Помощь в написании студенческих работ
Антистрессовый сервис

Расчет конденсатора-холодильника паров бинарной смеси метанол-вода

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Составными элементами корпусов химических аппаратов являются крышки и днища, которые обычно изготовляются из того же материал, что и обечайки, и привариваются к ней. Форма крышек и днища может быть эллиптической, сферической, конической и плоской. Наиболее рациональной формой для цилиндрических аппаратов является эллиптическая. Эллиптические днища и крышки изготавливаются из листового проката… Читать ещё >

Расчет конденсатора-холодильника паров бинарной смеси метанол-вода (реферат, курсовая, диплом, контрольная)

Курсовой проект На тему: РАСЧЕТ КОНДЕНСАТОРА-ХОЛОДИЛЬНИКА ПАРОВ БИНАРНОЙ СМЕСИ МЕТАНОЛ-ВОДА

1ТЕПЛОВОЙ РАСЧЕТ

2 КОНСТРУКТИВНО — МЕХАНИЧЕСКИЙ РАСЧЁТ

2.1 Расчет толщины обечайки

2.2 Расчет трубной решётки

2.3 Подбор крышки и днища

2.4 Подбор штуцеров

2.5 Расчёт опор

3 ГИДРАВЛИЧЕСКИЙ РАСЧЁТ

4 РАСЧЁТ ИЗОЛЯЦИИ

ЗАКЛЮЧЕНИЕ

Теплопередача — это наука о процессах распространения теплоты. Различают три различных способа переноса теплоты: теплопроводность, конвекцию и тепловое излучение. В реальных установках теплота передаётся комбинированным путём, однако вклад этих трёх составляющих в общий перенос теплоты неодинаков и определяется многими условиями: природой теплоносителя, агрегатным состоянием, температурным и гидродинамическим условиям и т. д.

В промышленности теплообмен между рабочими телами (теплоносителями) происходит в специально сконструированных аппаратах, которые называются теплообменниками. Они должны отвечать определённым общим требованиям: обладать высокой тепловой производительностью и экономичностью, обеспечивать заданные технологические условия процесса, быть просты по конструкции, компактны, обладать современным техническим и эстетическим дизайном, иметь длительный срок службы, соответствовать требованиям СНИП и ведомственным правилам Госгортехнадзора. Особые требования предъявляются к обеспечению надёжности работы аппаратов, возможности автоматического регулирования режимно-технологических параметров и аварийного отклонения.

В химической технологии теплообменные аппараты довольно широко распространены, применяются в различных производствах легкой и тяжелой промышленности. Для обеспечения того или иного технологического процесса применяются различные типы теплообменных аппаратов. Основную группу теплообменных аппаратов, применяемых в промышленности, составляют поверхностные теплообменники, в которых теплота от горячего теплоносителя передается холодному теплоносителю через разделяющую их стенку. Другую группу составляют теплообменники смешения, в которых теплота передается при непосредственном соприкосновении горячего и холодного теплоносителей.

Теплообменные аппараты классифицируются:

1.По назначению:

а) холодильники;

б) подогреватели;

в) испарители;

г) конденсаторы;

2.По конструкции:

— изготовленные из труб:

а) теплообменники «труба в трубе»;

б) оросительные теплообменники;

в) погружные змеевиковые;

г) теплообменники воздушного охлаждения;

д) из оребренных труб;

е) кожухотрубчатые теплообменники;

— с неподвижной трубной решеткой;

— с линзовым компенсатором;

— с плавающей головкой;

— с U-образными трубами;

3.По направлению движения теплоносителя:

а) прямоточные;

б) противоточные;

в) с перекрестным движением.

4.По принципу действия теплообменные

а) рекуперативне;

б) регенеративне;

в) смесительные.

Наибольшее распространение в химической промышленности получили теплообменные аппараты рекуперативного типа. В аппаратах этого типа теплообмен между горячим и холодным теплоносителями осуществляется через разделяющую их перегородку (стенку).

Кожухотрубчатые теплообменные аппараты используются для практической реализации таких процессов, как нагревание (охлаждение), конденсация и испарение. Соответственно аппараты называются теплообменниками, холодильниками, конденсаторами и испарителями.

Теплообменники предназначены для проведения процесса теплообмена между теплоносителями, которые не изменяют своего агрегатного состояния в процессе теплообмена: это газо-жидкостные и жидкостно-жидкостные аппараты для проведения процессов охлаждения и нагревания.

