Характеристика текстовой задачи и методика работы с ней
Математическая задача — это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ним определенными соотношениями, указанными в условии. Работе с текстовыми задачами следует уделить достаточно много времени, обращая внимание детей на поиск и сравнение различных способов решения… Читать ещё >
Характеристика текстовой задачи и методика работы с ней (реферат, курсовая, диплом, контрольная)
решение текстовый задача арифметический Математика — это орудие для размышления, в ее арсенале имеется большое количество задач, которые на протяжении тысячелетий способствовали формированию мышления людей, умению решать нестандартные задачи, с честью выходить из затруднительных положений.
Работе с текстовыми задачами следует уделить достаточно много времени, обращая внимание детей на поиск и сравнение различных способов решения задачи, построение математических моделей, грамотность изложения собственных рассуждений при решении задач.
Понятие текстовой задачи
Решение текстовых задач дает богатый материал для развития и воспитания учащихся. Эти задачи сформулированы на естественном языке, поэтому их называют текстовыми. В них обычно описывается количественная сторона каких-то явлений, событий, поэтому их часто называют сюжетными. Решая задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления. Большое значение имеет решение задач и в воспитании личности учащихся. Поэтому важно, чтобы учитель имел глубокие представления о текстовой задаче, о ее структуре, умел решать такие задачи различными способами. «Задача представляет собой требование или вопрос, на который надо найти ответ, опираясь на те условия, которые указаны в задаче и учитывая их» — отметил Л. М. Фридман в своей работе «Сюжетные задачи по математике».
Текстовая задача — есть описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между ее компонентами или определить вид этого отношения. Текстовые задачи могут быть абстрактного содержания, когда в тексте зависимости между числами описаны словесно (Найти два числа, если одно из них на 18 больше другого, а их сумма равна 80) или с определенным сюжетом (Билет для входа на стадион стоил 160 руб. После того, как плату за вход снизили, количество зрителей увеличилось на 50%, а выручка выросла на 25%. Сколько стоит билет после снижения платы за вход?).
Каждая задача — это единство условия и цели. Если нет одного из этих компонентов, то нет и задачи. Это очень важно иметь в виду, чтобы проводить анализ текста задачи с соблюдением такого единства. Это означает, что анализ условия задачи необходимо соотносить с вопросом задачи и, наоборот, вопрос задачи анализировать направленно с условием. Их нельзя разрывать, так как они составляют одно целое.
Математическая задача — это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ним определенными соотношениями, указанными в условии.
Любая текстовая задача состоит из двух частей: условия и требования (вопроса), причем условия и требования взаимосвязаны.
В условии соблюдаются сведения об объектах и некоторых величинах, характеризующих данные объекта, об известных и неизвестных значениях этих величин, об отношениях между ними.
Требования задачи — это указание того, что нужно найти. Оно может быть выражено предложением в повелительной или вопросительной форме («Найдите скорость велосипедистов или «Сколько километров проходил турист в каждый из трех дней?»). Требований в задаче может быть несколько.
Рассмотрим задачу: Свитер, шапку и шарф связали из 1 кг 200 г шерсти. На шарф потребовалось на 100 г шерсти больше, чем на шапку и на 400 г меньше, чем на свитер. Сколько шерсти израсходовали на каждую вещь?
Объекты задачи: шарф, шапка, свитер. Относительно этих объектов имеются определенные утверждения и требования.
Утверждения: Свитер, шапка, шарф связаны из 1200 г шерсти.
На шарф израсходовали на 100 г больше, чем на шапку.
На шапку израсходовали на 400 г меньше, чем на свитер.
Требования: Сколько шерсти израсходовали на свитер?
Сколько шерсти израсходовали на шапку?
Сколько шерсти израсходовали на шарф ?
В задаче три неизвестных значений величин, одно из которых заключено в требовании задачи. Это значение величины называется искомым.
Иногда задачи формируются таким образом, что часть условия или все условие включено в одно предложение с требованием задачи.
В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, то есть, такую, которая не нужна для выполнения требования задачи.
На основе возникающих в жизни задачных ситуаций могут быть сформулированы и задачи, в которых недостаточно информации для выполнения требований. Так в задаче: «Сколько литров воды в каждой бочке, если в первой на 48 л больше, чем в другой?» — недостаточно данных для ответа на ее вопрос. Чтобы решить эту задачу, необходимо ее дополнить недостающими данными.
Одна и та же задача может рассматриваться как задача с достаточным числом данных в зависимости от имеющихся и решающих значений.
Рассматривая задачу в узком смысле этого понятия, в ней можно выделить следующие составные элементы:
- 1. Словесное изложение сюжета, в котором явно или в завуалированной форме указана функциональная зависимость между величинами, числовые значения которых входят в задачу.
- 2. Числовые значения величин или числовые данные, о которых говорится в тексте задачи.
Задание, обычно сформулированное в виде вопроса, в котором предлагается узнать неизвестные значения одной или нескольких величин. Эти значения называют искомыми.
Понимая роль задачи и ее место в обучении и воспитании ученика, учитель должен подходить к подбору задачи и выбору способов решения обоснованно и четко знать, что должна дать ученику работа при решении данной им задачи.