Помощь в написании студенческих работ
Антистрессовый сервис

История арены действия химии окружающей среды

РефератПомощь в написанииУзнать стоимостьмоей работы

Если мы обратимся к С. Лему, более известному как писателю-фантасту, чем ученому, то и он пишет: «Осуществление каждого определенного этапа на пути к появлению праклетки обладало определенной вероятностью. Возникновение аминокислот в первичном океане под действием электрических разрядов было, например, вполне вероятным, образование из них пептидов — немного менее, но также в достаточной мере… Читать ещё >

История арены действия химии окружающей среды (реферат, курсовая, диплом, контрольная)

Возникновение Солнечной системы Сейчас общепринято, что элементы, составляющие в настоящее время Солнечную систему и нашу Землю, в большинстве своем возникли в результате ядерных реакций в звездах. Исключение составляют Н (полагают, что он существует с момента образования Вселенной), Не и нескольких легких элементов (D, Li, Be, B), которые образовались из Н во время Большого взрыва (Озима, 1990).

Поскольку скорость распада большинства тяжелых элементов хорошо известна, можно рассчитать точный возраст веществ, содержащих долгоживущие изотопы. Так был установлен возраст нашей Солнечной системы? 5 млрд. лет. Так как масса Солнца недостаточна для образования тяжелых элементов, следует полагать, что Солнечная система образовалась на месте взрыва сверхновой звезды. Гравитационные силы собрали рассеянное вещество. Большая часть его сконцентрировалась в виде Солнца, достаточно горячего для начала процесса ядерного синтеза.

Планеты Солнечной системы образовались, по-видимому, из дискообразного облака горячих газов, остатков взрыва сверхновой звезды. Сконденсировавшиеся пары образовали твердые частицы, объединившиеся в небольшие тела (планетезимали), в результате срастания которых возникли плотные внутренние планеты (от Меркурия до Марса). Крупные внешние планеты, будучи более удалены от Солнца, состоят из газов меньшей плотности, конденсация которых происходила при гораздо более низких температурах.

Практически все атомы нашей системы сконцентрированы в Солнце, где сосредоточено более 99,9% массы всего вещества системы. С точки зрения химического состава Солнечной системы в целом, Земля состоит главным образом из кислорода и нелетучих элементов (таких как Fe, Mg, Si), причем доля последних << 0,1% от общего числа атомов Солнечной системы (Озима, 1990).

Большинство элементов образовались до формирования Солнечной системы, во время взрыва Сверхновой, но некоторые появились после, при распаде радиоактивных изотопов. Например, установлено, что практически весь (более 99%) аргон, который составляет около 1% земной атмосферы, возник в результате реакции распада 40K 40Ar в недрах Земли после ее формирования и впоследствии улетучился. Все остальные элементы, кроме радиогенных Радиогенные элементы — элементы, возникшие в результате ядерных реакций распада., уже существовали до возникновения Солнечной системы.

Возникновение и история Земли Образование Земли Образование Земли было связано с аккумуляцией вещества солнечного газа. Относительно способа аккумуляции единого мнения не существует. В настоящее время имеются три главные гипотезы (Войткевич, 1988).

Гомогенная аккумуляция. Современное оболочечное строение Земли возникло лишь в ходе разогревания, частичного плавления и дифференциации первично гомогенного земного вещества.

Гетерогенная аккумуляция. Сначала возникло металлическое ядро, затем на него осели поздние конденсаты в виде силикатов, образовавшие мощную мантию.

Частично гетерогенная аккумуляция. Наибольшая разница в составе существовала лишь между центральными частями планеты и ее поверхностными слоями. Первоначально между ядром и мантией не было резких границ, установившихся позже.

Большая часть планетарного вещества сгруппировалась 4,56−4,7 млрд. лет назад. Масса планеты продолжала нарастать и через некоторое время стала достаточной для удержания атмосферы (4,4 млрд. лет назад).

Старейшие породы на Земле — цирконы западной Австралии, возраст которых около 4,1−4,3 млрд. лет. Тепло, выделяемое сначала благодаря процессу аккреции, а затем и радиоактивному распаду, расплавило сердцевину планеты и дало начало геотермальному циклу. Это вызвало дифференциацию элементов, впервые объясненную В. М. Гольдшидтом.

Первичная дифференциация элементов осуществлялась по их химическому сродству к железу, что естественно, поскольку железо составляет 35% массы Земли.