Холодильники предназначены для охлаждения водой или другими нетоксичными, не пожарои не взрывоопасными хладагентами жидких и газообразных сред. Работают, как правило, в области минусовых температур.

В соответствии с ГОСТ 1 512 019 и 15 122−79 кожухотрубчатые теплообменники и холодильники изготавливают двух типов «Н» — с неподвижными трубными решётками и «К» — с компенсатором температурных напряжений на кожухе. Необходимость использования компенсатора определяется предельно-допустимой разностью температур стенок труб и кожуха, равной 50єС или сравнительно большой длиной теплообменных труб (более 6м).

Конденсаторы предназначены для конденсации насыщенных паров. Обычно конденсацию осуществляют на наружной поверхности пучка труб в межтрубном пространстве. В химической промышленности для нагревания жидкостей и газов за счёт теплоты конденсации насыщенных паров чаще всего используется насыщенный водяной пар.

Испарители предназначены для проведения процессов испарения жидкости при кипении. При этом жидкость кипит в трубах, а в межтрубное пространство подаётся греющий агент. В соответствии со стандартом, кожухотрубчатые испарители в этом случае могут быть только одноходовыми и вертикального исполнения.

Теплообменники типа «труба в трубе». При сравнительно небольших тепловых нагрузках (малых производительностях по теплоносителям), когда требуемая величина теплопередающей поверхности незначительна (до 20 ч 40 м2), на практике рекомендуется использовать наиболее простые по устройству, изготовлению, монтажу и эксплуатации теплообменники. Они изготавливаются в следующих исполнениях:

— неразборные однопоточные малогабаритные;

— разборные однои двухпоточные моногабаритные;

— разборные однопоточные;

— неразборные двухпоточные;

— разборные многопоточные;

В пластинчатых теплообменниках поверхность теплообмена образуется набором тонких штампованных гофрированных пластин, которые собраны в пакеты и разделены между собой специальной формы и профиля уплотнительной термостойкой резиной. Они могут быть разборными и полуразборными.

Спиральные теплообменники. В них поверхность теплопередачи образуется двумя листами (лентами) из углеродистой или легированной стали, свёрнутыми в виде спирали вокруг центральной перегородки.

Блочные графитовые теплообменники. Для осуществления процесса теплообмена между агрессивными химически активными теплоносителями пользуются теплообменниками, изготовленными из графита. Наибольшее распространение получили блочные графитовые теплообменники.

В нашем случае по заданию необходимо провести расчёт кожухотрубчатого теплообменника.

Кожухотрубчатые теплообменники относятся к рекуперативным поверхностным аппаратам непрерывного действия. По конструкции они представляют собой аппараты, выполненные из пучков труб, закрепленных при помощи трубных решеток (досок) и ограниченных кожухами с крышками, снабженнвми патрубками входа и выхода теплоносителя. Трубное и межтрубное пространства в аппарате разобщены. Теплообменники такого типа предназначены для теплообмена между различными жидкостями, между жидкостями и паром, между жидкостями и газом.

Основным недостатком аппаратов такого типа является большое сечение трубного и межтрубного пространства, что обуславливает невысокие скорости движения теплоносителей и, как следствие, невысокие значения коэффициентов теплоотдачи. Для увеличения скорости движения теплоносителей, теплоносителей, теплообменники часто выполняются многоходовыми, устанавливая перегородки в трубном или межтрубном пространстве.

Основное достоинство кожухотрубчатых теплообменников — большая удельная поверхность теплообмена, то есть поверхность, приходящаяся на единицу массы аппарата, благодаря чему эти теплообменники находят самое широкое применение.

1 Тепловой РАСЧЕТ

Исходные данные:

Бинарная смесь метанол-вода

Производительность 160т/сутки

Пары поступают в аппарат при температуре конденсации, конденсат отводится при 18°C

Содержание нк в парах 65%(масс.)

Температура охлаждающей воды:

— на входе 12°C

— на выходе 17°C

Мольная доля смеси:

Построим t-x диаграмму из которой найдем tкип.см = 78°C

Таблица 1. — Расчет содержания низкокипящего компонента при различных давлениях и температуре.

мм. рт. ст.

мм. рт. ст.

мм. рт. ст.

0,85

0,73

0,54

0,49

0,36

0,23

0,20

0,12

Рисунок 1. t-x диаграмма.

Уравнения теплового баланса

Тепло, отданное смесью метанол-вода при конденсации:

— по правилу аддитивности.

