой Π΄Ρ€ΠΎΠ±ΠΈ, Π³Π΄Π΅ m ΠΈ n — Ρ†Π΅Π»Ρ‹Π΅ числа. Π’ΠΎΠ·Π²Π΅Π΄Ρ‘ΠΌ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ равСнство Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚:

ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ трансцСндСнтный число Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°

.

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ m2 Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‘Ρ‚Π½ΠΎ ΠΈ m. ΠŸΡƒΡΠΊΠ°ΠΉ m = 2r, Π³Π΄Π΅ r Ρ†Π΅Π»ΠΎΠ΅. Π’ΠΎΠ³Π΄Π° Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, n2 Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‘Ρ‚Π½ΠΎ ΠΈ n. ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ m ΠΈ n Ρ‡Ρ‘Ρ‚Π½Ρ‹, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡ‚ нСсократимости Π΄Ρ€ΠΎΠ±ΠΈ. Π—Π½Π°Ρ‡ΠΈΡ‚, исходноС ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΌ, ΠΈ - ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.

log 23 — ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: log 23 Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, Π³Π΄Π΅ m ΠΈ n — Ρ†Π΅Π»Ρ‹Π΅ числа. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ log 23 > 0, m ΠΈ n ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Π’ΠΎΠ³Π΄Π°, Но 2m Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π° 3n Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎ. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

e — ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΆ (3) — v2 — v3 — v5 — Ρ† — Π± — e — Ρ€ — Π΄ Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

для любого Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ n, Π½Π΅ ΡΠ²Π»ΡΡŽΡ‰Π΅Π³ΠΎΡΡ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ

ex Π΄Π»Ρ любого Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ

ln x Π΄Π»Ρ любого ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ

Ρ€, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€n Π΄Π»Ρ любого Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ n

2. ВрансцСндСмнтноС числом

ВрансцСндСмнтноС числом (ΠΎΡ‚ Π»Π°Ρ‚. Transcendere — ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ, ΠΏΡ€Π΅Π²ΠΎΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ) — это вСщСствСнноС ΠΈΠ»ΠΈ комплСксноС число, Π½Π΅ ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ алгСбраичСским — ΠΈΠ½Ρ‹ΠΌΠΈ словами, число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠΎΡ€Π½Π΅ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° с Ρ†Π΅Π»Ρ‹ΠΌΠΈ коэффициСнтами.

Бвойства ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ трансцСндСнтных чисСл ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½ΠΎ.

КаТдоС трансцСндСнтноС вСщСствСнноС число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ, Π½ΠΎ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ Π½Π΅Π²Π΅Ρ€Π½ΠΎ. НапримСр, число - ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅, Π½ΠΎ Π½Π΅ Ρ‚рансцСндСнтноС: ΠΎΠ½ΠΎ являСтся ΠΊΠΎΡ€Π½Π΅ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° (ΠΈ ΠΏΠΎΡ‚ΠΎΠΌΡƒ являСтся алгСбраичСским).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ОснованиС Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² .

Число .

ДСсятичный Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ любого Ρ†Π΅Π»ΠΎΠ³ΠΎ числа, ΠΊΡ€ΠΎΠΌΠ΅ чисСл Π²ΠΈΠ΄Π° .

ΠΈ, для любого Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ алгСбраичСского числа (ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½Π°-Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°).

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ понятиС трансцСндСнтного числа Π²Π²Ρ‘Π» Π–. Π›ΠΈΡƒΠ²ΠΈΠ»Π»ΡŒ Π² 1844 Π³ΠΎΠ΄Ρƒ, ΠΊΠΎΠ³Π΄Π° Π΄ΠΎΠΊΠ°Π·Π°Π» Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ алгСбраичСскоС число Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ слишком Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π΄Ρ€ΠΎΠ±ΡŒΡŽ.

Π’ 1873 Π³ΠΎΠ΄Ρƒ Π¨. Π­Ρ€ΠΌΠΈΡ‚ Π΄ΠΎΠΊΠ°Π·Π°Π» Ρ‚Ρ€Π°Π½ΡΡ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ числа e (основания Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ²).

Π’ 1882 Π³ΠΎΠ΄Ρƒ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½ Π΄ΠΎΠΊΠ°Π·Π°Π» Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠΎ Ρ‚рансцСндСнтности стСпСни числа e Ρ Π½Π΅Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ алгСбраичСским ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ, Ρ‚Π΅ΠΌ самым Π΄ΠΎΠΊΠ°Π·Π°Π² Ρ‚Ρ€Π°Π½ΡΡ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ числа ΠΈ Π½Π΅Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΊΡ€ΡƒΠ³Π°.