В.М. Гольдшмидт разделил элементы на 4 группы:

Сидерофилы — восстанавливаются железом;

Литофилы — не восстанавливаются железом и склонны к образованию окислов;

Халькофилы — элементы не восстанавливающиеся железом и образуют сульфиды;

Атмофилы — элементы, улетучившиеся в атмосферу.

Элементы, занимающие минимумы на кривой атомных объемов, дают сплавы с железом, в ходе дифференциации они образовали земное ядро (сидерофильные элементы). Ионы сидерофилов (11 элементов) имеют оболочку из 8−18 электронов. Редокс потенциал их равен или выше, чем у железа. Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Mo, W, Re, Au, Ge, Sn составляют большую часть полиметаллических руд. Они тесно перемежаются с элементами, обнаруживая повышенное сродство к сере, мышьяку, а также фосфору, углероду и азоту.

Элементы, занимающие максимумы на кривой и расположенные на ее нисходящих частях, обладают сродством к кислороду (54 элемента), они образовали земную кору и верхнюю мантию (литофильные элементы). Образуют ионы с 8-электронной оболочкой. Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, Al, Sc, Y, Редкоземельные элементы, Si, Ti, Zr, Hf, Th, P, V, Nb, Ta, Cr, U, F. Cl, Br, I, Mn К этой группе относят и «факультативные» литофильные элементы: C, P, W, H, Tl, Ga, Ge, Fe. входят в состав силикатных, алюмосиликатных горных пород, образуют сульфатные, карбонатные, фосфатные, боратные и галогенидные минералы.

Элементы, занимающие восходящие части кривой, обладают сродством к сере, селену, теллуру (19 элементов), они сосредоточились в нижней мантии (халькофильные элементы). Имеют оболочку из 18 электронов. Cu, Ag, Zn, Cd, Hg, Ga, In, Tl, Bp, As, Sb, Bi, S, Se, Te Fe, Mo, Ca — «факультативные» халькофилы. образуют многочисленную группу сульфидных и теллуридных минералов. Они могут встречаться в самородном состоянии.

Инертные газы (He, Ne, Ar, Kr, Xe, Rn) относятся к атмофильной группе. Их атомы (кроме He) имеют 8-электронную оболочкой.

В настоящее время выделяют еще и биофилы. Биофильные элементы — это так называемые элементы жизни. Они делятся на макробиогенные (H, C, N, O, Cl, Br, S, P, Na, K, Mg, Ca) и микробиогенные (V, Mn, Fe, Co, Cu, Zn, B, Si, Mo, F).

Современная биогеохимическая классификация элементов приведена в таблице 1.

Таблица 1 Биогеохимическая классификация элементов.

Литофильные.

Li, Be, B, O, F, Na, Mg, Al, Si, Cl, K, Ca, Sc, Mn, V, Ge, Br, Rb, Sr, Y, Mo, I, Cs, Ba, La, Ln, Ac, Th, U.

Халькофильные.

S, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Mo, Rh, Pd, Ag, Cd, In, Sb, Te, Hg, Tl, Pb, Bi.

Сидерофильные.

C, P, Fe, Co, Ni, Ge, Mo, Ru, Rh, Pb, Sn, Ta, Re, Os, Ir, Pt, Au.

Атмофильные.

H, C, N, O, He, Ne, Ar, Kr, Xe, Rn.

Биофильные.

H, C, N, O, P, S, Na, Mg, K, Ca, V, Mn, Fe, Co, Cu, Zn, Mo, Cl, Br, I, F, Si.

гамов вселенная биогеохимический термоядерный Дифференциация мантии и образование геосфер В процессе формирования планеты выплавлялись легкоплавкие, но тяжелые компоненты (железосернистые массы), опускавшиеся к центру и образовавшие ядро. При этом из первичной мантии увлекались к ядру сидерои халькофильные элементы. Одновременно менее легкоплавкие силикатные массы образовывали базальтовую магму, а затем и базальтовую кору океанического типа. В этот процесс вовлекались преимущественно литои атмофильные элементы.

При плавлении и дегазации верхней мантии на поверхность Земли поступала базальтовая магма, несущая растворенные в ней воду и газы. И первичная атмосфера, и первичная гидросфера Земли возникли за счет дегазации мантии. Из паров мантийного материала возникла кислая, сильно минерализованная гидросфера, изначально богатая анионами F-, Cl-, Br-, I-. Пресные воды образовались в результате естественной дистилляции. Тогда же образовалась и восстановительная первичная атмосфера.

