Помощь в написании студенческих работ
Антистрессовый сервис

Механизмы распознавания. 
Биофизические механизмы распознавания образов у живых организмов

РефератПомощь в написанииУзнать стоимостьмоей работы

Орган зрения — это глаз, включающий три различных в функциональном отношении элемента: 1) глазное яблоко, в котором расположены световоспринимающий, светопреломляющий и светорегулирующий аппараты; 2) защитные приспособления, т. е. наружные оболочки глаза (склера и роговица), слезный аппарат, веки, ресницы, брови; 3) двигательный аппарат, представленный тремя парами глазных мышц (наружная… Читать ещё >

Механизмы распознавания. Биофизические механизмы распознавания образов у живых организмов (реферат, курсовая, диплом, контрольная)

Зрительный анализатор

Зрительный анализатор представляет собой совокупность структур, воспринимающих световую энергию в виде электромагнитного излучения с длиной волны 400−700 нм и дискретных частиц фотонов, или квантов, и формирующих зрительные ощущения. С помощью глаза воспринимается 80−90% всей информации об окружающем мире. [3].

Благодаря деятельности зрительного анализатора различают освещенность предметов, их цвет, форму, величину, направление передвижения, расстояние, на которое они удалены от глаза и друг от друга. Все это позволяет оценивать пространство, ориентироваться в окружающем мире, выполнять различные виды целенаправленной деятельности. Наряду с понятием зрительного анализатора существует понятие органа зрения (рисунок 2).

Орган зрения.

Рисунок 2 — Орган зрения.

Орган зрения — это глаз, включающий три различных в функциональном отношении элемента: 1) глазное яблоко, в котором расположены световоспринимающий, светопреломляющий и светорегулирующий аппараты; 2) защитные приспособления, т. е. наружные оболочки глаза (склера и роговица), слезный аппарат, веки, ресницы, брови; 3) двигательный аппарат, представленный тремя парами глазных мышц (наружная и внутренняя прямые, верхняя и нижняя прямые, верхняя и нижняя косые), которые иннервируются III (глазодвигательный нерв), IV (блоковый нерв) и VI (отводящий нерв) парами черепных нервов.

Рецепторный (периферический) отдел зрительного анализатора (фоторецепторы) подразделяется на палочковые и колбочковые нейросенсорные клетки, наружные сегменты которых имеют соответственно палочковидную («палочки») и колбочковидную («колбочки») формы. У человека насчитывается 6−7 млн колбочек и 110−125 млн палочек.

Место выхода зрительного нерва из сетчатки не содержит фоторецепторов и называется слепым пятном. Латерально от слепого пятна в области центральной ямки лежит участок наилучшего видения — желтое пятно, содержащее преимущественно колбочки. К периферии сетчатки число колбочек уменьшается, а число палочек возрастает, и периферия сетчатки содержит одни лишь палочки.

Различия функций колбочек и палочек лежит в основе феномена двойственности зрения. Палочки являются рецепторами, воспринимающими световые лучи в условиях слабой освещенности, т. е. бесцветное, или ахроматическое, зрение. Колбочки же функционируют в условиях яркой освещенности и характеризуются разной чувствительностью к спектральным свойствам света (цветное или хроматическое зрение).

Палочки и колбочки состоят из двух сегментов — наружного и внутреннего, которые соединяются между собой посредством узкой реснички.

В рецепторных клетках сетчатки находятся светочувствительные пигменты (сложные белковые вещества) — хромопротеиды, которые обесцвечиваются на свету. В палочках на мембране наружных сегментов содержится родопсин, в колбочках — йодопсин и другие пигменты. Родопсин и йодопсин состоят из ретиналя (альдегида витамина А1) и гликопротеида (опсина). Имея сходство в фотохимических процессах, они различаются тем, что максимум поглощения находится в различных областях спектра.

Фотохимические процессы в сетчатке протекают весьма экономно. Даже при действии яркого света 23 расщепляется только небольшая часть имеющегося в палочках родопсина (около 0,006%).

Особое значение в фотохимических процессах имеет пигментный слой сетчатки, который образован эпителием, содержащим фусцин. Этот пигмент поглощает свет, препятствуя отражению и рассеиванию его, что обусловливает четкость зрительного восприятия.

Отростки пигментных клеток окружают светочувствительные членики палочек и колбочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пигментов.

