Помощь в написании студенческих работ
Антистрессовый сервис

Измерение магнитной восприимчивости методом Фарадея

РефератПомощь в написанииУзнать стоимостьмоей работы

Система регулирования и измерения температуры включает в себя два сосуда Дьюара специальной формы, коаксиально надевающихся один на другой, и медный хвостовик, в котором подвешен стаканчик с образцом. Внутренний сосуд откачан до 10−1, внешний — до 10−6 мм рт. ст. Для достижения температур ниже комнатной используется жидкий азот, который постепенно подливается во внешний сосуд Дьюара. При этом… Читать ещё >

Измерение магнитной восприимчивости методом Фарадея (реферат, курсовая, диплом, контрольная)

Наша установка включает в себя элементы конструкции, содержащиеся в аналогичных приборах, работающих в лабораториях МФТИ и ИФХ АН СССР. Всё нестандартное оборудование, комплектующее наши лаборатории, было изготовлено в экспериментальных мастерских РГУ.

Описываемая нами установка позволяет проводить измерения магнитной восприимчивости в температурном интервале 80 — 400 К и включает в себя следующие основные элементы:

  • 1. Электромагнит.
  • 2. Каретка перемещения магнита.
  • 3. Источник питания электромагнита.
  • 4. Электронные весы.
  • 5. Вакуумно-напускная система.
  • 6. Система регулирования и измерения температуры.

Электромагнит типа ФЛ-1 был изготовлен в экспериментальных мастерских РГУ. Он имеет набор конусных наконечников, в том числе и профильных. Профильные наконечники, создающие неоднородное магнитное поле с зоной изодинамичности () до 10 мм, позволяют свести к минимуму погрешности, связанные с незначительным относительным смещением образца по вертикальной оси Z.

Измерение магнитной восприимчивости методом Фарадея.

Каретка перемещения магнита даёт возможность отодвигать электромагнит на 600 мм и возвращать в исходное положение, фиксируя его соответствующим ограничителем, что позволяет легко осуществлять замену образца и устанавливать систему терморегулирования.

Источник питания электромагнита включает в себя стабилизатор напряжения и стабилизатор тока и позволяет параметрически изменять силу постоянного тока, питающего электромагнит, а, следовательно, и напряжённость магнитного поля в межполюсном зазоре. Стабилизация тока не хуже 0.3%.

Электронные весы являются основным и наиболее сложным элементом установки. Изготовленные в нашей лаборатории (основной исполнитель инженер Б.Д.Высоцкий) электронные весы являются самоуравновешивающимися. В этих весах сила, действующая на образец в магнитном поле, уравновешивается противодействующей силой, вырабатываемой системой обратной связи, сводящей к минимуму колебания коромысла весов. В весах предусмотрена наряду с механической электронная балансировка, что существенно облегчает пользование весами. Чувствительность весов не хуже 10−6 г. К одному из коромысел весов прикреплена кварцевая нить, заканчивающаяся крючком для подвешивания ячейки (стаканчика) с образцом. Ячейка также выполнена из кварца, поскольку восприимчивость этого материала не зависит ни от температуры, ни от напряжённости поля. Длина нити такова, что образец находится в зоне изодинамичности.

Вакуумно-напускная система обеспечивает измерение магнитной восприимчивости в широком температурном интервале. При охлаждении образца до температуры ниже комнатной, а тем более до температуры кипения жидкого азота, на образце и кварцевой нити возможны конденсация влаги и других летучих веществ, находящихся в воздухе. Для того чтобы избавиться от этого нежелательного эффекта, а также для удаления адсорбированного на образце кислорода и создания наиболее благоприятных условий для охлаждения (нагревания) образца, определения необходимо проводить в атмосфере сухого инертного газа (лучше всего гелия). Для этой цели и предусмотрена вакуумно-напускная система. Она включает в себя форвакуумный насос, адсорбционный насос, ртутный манометр, вакуумметр, азотную ловушку и сосуд с газообразным гелием.

Система регулирования и измерения температуры включает в себя два сосуда Дьюара специальной формы, коаксиально надевающихся один на другой, и медный хвостовик, в котором подвешен стаканчик с образцом. Внутренний сосуд откачан до 10−1, внешний — до 10−6 мм рт. ст. Для достижения температур ниже комнатной используется жидкий азот, который постепенно подливается во внешний сосуд Дьюара. При этом теплопередача медленно осуществляется через слабо откачанный внутренний сосуд Дьюара. Получение температур выше комнатной осуществляется нагреванием образца с помощью печки, надеваемой на нижний конец хвостовика. В этом случае температура регулируется величиной подаваемого на печку напряжения. Измеряется температура специально созданным прибором, показывающим температуру в кельвинах. Датчиком является терморезистор. Нагревание или охлаждение образца следует осуществлять со скоростью, не превышающей один кельвин в минуту, по крайней мере, в момент измерения.

Из формулы (18) следует, что магнитную восприимчивость можно определить абсолютным методом, но для этого наряду с силой F и массой образца m нужно знать ещё напряжённость магнитного поля H и её градиент. Если напряжённость поля можно измерить с помощью подходящего магнетометра, то определить с высокой точностью градиент напряжённости в области расположения образца не так просто. Поэтому измерение магнитной восприимчивости целесообразнее проводить относительным методом. Для этого необходимо вещество, магнитная восприимчивость которого известна с достаточной точностью, т. е. эталон, по которому можно провести калибровку установки. Сведения об эталонах представлены в таблице 3.

Необходимо отметить, что в формуле (18) F — это сила, действующая на образец, а поскольку образец (или эталон) помещают в ячейку (стаканчик), то в данном эксперименте измеряют суммарную величину, т. е. силу, действующую на ячейку с образцом. Поэтому сначала измеряют силу Fяч, действующую в магнитном поле на пустую ячейку, а затем эту величину вычитают из суммарной силы и находят силу F', которая действует только на образец (эталон):

F'=F-Fяч (21).

Таким образом, по результатам измерений выражения для сил, действующих на эталон и образец в магнитном поле, имеют вид (22) и (23) соответственно:

(22).

(22).

(23).

Измерение магнитной восприимчивости методом Фарадея.

где F’эт — сила, действующая на эталон; mэт — масса эталона;

чg, эт — магнитная восприимчивость эталона.

Решая совместно уравнения (22) и (23), можно исключить величину градиента напряжённости и найти калибровочную постоянную прибора и величину магнитной восприимчивости образца чg:

(24).

(24).

Из уравнения (24) следует, что калибровочная постоянная С может быть найдена по уравнению (25), а чg — по уравнениям (26) или (27).

(25).

(26).

(27).

Измерение магнитной восприимчивости методом Фарадея.
Измерение магнитной восприимчивости методом Фарадея.
Измерение магнитной восприимчивости методом Фарадея.

Отметим, что в наших электронных весах с цифрового прибора считывается сила не в весовых единицах (граммах, миллиграммах и т. п.), а в единицах напряжения U, подаваемого на компенсационную катушку весов. Однако весы отъюстированы так, что сила F прямо пропорциональна U, т. е. F = bU, где b — коэффициент пропорциональности. Учитывая это, а также то, что измерения проводятся относительным методом, нет необходимости переводить единицы напряжения, считываемые с цифрового прибора, в единицы веса. Получаемые значения можно непосредственно использовать в формулах (26) или (27). В этом нетрудно убедиться, подставив в формулу (24) вместо F величину bU; коэффициенты пропорциональности при этом сокращаются, а остаются лишь значения напряжения.

Показать весь текст
Заполнить форму текущей работой