Эволюция атмосферы Атмосфера состоит из газов, окружающих Землю, и ее состав существенно менялся с момента образования планеты. Долгое время господствовала точка зрения, что первичная атмосфера Земли состояла преимущественно из аммиака и метана.

Первая атмосфера Земли была потеряна в космосе в первый миллион лет после аккреции. Эта атмосфера состояла из газов, заключенных внутри планетоидов, сформировавших Землю. Состояла она из углекислоты и азота со следовыми количествами метана, аммиака, двуокиси серы и соляной кислоты. Кислород отсутствовал.

Вторая атмосфера Земли предположительно содержала двуокись углерода, азот, воду. С охлаждением поверхности планеты образовались океаны, начались гидрологический цикл и процессы выветривания. Кроме того, океаны стали интенсивно поглощать углекислоту. Условия, существовавшие на поверхности планеты в те времена, по большей части неизвестны, поскольку интенсивность солнечного излучения была ниже современной на 30%, а точный состав атмосферы неясен.

Бактериальный фотосинтез начался между 3,5−4 млрд. лет назад, но практически весь кислород поглощался океаном (в основном ионами железа). Два миллиарда лет тому назад кислород начал поступать в атмосферу, и современный состав атмосферы сформировался примерно 1,5 млрд. лет назад. В атмосфере кислород под действием ультрафиолетового излучения образовал озон. Озон выступил в качестве фильтра жесткой солнечной радиации, позволив жизни выйти на сушу из океана.

Возникновение жизни Возникновение биосферы относится к самым ранним периодам развития планеты. Первые известные окаменелые остатки живых организмов (возраст — 3,55 млрд. лет), были обнаружены в Западной Австралии Уильямом Шопфом. Они чрезвычайно похожи по структуре на современных цианобактерий (иначе называемых сине-зелеными водорослями), достаточно высокоразвитых фотосинтетиков. Геохимические данные свидетельствуют о том, что фотоавтотрофная жизнь на планете существовала 4 млрд. лет тому назад. С биологической точки зрения ей должна была бы предшествовать жизнь гетеротрофная. Но, как и, главное, когда она успела возникнуть?

Многовековая борьба за доказательство невозможности возникновения живого из неживого, завершилась триумфальными экспериментами Л. Пастера, которые поставили, казалось бы, точку в этом споре. Но, тогда оказалось, что жизнь могла быть сотворена лишь Богом. С этим не могла смириться материалистическая наука ХХ в. А. И. Опарин в 1924 г., а затем Дж. Холдейн в 1929 г. выдвинули гипотезы биогенеза — возможности самопроизвольного зарождения жизни на Земле (см. Опарин, 1960; Бернал, 1969). Вообще говоря, было создано множество гипотез зарождения жизни, экспериментальной базой которых послужила, главным образом возможность синтеза простейших органических соединений в условиях древней Земли, как мы их себе сейчас представляем. Толчком к этому послужило открытие Миллером легкости образования аминокислот из неорганических предшественников (Miller, 1953). Как пишет Л. Маргелис (1983, с. 76): «Пуристы злословили, что это якобы никуда не годная экспериментальная органическая химия, состоящая в том, что создают среду, предположительно сходную с гадейской Гадейский эон, который начался, когда Земля превратилась в сплошное твердое тело., вносят в нее неорганические реагенты и подводят энергию, а затем среди продуктов реакций разыскивают молекулы, имеющие важное значение для современной жизни». Этот подход породил множество работ, доказывавших возможность синтеза достаточно сложных органических веществ в условиях древней Земли (см. например работы Горовица (Horowitz, 1962), Понампернума (Ponnamperuma, 1968), Фокса (1975), очерк Н. Л. Добрецова (2005) и мн. др.). Вместе с тем, «данные космохимии метеоритов, астероидов и комет свидетельствуют, что образование органических соединений в Солнечной системе на ранних стадиях ее развития было типичным и массовым явлением» (Войткевич, 1988, с. 105).

Любой человек, знающий биологию хотя бы в пределах элементарного курса, представляет себе, что для возникновения жизни были необходимы:

эволюция малых молекул;

образование из них полимеров;

возникновение у них каталитических функций;

самосборка молекул;

возникновение мембран и создание доклеточной организации;

возникновение механизма наследственности;

образование клетки.

