Помощь в написании студенческих работ
Антистрессовый сервис

Определение потерь тепла в тепловых сетях

РефератПомощь в написанииУзнать стоимостьмоей работы

Однако, даже имея правильно определенные средние нормативные потери по всей городской ТС, нельзя эти данные переносить на отдельные ее участки, как это зачастую делается, например, при определении величины присоединенной тепловой нагрузки и выборе мощностей теплообменного и насосного оборудования строящегося или модернизируемого ЦТП. Необходимо их рассчитать для данного конкретного участка ТС… Читать ещё >

Определение потерь тепла в тепловых сетях (реферат, курсовая, диплом, контрольная)

В.Г. Хромченков, зав. лаб.,.

Г. В. Иванов, аспирант, Е. В. Хромченкова, студент, В данной работе обобщены некоторые результаты проведенных нами обследований участков тепловых сетей (ТС) системы теплоснабжения жилищно-коммунальной сферы с анализом существующего уровня потерь тепловой энергии в тепловых сетях. Работа выполнялась в различных регионах РФ, как правило, по просьбе руководства ЖКХ. Значительный объем исследований проводился также в рамках Проекта передачи ведомственного жилого фонда, связанного с кредитом Мирового Банка.

Определение потерь тепла при транспорте теплоносителя является важной задачей, результаты решения которой оказывают серьезное влияние в процессе формирования тарифа на тепловую энергию (ТЭ). Поэтому знание этой величины позволяет также правильно выбирать мощности основного и вспомогательного оборудования ЦТП и, в конечном счете, источника ТЭ. Величина тепловых потерь при транспорте теплоносителя может стать решающим фактором при выборе структуры системы теплоснабжения с возможной ее децентрализацией, выборе температурного графика ТС и др. Определение реальных тепловых потерь и сравнение их с нормативными значениями позволяет обосновать эффективность проведения работ по модернизации ТС с заменой трубопроводов и/или их изоляции.

Зачастую величина относительных тепловых потерь принимается без достаточных на то обоснований. На практике задаются значениями относительных тепловых потерь часто кратными пяти (10 и 15%). Следует отметить, что в последнее время все больше муниципальных предприятий проводят расчеты нормативных тепловых потерь [1], которые, на наш взгляд, и должны определяться в обязательном порядке. Нормативные потери тепла напрямую учитывают основные влияющие факторы: длину трубопровода, его диаметр и температуры теплоносителя и окружающей среды. Не учитывают только фактическое состояние изоляции трубопроводов. Нормативные тепловые потери должны рассчитываться для всей ТС с определением потерь тепла с утечками теплоносителя и с поверхности изоляции всех трубопроводов, по которым осуществляется теплоснабжение от имеющегося источника тепла. Причем эти расчеты должны выполняться как в плановом (расчетном) варианте с учетом среднестатистических данных по температуре наружного воздуха, грунта, продолжительности отопительного периода и т. д., так и уточняться в конце его по фактическим данным указанных параметров, в том числе с учетом фактических температур теплоносителя в прямом и обратном трубопроводе.

Однако, даже имея правильно определенные средние нормативные потери по всей городской ТС, нельзя эти данные переносить на отдельные ее участки, как это зачастую делается, например, при определении величины присоединенной тепловой нагрузки и выборе мощностей теплообменного и насосного оборудования строящегося или модернизируемого ЦТП. Необходимо их рассчитать для данного конкретного участка ТС, иначе можно получить существенную ошибку. Так, например, при определении нормативных потерь тепла для двух произвольно выбранных нами микрорайонов одного из городов Красноярской области, при примерно одинаковой их расчетной присоединенной тепловой нагрузке одного из них они составили 9,8%, а другого — 27%, т. е. оказались в 2,8 раза большими. Средняя же величина тепловых потерь по городу, принимаемая при проведении расчетов, — 15%. Таким образом, в первом случае тепловые потери оказались в 1,8 раза ниже, а в другом — в 1,5 раза выше средних нормативных потерь. Столь большая разница легко объясняется, если разделить количество переданного за год тепла на площадь поверхности трубопровода, через которую происходит потеря тепла. В первом случае это соотношение равно 22,3 Гкал/м2, а во втором — только 8,6 Гкал/м2, т. е. в 2,6 раза больше. Аналогичный результат можно получить, просто сравнив материальные характеристики участков тепловой сети.

Вообще же ошибка, при определении потерь тепла при транспорте теплоносителя на конкретном участке ТС по сравнению со средним значением, может быть очень большой.

Определение потерь тепла в тепловых сетях.

В табл. 1 представлены результаты обследования 5 участков ТС г. Тюмень (кроме расчетов нормативных потерь тепла, нами также были выполнены измерения фактических тепловых потерь с поверхности изоляции трубопроводов, см. ниже). Первый участок представляет собой магистральный участок ТС с большими диаметрами трубопровода и соответственно большими расходами теплоносителя. Все остальные участки ТС — тупиковые. Потребителями ТЭ на втором и третьем участке являются 2-х и 3-этажные здания, расположенные по двум параллельным улицам. Четвертый и пятый участки также имеют общую тепловую камеру, но если в качестве потребителей на четвертом участке имеются компактно расположенные относительно крупные четырех-и пятиэтажные дома, то на пятом участке — это частные одноэтажные дома, расположенные вдоль одной протяженной улицы.