Тепло, отданное при охлаждении конденсата смеси этанол-вода:

и, а также и берем при температуре кипения смеси 78°C

Общее тепло, отданное смесью метанол-вода:

Определение промежуточной температуры

Температура смеси между зонами конденсации и охлаждения определяется:

или .

Расчет зоны конденсации.

Средний температурный напор в зоне конденсации, в случае смешанного тока, определяем по уравнению:

Так как и

Наметим вариант теплообменного аппарата.

Ориентировочно определим значение площади поверхности теплообмена, полагая Кор=300 Вт/(м2*К).

.

Расчет зоны охлаждения конденсата.

Ориентировочно определим значение площади поверхности теплообмена, полагая Кор=800 Вт/(м2*К).

Определим количество труб на один ход.

где, Re=15 000, так как предполагаем, что режим движения жидкости турбулентный

По табл. XXXIV [стр.533,1] примем двухходовой кожухотрубчатый теплообменник КН (ГОСТ 15 119−79) с внутренним диаметром кожуха D=1000 мм, числом ходов равным 2, числом труб на один ход 377 (общее число труб n=754), высотой труб l=3 м.

Уточняем значение коэффициента Рейнольдса:

Следовательно, в трубном пространстве будет обеспеченно турбулентное движение теплоносителя.

Расчет I зоны конденсации.

Определим поверхность теплообмена зоны конденсации.

Определим коэффициент теплопередачи.

Коэффициент теплопередачи:

Рассчитаем термическое сопротивление стенки и загрязнений.

Считаем, что со стороны органической смеси накипь не образуется. Коэффициент теплопроводности стали =16,4 Вт/(м К), коэффициент теплопроводности накипи =2 Вт/(м К).

Значение физических величин, входящих в это уравнение выбираются из таблиц при температуре плёнки конденсата:

где

Определение коэффициента теплоотдачи от конденсирующего пара к изотермической стенке.

при 74,8°C

для турбулентного режима.

(пренебрегаем

Тогда

Коэффициент теплопередачи:

Определим поверхность теплообмена зоны конденсации.

Расчет II зоны охлаждения.

Определим поверхность теплообмена зоны охлаждения.

Определение коэффициента теплоотдачи от стенки трубы к воде в зоне охлаждения

Поскольку охлаждающая вода в процессе теплопередачи не изменяет своего агрегатного состояния и движется с той же скоростью, что и в зоне конденсации, то логично принять, что:

.

Коэффициент теплопередачи:

.

Определение коэффициента теплоотдачи от стенки трубы к воде.

Примем, .

2 Конструктивно — механический расчёт

В задачу конструктивно — механического расчета входит определение необходимых геометрических размеров отдельных деталей и узлов, которые определяют конструкцию теплообменного аппарата, его механическую прочность и размеры.

2.1 Расчет толщины обечайки

Обечайка — цилиндрический корпус аппарата, который работает, как правило, под избыточным внутренним и внешним давлением.

Принимаем материал сталь Х18Н10Т ГОСТ 5632–61.

Толщина стенки обечаек, работающих под внутренним давлением, рассчитывается по уравнению:

где PR— расчетное давление в аппарате, МПа; - предельно-допустимое напряжение для стали Х18Н10Т ГОСТ 5632–61,=145МН/м2; Dдиаметр обечайки, мм; - прибавка на округление, — прибавка на коррозию.

Проверим условие:

условие выполняется

Допускаемое избыточное давление в обечайке:

2.2 Расчет трубных решёток

Толщину трубных решёток можно принять:

Теплообменные трубы в трубной решётке располагаются по вершинам равносторонних треугольников (шахматное расположение труб).

Это обусловлено тем, что этот способ расположения обеспечивает наиболее компактное размещение необходимой поверхности теплообмена внутри аппарата.

2.3 Подбор крышки и днища

Составными элементами корпусов химических аппаратов являются крышки и днища, которые обычно изготовляются из того же материал, что и обечайки, и привариваются к ней. Форма крышек и днища может быть эллиптической, сферической, конической и плоской. Наиболее рациональной формой для цилиндрических аппаратов является эллиптическая. Эллиптические днища и крышки изготавливаются из листового проката штамповкой и могут использоваться в аппаратах с избыточным давлением до 10 МПа. Крышки и днища подбирают стандартными по таблицам из справочной литературы.