Если мы обратимся к С. Лему, более известному как писателю-фантасту, чем ученому, то и он пишет: «Осуществление каждого определенного этапа на пути к появлению праклетки обладало определенной вероятностью. Возникновение аминокислот в первичном океане под действием электрических разрядов было, например, вполне вероятным, образование из них пептидов — немного менее, но также в достаточной мере осуществимым; зато спонтанный синтез ферментов составляет — с этой точки зрения — явление сверхнеобычное» (Лем, 2002, с. 48). И, далее: «Термодинамика может еще „проглотить“ случайное возникновение белков в растворе аминокислот, но самозарождение ферментов уже не проходит… Число возможных ферментов больше числа звезд во всей Вселенной. Если бы белкам в первичном океане пришлось дожидаться спонтанного возникновения ферментов, это могло бы с успехом длиться целую вечность» (Лем, 2002, с. 49). Зарождение жизни, в результате, доказывается лишь «простым фактом, что мы существуем и, стало быть, сами являемся косвенным аргументом в пользу биогенеза» (Лем, 2002, с. 50).

К такому же выводу приходит далеко не фантаст, а Лауреат Нобелевской премии, один из основоположников современной молекулярной биологии, соавтор открытия ДНК — «молекулы жизни», Ф. Крик, который, специально остановившись на ничтожно малой вероятности самозарождения жизни, далее пишет: «Сам факт того, что мы находимся здесь, обязательно означает, что жизнь действительно зародилась» (Крик, 2002, с. 77).

В.И. Вернадский вообще полагает, что «должны оставаться без рассмотрения все вопросы о начале жизни на Земле, если оно было… Эти вопросы вошли в науку извне, зародились вне ее — в религиозных или философских исканиях человечества… Все нам известные, точно установленные факты ни в чем не изменятся, если даже все эти проблемы получат отрицательное решение, т. е. если бы мы признали, что жизнь всегда была и не имела начала, что живое — живой организм — никогда и нигде не происходил из косной материи и что в истории Земли не было вообще геологических эпох, лишенных жизни» (Вернадский, 2004, с. 53).

Критические уровни содержания кислорода в атмосфере По Л. Беркнеру и Л. Маршаллу (1966, цит. по Перельман, 1973) в абиогенную эпоху содержание кислорода не превышало 0,1% от современного уровня. Кислород образовывался за счет фотодиссоциации воды. Жизнь в таких условиях могла развиваться только в водоемах глубиной более 12 м. По достижении уровня содержания кислорода 1% от современного создалась возможность поглощения ультрафиолета. Область жизни значительно расширилась, поскольку стало достаточно 30 см воды для задержания ультрафиолета. Этот уровень был достигнут в начале палеозойской эры (примерно 600 млн. лет тому назад). Всего за 20 млн. лет возникло множество новых видов, ускорилось накопление кислорода в атмосфере. Уже через 200 млн. лет (конец силура, 400−420 млн. лет назад) содержание кислорода достигло 10% от современного. Озоновый экран стал настолько мощен, что жизнь смогла выйти на сушу. Это привело к новому взрыву эволюции.

Этапы эволюции биосферы Уровни содержания кислорода в атмосфере, рассмотренные выше, могут использоваться как границы этапов развития биосферы Земли. С этой точки зрения биосфера прошла три этапа: восстановительный, завершившийся появлением фотосинтеза и переходом ко второму, слабоокислительному этапу. Третий этап — окислительной фотоавтотрофной биосферы.

Царство млекопитающих и покрытосеменных растений наступило 60 млн. лет назад, т. е., биосфера приобрела облик близкий современному. 6 млн. лет назад возникла группа приматов, являющихся прямыми и непосредственными предками современного человека, — гоминиды. 600 тыс. лет тому назад появился человек разумный, примерно 60 тыс. лет назад овладевший огнем и, таким образом, резко выделившийся из природы. Возникновение современной цивилизации можно отнести к периоду примерно 6 тыс. лет тому назад, а зарождение современного способа производства и начало Нового времени.

6 веков тому назад. Глобальных масштабов антропогенное воздействие на окружающую среду достигло, пожалуй, к середине ХХ века.

Показать весь текст
Заполнить форму текущей работой