Как видно из табл. 1, относительные реальные потери тепла на обследованных участках трубопроводов зачастую составляют почти половину от переданного тепла (участки № 2 и № 3). На участке № 5, где расположены частные дома, более 70% тепла теряется в окружающую среду, несмотря на то, что коэффициент превышения абсолютных потерь над нормативными значениями примерно такой же, как на остальных участках. Наоборот, при компактном расположении относительно крупных потребителей, потери тепла резко снижаются (участок № 4). Средняя скорость теплоносителя на этом участке составляет 0,75 м/с. Все это приводит к тому, что фактические относительные тепловые потери на этом участке более чем в 6 раз ниже, чем на остальных тупиковых участках, и составили всего 7,3%.

С другой стороны, на участке № 5 скорость теплоносителя в среднем составляет 0,2 м/с, причем на последних участках теплосети (в таблице не показано) из-за больших диаметров трубы и малых значений расходов теплоносителя она составляет всего 0,1−0,02 м/с. С учетом относительно большого диаметра трубопровода, а следовательно, и поверхности теплообмена, в грунт уходит большое количество тепла.

При этом надо иметь в виду, что количество тепла, теряемое с поверхности трубы, практически не зависит от скорости движения сетевой воды, а зависит только от ее диаметра, температуры теплоносителя и состояния изоляционного покрытия. Однако относительно количества передаваемого по трубопроводам тепла, тепловые потери напрямую зависят от скорости теплоносителя и резко возрастают при ее снижении. В предельном случае, когда скорость теплоносителя составляет сантиметры в секунду, т. е. вода практически стоит в трубопроводе, большая часть ТЭ может теряться в окружающую среду, хотя потери тепла могут и не превышать нормативные.

Таким образом, величина относительных тепловых потерь зависит от состояния изоляционного покрытия, и в значительной степени определяется также протяженностью ТС и диаметром трубопровода, скоростью движения теплоносителя по трубопроводу, тепловой мощностью присоединенных потребителей. Поэтому наличие в системе теплоснабжения мелких, удаленных от источника потребителей ТЭ может привести к росту относительных тепловых потерь на многие десятки процентов. Наоборот, в случае компактной ТС с крупными потребителями, относительные потери могут составлять считанные проценты от отпущенного тепла. Все это следует иметь в виду при проектировании систем теплоснабжения. Например, для рассмотренного выше участка № 5, возможно, более экономично было бы в частных домах установить индивидуальные газовые теплогенераторы.

В приведенном выше примере нами были определены, наряду с нормативными, фактические потери тепла с поверхности изоляции трубопроводов. Знание реальных тепловых потерь очень важно, т.к. они, как показал опыт, могут в несколько раз превышать нормативные значения. Такая информация позволит иметь представление о фактическом состоянии тепловой изоляции трубопроводов ТС, определить участки с наибольшими тепловыми потерями и рассчитать экономическую эффективность замены трубопроводов. Кроме того, наличие такой информации позволит обосновать реальную стоимость 1 Гкал отпущенного тепла в региональной энергетической комиссии. Однако, если тепловые потери, связанные с утечкой теплоносителя, можно определить по фактической подпитке ТС при наличии соответствующих данных на источнике ТЭ, а при их отсутствии рассчитать их нормативные значения, то определение реальных потерь тепла с поверхности изоляции трубопроводов является весьма трудной задачей.

В соответствии с [2] для определения фактических тепловых потерь на испытываемых участках двухтрубной водяной ТС и сравнения их с нормативными значениями, должно быть организовано циркуляционное кольцо, состоящее из прямого и обратного трубопроводов с перемычкой между ними. Все ответвления и отдельные абоненты должны быть от него отсоединены, а расход на всех участках ТС должен быть одинаков. При этом минимальный объем испытываемых участков по материальной характеристике должен быть не менее 20% материальной характеристики всей сети, а перепад температур теплоносителя должен составлять не менее 8 ОС. Таким образом, должно образоваться кольцо большой протяженности (несколько километров).

Учитывая практическую невозможность проведения испытаний по данной методике и выполнения ряда ее требований, в условиях отопительного периода, а также сложность и громоздкость, нами предложена и с успехом много лет используется методика тепловых испытаний, основанная на простых физических законах теплопередачи. Суть ее заключается в том, что, зная снижение («сбег») температуры теплоносителя в трубопроводе от одной точки измерения до другой при известном и неизменном его расходе, легко вычислить потерю тепла на данном участке ТС. Затем при конкретных температурах теплоносителя и окружающей среды в соответствии с [2] полученные значения тепловых потерь пересчитываются на среднегодовые условия и сравниваются с нормативными, также приведенными к среднегодовым условиям для данного региона с учетом температурного графика теплоснабжения. После этого определяется коэффициент превышения фактических потерь тепла над нормативными значениями.

Показать весь текст
Заполнить форму текущей работой