Выбираем эллиптическое отбортованное днище СТХ18Н10Т

В днище имеются отверстия d = 0,2 м, цм=0,8

Коэффициент ослабления днища отверстиями:

Толщина стенки днища с учетом прибавки

Проверим условие:

условие выполняется

Допускаемое избыточное давление в днище:

По табл. 16.1[3,стр.440] подбираем стандартные стальные отбортованные днище и крышку с размерами (Днище 10 006−25-Х18Н10Т ГОСТ 6533–68):

Dв = 1000 мм;

h в = 250 мм;

s = 6 мм;

h = 25 мм;

2.4 Подбор штуцеров

Штуцеры должны соответствовать по конструкции и прочности рабочему давлению внутри аппарата, при этом должны обеспечивать высокую герметичность.

Штуцеры изготавливают из стальных труб необходимого размера. В зависимости от рабочего давления внутри аппарата выбирают размеры фланцев. Толщина стенок штуцеров должна определяться расчетом на плотность по рабочему давлению в аппарате и нагрузкам, возникающим от присоединенных деталей трубопроводов и арматуры, однако она не должна быть меньше половины толщины стенки аппарата, к которому они привариваются. При выборе высоты штуцеров необходимо исходить из условий закладки болтов во фланцы со стороны сосуда, а также с учетом толщины слоя изоляции, закрепляемой на поверхности аппарата.

Диаметр условного прохода (внутренний диаметр) штуцеров для подвода и отвода теплоносителей рассчитывается на основе уравнения массового расхода:

;

откуда

;

здесь щшт — скорость течения теплоносителя в штуцере, м/с.

Для паров смеси принимаем щшт =30 м/с, для жидкости принимаем щшт =1 м/с и для воды принимаем щшт = 4 м/с

Принимаем Dy =200 мм.

Выбираем штуцер с плоским фланцем и тонкостенным патрубком (по I типу [табл.27.1, 3]).

d3, d4 =0,2 мм

Принимаем Dу = 200 мм

dн = 219 мм;

Dу = 200 мм;

Н = 180 мм;

l = 230 мм

s = 10

m=16,8 кг.

Материал: сталь Х18Н10Т

d2 =0,07 мм

Принимаем Dу = 100 мм

Выбираем штуцер с плоским фланцем и тонкостенным патрубком (по I типу [табл.27.1, 3]).

dн = 121 мм;

Dу = 100 мм;

Н = 190 мм;

l = 190 мм

s = 8

m=6,72 кг.

Материал: сталь Х18Н10Т

d1 =0,3 мм

Принимаем Dy =300 мм.

Выбираем штуцер с плоским фланцем и тонкостенным патрубком (по I типу [табл.27.1, 3]).

Принимаем Dу = 300 мм

dн = 325 мм;

Dу = 300 мм;

Н = 200 мм;

l = 270 мм

s = 10

m= 31,6 кг.

Материал: сталь Х18Н10Т

Присоединительные размеры фланцев

1. Для штуцеров с Dy =100 мм

Dу = 100 мм

dн = 108 мм

Dф = 205 мм;

Dб = 170 мм;

D1 = 148 мм;

h = 11 мм

Болты М16, z=4

Тип фланца I ГОСТ 1255–67

2. Для штуцеров с Dy =200 мм

Dу = 200 мм

dн = 219 мм

Dф = 315 мм;

Dб = 280 мм;

D1 = 258 мм;

h = 15 мм

Болты М16, z=8

Тип фланца I ГОСТ 1255–67

3. Для штуцеров с Dy =300 мм

Dу = 300 мм

dн = 325 мм

Dф = 435 мм;

Dб = 395 мм;

D1 = 365 мм;

h = 18 мм

Болты М20, z=12

Тип фланца I ГОСТ 1255–67

2.5 Расчёт опор

Установка химических аппаратов на фундаменты или специальные несущие конструкции осуществляется большей частью с помощью опор.

Для установки нашего вертикального аппарата будем использовать опоры типа II по ОН 26−01−69−68.

Для того, чтобы выбрать опору, необходимо рассчитать вес всего аппарата в рабочем состоянии.

Вес аппарата

1) крышка+днище+фланец

2) обечайка

3) трубные решетки

4) трубы

5) штуцера

м3

Вес всего аппарата:

Опоры лапы типа VIII [3, рис. 29.1]

Теплообменник подвешены на 4-х лапах.