Вследствие фотохимических процессов в фоторецепторах глаза при действии света возникает рецепторный потенциал, который представляет собой гиперполяризацию мембраны рецептора. Это отличительная черта зрительных рецепторов, активация других рецепторов выражается в виде деполяризации их мембраны.

Синаптические окончания фоторецепторов конвергируют на биполярные нейроны сетчатки.

При этом фоторецепторы центральной ямки связаны только с одним биполяром.

Первый нейрон проводникового отдела зрительного анализатора представлен биполярными клетками сетчатки.

Схема строения сетчатки (по данным электронной микроскопии).

Рисунок 3 — Схема строения сетчатки (по данным электронной микроскопии).

Совокупность фоторецепторов, посылающих свои сигналы к одной ганглиозной клетке, образует ее рецептивное поле. Вблизи желтого пятна эти поля имеют диаметр 7−200 нм, а на периферии — 400−700 нм, т. е. в центре сетчатки рецептивные поля маленькие, а на периферии сетчатки они значительно больше по диаметру. Рецептивные поля сетчатки имеют округлую форму, построены концентрически, каждое из них имеет возбудительный центр и тормозную периферическую зону в виде кольца.

В сетчатке глаза, где локализуется рецепторный отдел зрительного анализатора и начинается проводниковый отдел, в ответ на действие света происходят сложные электрохимические процессы, которые можно зарегистрировать в виде суммарного ответа — электроретинограммы — ЭРГ (рисунок 4).

Электроретинограмма (по Граниту).

Рисунок 4 — Электроретинограмма (по Граниту):

a, b, с, d-волны ЭРГ; стрелками указаны моменты включения и выключения света.

ЭРГ отражает такие свойства светового раздражителя, как цвет, интенсивность и длительность его действия. ЭРГ может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для ее получения один электрод помещают на поверхность роговой оболочки, а другой прикладывают к коже лица вблизи глаза или на мочку уха.

На ЭРГ, зарегистрированной при освещении глаза, различают несколько характерных волн. Первая негативная волна, а представляет собой небольшое по амплитуде электрическое колебание, отражающее возбуждение фоторецепторов и горизонтальных клеток. Она быстро переходит в круто нарастающую позитивную волну b, которая возникает в результате возбуждения биполярных и амакриновых клеток. После волны b наблюдается медленная электроположительная волна с — результат возбуждения клеток пигментного эпителия. С моментом прекращения светового раздражения связывают появление электроположительной волны d.

Проводниковый отдел, начинающийся в сетчатке (первый нейрон — биполярный, второй нейрон — ганглиозные клетки), анатомически представлен далее зрительными нервами и после частичного перекреста их волокон — зрительными трактами. В каждом зрительном тракте содержатся нервные волокна, идущие от внутренней (носовой) поверхности сетчатки глаза одноименной стороны и от наружной половины сетчатки другого глаза. Волокна зрительного тракта направляются к зрительному бугру (собственно таламус), к метаталамусу (наружные коленчатые тела) и к ядрам подушки. Здесь расположен третий нейрон зрительного анализатора. От них зрительные нервные волокна направляются в кору полушарий большого мозга.

При рассмотрении объектов, находящихся на разном удалении от наблюдателя, ясному видению способствуют следующие процессы:

  • 1. Конвергенционные и дивергенционные движения глаз, благодаря которым осуществляется сведение или разведение зрительных осей. Если оба глаза двигаются в одном направлении, такие движения называются содружественными.
  • 2. Реакция зрачка, которая происходит синхронно с движением глаз. Так, при конвергенции зрительных осей, когда рассматриваются близко расположенные предметы, происходит сужение зрачка, т. е. конвергентная реакция зрачков. Эта реакция способствует уменьшению искажения изображения, вызываемого сферической аберрацией.

Сферическая аберрация обусловлена тем, что преломляющие среды глаза имеют неодинаковое фокусное расстояние в разных участках. Центральная часть, через которую проходит оптическая ось, имеет большее фокусное расстояние, чем периферическая часть. Поэтому изображение на сетчатке получается нерезким. Чем меньше диаметр зрачка, тем меньше искажения, вызываемые сферической аберрацией. Конвергентные сужения зрачка включают в действие аппарат аккомодации, обусловливающий увеличение преломляющей силы хрусталика. [3].

Показать весь текст
Заполнить форму текущей работой