Π’ 1900 Π³ΠΎΠ΄Ρƒ Π½Π° II ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌ ΠšΠΎΠ½Π³Ρ€Π΅ΡΡΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠ² Π“ΠΈΠ»ΡŒΠ±Π΅Ρ€Ρ‚ Π² Ρ‡ΠΈΡΠ»Π΅ сформулированных ΠΈΠΌ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ сформулировал ΡΠ΅Π΄ΡŒΠΌΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ: «Π•ΡΠ»ΠΈ, - алгСбраичСскоС число, ΠΈ - алгСбраичСскоС, Π½ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅, Π²Π΅Ρ€Π½ΠΎ Π»ΠΈ, Ρ‡Ρ‚ΠΎ - трансцСндСнтноС число?» Π’ Ρ‡Π°ΡΡ‚ности, являСтся Π»ΠΈ трансцСндСнтным число. Π­Ρ‚Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π±Ρ‹Π»Π° Ρ€Π΅ΡˆΠ΅Π½Π° Π² 1934 Π³ΠΎΠ΄Ρƒ Π“Π΅Π»ΡŒΡ„ΠΎΠ½Π΄ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ всС Ρ‚Π°ΠΊΠΈΠ΅ числа Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ трансцСндСнтными.

3. Число Ρ€

Число ΠΏΠΈ — ΠΎΠ΄Π½Π° ΠΈΠ· Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… матСматичСских констант, равная ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ Π΄Π»ΠΈΠ½Ρ‹ окруТности ΠΊ Π΅Π΅ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρƒ Π² ΠΏΡ€ΠΎΡΡ‚ранствС с Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ (плоской) ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΎΠΉ. НазваниС числа происходит ΠΎΡ‚ Π³Ρ€Π΅Ρ‡Π΅ΡΠΊΠΎΠΉ Π±ΡƒΠΊΠ²Ρ‹ «ΠΏΠΈ» (Ρ€), ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½ΠΎ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ обозначаСтся.

Число ΠΏΠΈ ΡΠ²Π»ΡΠ΅Ρ‚ся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Ρ†Π΅Π»Ρ‹Ρ… чисСл ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚авляСтся бСсконСчной нСпСриодичСской дСсятичной Π΄Ρ€ΠΎΠ±ΡŒΡŽ. Число ΠΏΠΈ ΡΠ²Π»ΡΠ΅Ρ‚ся трансцСндСнтным, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, Π½Π΅ ΡΠ²Π»ΡΠ΅Ρ‚ся ΠΊΠΎΡ€Π½Π΅ΠΌ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ° с Ρ†Π΅Π»Ρ‹ΠΌΠΈ коэффициСнтами.

Π’ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ числа ΠΏΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ. На ΠΏΡ€ΠΎΡ‚яТСнии всСй истории ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π½Π΅ ΠΏΡ€Π΅ΠΊΡ€Π°Ρ‰Π°Π΅Ρ‚ся Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ ΡƒΡ‚ΠΎΡ‡Π½Π΅Π½ΠΈΡŽ значСния числа ΠΏΠΈ. О Ρ‚ΠΎΠΌ, насколько Π΄Π°Π»Π΅ΠΊΠΎ ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΠ»ΠΈΡΡŒ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΡΡƒΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎ ΠΊΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Ρƒ дСсятичных Π·Π½Π°ΠΊΠΎΠ² числа ΠΏΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΈΠΌ ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ.

Π§Π΅Ρ‚Ρ‹Ρ€Π΅ тысячи Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄ Π½Π°Π΄Π΅ΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΈ извСстны всСго Π΄Π²Π° ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π·Π½Π°ΠΊΠ° числа ΠΏΠΈ. Π’ Π½Π°Ρ‡Π°Π»Π΅ XXI Π²Π΅ΠΊΠ° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ многопроцСссорных ΡΡƒΠΏΠ΅Ρ€ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ΠΎΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½Π° Π·Π½Π°ΠΊΠΎΠ² дСсятичной записи сила ΠΏΠΈ. Π’ΠΎ Π²ΡΠ΅ΠΉ этой ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ†ΠΈΡ„Ρ€ Π½Π΅ Π²Ρ‹ΡΠ²Π»Π΅Π½ΠΎ Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ закономСрности, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅ΠΉ Π½Π°Π΄Π΅ΠΆΠ½ΠΎ ΠΈΠ»ΠΈ хотя Π±Ρ‹ вСроятностно ΠΏΡ€Π΅Π΄ΡΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ дальнСйшиС Π·Π½Π°ΠΊΠΈ числа ΠΏΠΈ.