Число ребер в лапе z=2

Валет опоры l = 0,25

Нагрузка на одну опору = 9091,2

L=100

b=22

a1=50

L1=120

b =70

a2=105

L2=90

H=235

R=12

B =195

h=14

D=24

B1 =85

S=6

M=16

B2 =90

a=25

Подкладной лист

3 Гидравлический расчёт

Основной целью гидравлического расчёта теплообменных аппаратов является определение затрат энергии на перемещение жидкости (пара) через теплообменник и подбор насоса или вентилятора. Подбор насоса осуществляется по следующим основным параметрам: свойствам теплоносителя, необходимой объёмной производительности, развиваемого напора и мощности двигателя. Во всех случаях при подборе насосов или вентиляторов, их паспортные характеристики должны быть не ниже требуемых по расчёту.

В общем случае мощность N (кВт), потребляемая двигателем насоса рассчитывается по уравнению:

;

VВ = ;

Где, S=рЧd2Чnв одн. х/4=3,14Ч0,0212Ч377/4=0,13 м2;

Па

по рис. 1.5 при Re=19 319,5

Определим потери давления на преодоление местных сопротивлений теплообменника.

Вид сопротивления

о

Входная и выходная камеры

1,5

1,5Ч2=3

Вход в трубы и выход из них

1Ч4=4

Поворот на 180є из одной секции в другую

2,5

2,5Ч2=5

Рассчитаем скорость в штуцерах по формуле:

м/с

Скоростное давление в штуцерах:

Дрск'=щш 2Чс/2= 10 004,52/2=10 262,7 Па

Скорость в штуцере больше скорости в трубах, поэтому потери давления для входной и выходной камер находим по скорости в штуцерах, а потери при входе и выходе из труб и при повороте из одной секции в другую — по скорости в трубах:

? = 0,65

Выбираем насос из табл.15[3, стр. 28]: заданным подаче и напору соответствует центробежный насос марки Х500/25, для которого

Q = 1,5· 10-1м3/с; Н = 19 м; n = 16с-1; ?н = 0,80.

Насос обеспечен электродвигателем типа АО2−91−6, номинальной мощностью Nн = 55 кВт.

4 Расчёт изоляции

tст. = tконд. = 76 оС; tиз = 40 оС; tокр = 20 оС.

Толщину тепловой изоляции находим из равенства удельных тепловых потоков через слой изоляции от поверхности изоляции к окружающей среде.

Вт/(м· К);

В качестве изоляционного материала возьмём совелит (85% магнезит + 15% асбеста), имеющий коэффициент теплопроводности л=0,09 Вт/(м· К).

Толщина изоляции:

дн =л (tст. — tиз)/ бн(tиз — tокр) = 0,09(76 — 40)/11,62(40 — 20) = 0,014 м.

Толщину изоляции принимаем равную 14 мм.

Заключение

Был произведен тепловой расчет аппарата, в результате был выбран стандартный вертикальный кожухотрубный теплообменник с неподвижной трубной решеткой (ГОСТ 15 119−79) поверхность теплообмена. Диаметр кожуха 1000 мм, длина труб 3 м, общее число труб 754, диаметр трубы 0,025×2 м, число ходов 2, запас площади поверхности теплообмена 15%. Рассчитана тепловая изоляция ее толщина составляет 14 мм. А также произведен гидравлический расчет.

Трубы изготовлены из стали марки Х18Н10Т, расположены в шахматном порядке и закреплены в трубной решетке развальцовкой.

Для подачи воды в теплообменник используем центробежный насос марки Х500/25.

Теплообменник установлен на четыре стандартных опоры типа ОВII-Б-10 000−20 ОН 26−01−69−68.

1. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии.- 9-е изд.- Л.: Химия, 1981.-560с.

2. Основные процессы и аппараты химической технологии: пособие по проектированию.- 2-е изд./ Под ред. Ю. И. Дытнерского.- М.: Химия, 1991. — 496с.

3. Лащинский А. А. Конструирование сварных химических аппаратов: Справочник. — Спб.: Машиностроение. 1981. — 382с.

4. Кожухотрубный теплообменник. Методические указания к выполнению лабораторной работы для студентов всех специальностей ХТФ — Томск: Изд. ТПУ, 2006 — 20с.

5. Процессы и аппараты химической технологии. Проектирование теплообменных аппаратов. Часть 1. Тепловой расчет. Методические указания к курсовому проектированию для студентов химико-технологического факультета. Томск: Изд. ТПУ, 2004.-47с.

6. Процессы и аппараты химической технологии. Проектирование теплообменных аппаратов. Часть 2. Гидравлический и конструктивно — механический расчеты. Методические указания к курсовому проектированию для студентов химико-технологического факультета. Томск: Изд. ТПУ, 2004.-42с.

Показать весь текст
Заполнить форму текущей работой