Помощь в написании студенческих работ
Антистрессовый сервис

Химическое строение веществ и их свойства

РефератПомощь в написанииУзнать стоимостьмоей работы

В настоящее время есть все основания считать теорию Бутлерова фундаментальной общехимической теорией строения химических соединений и зависимости их свойств от химического строения. Эта теория — продолжение и развитие атомно-молекулярного учения Ломоносова, являющегося фундаментом всей химии. Только для веществ, не имеющих молекулярного строения, вводится понятие кристаллохимического строения… Читать ещё >

Химическое строение веществ и их свойства (реферат, курсовая, диплом, контрольная)

Фундаментальная задача химии — изучение зависимости между химическим строением вещества и его свойствами. Свойства вещества являются функцией его химического строения. До работ А. М. Бутлерова считали, что свойства вещества определяются их качественным и количественным составом. Он впервые сформулировал основное положение своей теории химического строения так: «химическая натура сложной частицы определяется натурой элементарных составных частиц, количеством их и химическим строением». Это знаменитое положение может быть по праву названо законом Бутлерова и приравнено к фундаментальным законам химии. В переводе на современный язык закон Бутлерова утверждает, что свойства молекулы определяются природой составляющих ее атомов, их количеством и химическим строением молекулы. Таким образом, первоначально теория химического строения относилась к химическим соединениям, имевшим молекулярную структуру. Это одна из причин, почему она считалась теорией строения органических соединений. Между тем А. М. Бутлеров считал созданную им теорию химического строения (1861 год) общехимической теорией и для ее обоснования пользовался примерами как органических, так и неорганических молекул.

В твердых неорганических веществах, как указывалось выше, на 95 — 97% отсутствуют молекулы. Поэтому на первый взгляд может показаться, что теория химического строения Бутлерова неприменима для типичных неорганических соединений. На самом же деле такой вывод не является корректным. Дело в том, что основная идея Бутлерова о взаимозависимости между химическим строением и свойствами остается в силе и для веществ, не имеющих молекулярной структуры. Это и правильно, поскольку более широкое понятие химического строения включает в себя структуру, то есть внутреннее строение вещества. А структурой обладает любое вещество независимо от того, образуют составляющие атомы дискретные молекулы или не образуют. Не случайно поэтому учение о химическом строении пронизывает такие разделы неорганической химии, как химия комплексных соединений, химия неорганических полимеров, химия полупроводников и т. д.

В настоящее время есть все основания считать теорию Бутлерова фундаментальной общехимической теорией строения химических соединений и зависимости их свойств от химического строения. Эта теория — продолжение и развитие атомно-молекулярного учения Ломоносова, являющегося фундаментом всей химии. Только для веществ, не имеющих молекулярного строения, вводится понятие кристаллохимического строения. Кристаллохимическое строение — порядок расположения и природа связи атомов в пределах элементарной ячейки, их взаимное влияние друг на друга, а также распределение электронной плотности, величины эффективных зарядов. Как видно из определения, понятие кристаллохимического строения представляет собой превращенную форму химического строения молекул применительно к координационным структурам. Вот почему теория химического строения Бутлерова — общехимическая теория, в одинаковой мере приложимая как к органическим, так и к неорганическим объектам.

Главным объектом исследования в химии являются химические соединения. Понятие химического соединения в химии играет такую же роль, как понятие биологического вида в биологии. Поэтому научно обоснованное определение того, что называется химическим соединением, для химии имеет фундаментальное значение.

Химическое соединение — однородное вещество постоянного или переменного состава с качественно отличным химическим или кристаллохимическим строением, образованное из атомов одного или нескольких химических элементов. Характерной особенностью химического соединения является его однородность. В «Основах химии» Д. И. Менделеев пишет: «Ближайший предмет химии составляет изучение однородных веществ_ Химия занимается только однородными телами». «Химическим соединением вообще называют такое соединение двух или более тел, продукт которого представляется нам однородным, однообразным во всех своих мельчайших частицах_ Это есть единственное определение, какое можно дать химическому соединению, и в этом отношении неопределенные соединения также совершенно ему подчиняются» («Лекции по теоретической химии»).

Таким образом, один из основателей современной химии Д. И. Менделеев отмечал существование однородных неопределенных соединений, то есть веществ переменного состава в области гомогенности. К тому же современное учение не делает принципиального различия между химическими соединениями постоянного и переменного состава. Поэтому состав химического соединения может быть как постоянным (молекулы), так и переменным (координационные кристаллы). В этом также заключается характерная черта определения химического соединения.