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ уточнСния числа ΠΏΠΈ (Ρ€)

25/8 = 3,125 — Вавилония, Π½Π°Ρ‡Π°Π»ΠΎ XIX Π². Π΄ΠΎ Π½. э.

256/81? 3,160 — Π•Π³ΠΈΠΏΠ΅Ρ‚, Π΄ΠΎ 1850 Π³. Π΄ΠΎ Π½. э. («ΠœΠΎΡΠΊΠΎΠ²ΡΠΊΠΈΠΉ матСматичСский папирус»)

339/108? 3,139 — Индия, IX Π². Π΄ΠΎ Π½. э. («Π¨Π°Ρ‚Π°ΠΏΠ°Ρ‚Ρ…Π°-Π±Ρ€Π°Ρ…ΠΌΠ°Π½Π°»)

223/71 (3,1408) < Ρ€ < 22/7 (3,1428) — АрхимСд, ГрСция, 250 Π³. Π΄ΠΎ Π½. э.

3,1416 — Π›ΡŽ Π₯уэй, ΠšΠΈΡ‚Π°ΠΉ (царство Вэй), 263 Π³.

3,1 415 926 < Ρ€ < 3,1 415 927 — Π¦Π·Ρƒ Π§ΡƒΠ½Ρ‡ΠΆΠΈ, ΠšΠΈΡ‚Π°ΠΉ, ΠΎΠΊ. 480 Π³.

3,14 159 265 359 — ΠœΠ°Π΄Ρ…Π°Π²Π° ΠΈΠ· Π‘Π°Π½Π³Π°ΠΌΠ°Π³Ρ€Π°ΠΌΠ°, Индия, ΠΎΠΊΠΎΠ»ΠΎ 1400 Π³.

16 Π·Π½Π°ΠΊΠΎΠ² — Π”ΠΆΠ΅ΠΌΡˆΠΈΠ΄ аль-Каши, ΠŸΠ΅Ρ€ΡΠΈΡ, 1424 Π³.

35 Π·Π½Π°ΠΊΠΎΠ² — Π›ΡŽΠ΄ΠΎΠ»ΡŒΡ„ Π²Π°Π½ Π¦Π΅ΠΉΠ»Π΅Π½, Голландия, ΠΎΠΊΠΎΠ»ΠΎ 1600 Π³. (ΠΏΠΎΡ‚Ρ€Π°Ρ‚ΠΈΠ» Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ ΠΆΠΈΠ·Π½ΠΈ)

100 Π·Π½Π°ΠΊΠΎΠ² — Π”ΠΆΠΎΠ½ ΠœΡΡ‡ΠΈΠ½, Англия, 1706 Π³.

200 Π·Π½Π°ΠΊΠΎΠ² — Захариас Π”Π°Π·Π΅, ГСрмания, 1844 Π³. (2 мСсяца устного счСта)

527 Π·Π½Π°ΠΊΠΎΠ² — Уильям ШСнкс, Англия, 1873 Π³. (15 Π»Π΅Ρ‚ вычислСний)

2037 Π·Π½Π°ΠΊΠΎΠ² — Π”ΠΆΠΎΠ½ Ρ„ΠΎΠ½ НСйман, БША, 1949 Π³. (ENIAC, 70 часов счСта)

16 167 Π·Π½Π°ΠΊΠΎΠ² — Ѐрансуа Π–Π΅Π½ΡŽΠΈ, Ѐранция, 1959 Π³. (IBM 704, 4,3 часа счСта)

1 001 250 Π·Π½Π°ΠΊΠΎΠ² — Π”ΠΆΠΈΠ½ Π“ΠΈΠΉΡƒ ΠΈ ΠœΠ°Ρ€Ρ‚ΠΈΠ½ Π‘ΡƒΠΉΠ΅, Ѐранция, 1973 Π³. (CDC 7600)

1 011 196 691 Π·Π½Π°ΠΊΠΎΠ² — Π±Ρ€Π°Ρ‚ΡŒΡ ЧудновскиС, БША, 1989 Π³. (IBM 3090, Π½Π° Π±Π°Π·Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π‘. Π Π°ΠΌΠ°Π½ΡƒΠ΄ΠΆΠ°Π½Π°)

206 158 430 000 Π·Π½Π°ΠΊΠΎΠ² — Ясумаса Канада, Япония, 1999 Π³.