Однако переменным составом обладают и растворы. В случае газовых растворов, несмотря на их однородность, имеем смесь молекул (например, молекул кислорода, азота, двуокиси углерода и т. п. в воздухе). В жидких растворах также отсутствуют молекулы с качественно новым химическим строением по сравнению с химическим строением исходных компонентов. Для твердых растворов характерно кристаллохимическое строение компонента-растворителя, то есть твердый раствор не обладает качественно отличным кристаллохимическим строением. В отличие от них твердое химическое соединение переменного состава характеризуется присущим только ему кристаллохимическим строением. Поэтому в противоположность твердым растворам свойства соединений переменного состава резко отличаются от свойств составляющих веществ. Итак, качественно отличное химическое или кристаллохимическое строение — важнейшая особенность химического соединения.

Наконец, классическая химия к химическим соединениям относила лишь химические индивиды, состоящие из атомов различных элементов. Поэтому, например, молекула кислорода с характерным для нее химическим строением и специфическими свойствами не считалась химическим соединением. В действительности понятие химического соединения относится к соединению атомов друг с другом. Соединяющиеся атомы могут принадлежать либо одному, либо нескольким химическим элементам. Поэтому все простые вещества также являются химическими соединениями. Молекулы газов (водород, азот, кислород, и т. д.) состоят из двух атомов, а простых твердых веществ — из огромного числа одинаковых атомов, соизмеримого с числом Авогадро.

Химическому соединению присуще только ему свойственное химическое или кристаллохимическое строение. В химическом или кристаллохимическом строении главное — химическая связь, ее природа. Именно химические соединения отличаются от смесей наличием химической связи. С этой точки зрения молекулы и кристаллы, построенные из одинаковых атомов, являются гомоатомными химическими соединениями. Атомы в молекуле водорода связаны ковалентной связью. Все свойства (физические, химические, спектральные и т. п.) молекулярного водорода отличны от атомарного. А по Д. И. Менделееву, в результате химического взаимодействия образуется тело, отличное от взаимодействующих веществ. Еще большее отличие в свойствах, например, металлической меди (атомы связаны металлической связью) от свойств составляющих атомов меди. Вообще кажется странным, почему классическая химия считала, что в результате процесса H + F H-F образуется химическое соединение, а в случае H + H H-H или F + F F-F они не возникают? Это по меньшей мере нелогично. Естественно признание как гетероатомных (например, HF), так и гомоатомных химических соединений (H2, F2, металлы и т. п.).

В заключение остановимся на особенностях металлических соединений. Самым общим понятием в учении о металлических соединениях является термин металлиды — продукты взаимодействия металлов между собой, а также с некоторыми неметаллами, если они обладают металлическими свойствами. Необходимо подчеркнуть, что металлиды и интерметаллические соединения (или интерметаллиды) не являются синонимами. Интерметаллиды (межметаллиды) подчеркивают происхождение соединения, то есть они являются продуктами взаимодействия только металлов между собой. Поэтому среди интерметаллидов могут встречаться вещества, не обладающие металлическими свойствами, например Li4Pb, Mg2Sn, Ca3Sb2 и др. Подобные соединения подчиняются правилам формальной валентности, и преобладающая в них химическая связь — ковалентная с определенной долей ионной связи. В то же время в большинстве интерметаллических соединений доминирующей химической связью является металлическая.

Истинные металлические соединения — металлиды — из-за ненасыщенности и ненаправленности химической связи, а также делокализации и дефицита валентных электронов не подчиняются правилам классической валентности. Так, например, в латуни (сплав меди с цинком) существуют металлиды CuZn, Cu5Zn8 и CuZn3. Металлиды представляют собой пример соединений, для которых наблюдаются очень широкие области однородности. Другими словами, металлиды — это вещества с сильно нарушенной стехиометрией. (Например, область гомогенности для металлида Cu5Zn8 простирается от 58 до 67% цинка). Формульный же состав металлидов в первую очередь определяется стремлением ввиду недостатка электронов (против парноэлектронной связи) образовать наиболее плотно упакованную структуру. Поэтому, исходя из положения металлических элементов — компонентов металлидов в Периодической системе, априори предсказать их формульный состав невозможно. В установлении формульного состава металлидов, а также в определении зависимости нарушения стехиометрии от температуры исключительно важную роль играет физико-химический анализ Н. С. Курнакова. В настоящее время исследования металлидов и металлических твердых растворов составляют новый и основополагающий раздел неорганической химии. Классическая же неорганическая химия изучала в основном взаимодействия металлов с неметаллами и неметаллов между собой. В то же время более 80% элементов Периодической системы при обычных условиях в форме простых веществ представляют собой тела металлические.

Показать весь текст
Заполнить форму текущей работой