1 241 100 000 000 Π·Π½Π°ΠΊΠΎΠ² — Ясумаса Канада, Япония, 2002 Π³. (HITACHI SR8000/MPP, 64 процСссора, 600 часов счСта)

10 000 000 000 050 Π·Π½Π°ΠΊΠΎΠ² — АлСксандСр Π™ΠΈ ΠΈ Π‘ΠΈΠ½Π³Π΅Ρ€Ρƒ Кондо, Япония, 16 ΠΎΠΊΡ‚ября 2011 (дСсктоп 2? Intel Xeon X5680 @ 3,33 Π“Π“Ρ†, 96 Π“Π±Π°ΠΉΡ‚ RAM, 30 HDD ΠΎΠ±Ρ‰Π΅ΠΉ Π΅ΠΌΠΊΠΎΡΡ‚ΡŒΡŽ 59 Π’Π±Π°ΠΉΡ‚, 191 дСнь счСта) Π’ΠΎΠ»ΡˆΠ΅Π±Π΅Π½ Π½Π΅ ΠΊΡ€ΡƒΠ³ — волшСбно ΠŸΠ˜ число, ΠœΠΈΡ€ сводило с ΡƒΠΌΠ° ΠΈ ΡΠ²ΠΎΠ΄ΠΈΡ‚ ΠΎΠ½ΠΎ. ВсС матСрия — ΠΊΡ€ΡƒΠ³, ΡˆΠ°Ρ€, колСсо, ПИ Ρ‡ΠΈΡΠ»ΠΎ-это Π² ΠΌΠΈΡ€ трансцСндСнтный ΠΎΠΊΠ½ΠΎ. ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ числа «ΠŸΠ˜» извСстно с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎ 500 ΠΌΠΈΠ»Π»ΠΈΠ°Ρ€Π΄ΠΎΠ² Π·Π½Π°ΠΊΠΎΠ², Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Ρ†ΠΈΡ„Ρ€Ρ‹ — 3.1 415 926 535. Π’ Π½Π΅ΠΌ Π½Π΅Ρ‚ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΉ цикличСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚, сколько Π±Ρ‹ Π΅Ρ‰Π΅ Π·Π½Π°ΠΊΠΎΠ² Π½ΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΠ»ΠΈ.

1. Π“Π΅Π»ΡŒΡ„ΠΎΠ½Π΄ А. О. ВрансцСндСнтныС ΠΈ Π°Π»Π³Π΅Π±Ρ€Π°ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ числа, М., 1952.

2. www.vokrugsveta.ru — ΡΡ‚Π°Ρ‚ΡŒΡ профСссора Виталия Π¦Π΅Π»ΠΈΡ‰Π΅Π²Π° «Π’сС Π΅ΡΡ‚ΡŒ число?» Π² ΠΆΡƒΡ€Π½Π°Π»Π΅ «Π’ΠΎΠΊΡ€ΡƒΠ³ свСта» № 9 (2816) Π·Π° ΡΠ΅Π½Ρ‚ΡΠ±Ρ€ΡŒ 2008 Π³.

3. lenta.ru — сообщСниС Π½Π° ΡΠ°ΠΉΡ‚Π΅ Π›Π΅Π½Ρ‚Π°.Ρ€Ρƒ «Ρ€ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΠ»ΠΈ с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎ 10 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² Π·Π½Π°ΠΊΠΎΠ²» ΠΎΡ‚ 20.10.2011.

4. numberworld.org — сайт Π°Π²Ρ‚ΠΎΡ€ΠΎΠ² расчСта 10 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² Π·Π½Π°ΠΊΠΎΠ² числа Ρ€.

5. Π’. Π“. Π‘ΠΏΡ€ΠΈΠ½Π΄ΠΆΡƒΠΊ, «Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… трансцСндСнтных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ», Изв. АН Π‘Π‘Π‘Π . Π‘Π΅Ρ€. ΠΌΠ°Ρ‚Π΅ΠΌ., (1968).

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