ΠΡΠ°ΡΠ½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ ΡΠΈΡΡΠ΅ΠΌ
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ. Π’Π΅ΠΎΡΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ°Π·ΡΠ°Π±Π°ΡΡΠ²Π°Π΅ΠΌΡΡ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΡΠ΅ΠΎΡΠΈΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π² ΡΠ°ΡΡΠ½ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ . ΠΠ΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ Π² ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΡ Π·Π°Π΄Π°ΡΠ°Ρ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ , ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΈ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΡ Π½Π°ΡΠΊ. ΠΠ°ΠΆΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π²Π΅Π»ΠΈΠΊΠ° Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Π‘Π²Π΅ΡΠ½ΠΈΠΊΠΎΠ² Π. Π., ΠΠ»ΡΠ½ΠΈΠ½ Π. Π., ΠΠΎΡΠΏΡΡΠΎΠ² Π. Π. ΠΠ΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈ Π΅Π³ΠΎ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΊ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌ Π² ΡΠ°ΡΡΠ½ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ . Π.: ΠΠ°ΡΡΠ½ΡΠΉ ΠΠΈΡ, 2008.
- ΠΡΡΡΠ΅ΡΠ½ΠΈΠΊ Π. Π., Π¨Π½ΠΈΡΠ΅Π»ΡΠΌΠ°Π½ Π. Π. Π’ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π² Π²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΡ Π·Π°Π΄Π°ΡΠ°Ρ . ΠΠΎΡΠΊΠ²Π°, 1930.
- ΠΠ±Π΅Π½ Π.-Π., ΠΠΊΠ»Π°Π½Π΄ Π. ΠΡΠΈΠΊΠ»Π°Π΄Π½ΠΎΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ·. Π.: ΠΠΈΡ, 1988.
- ΠΠΊΠ»Π°Π½Π΄ Π., Π’Π΅ΠΌΠ°ΠΌ Π . ΠΡΠΏΡΠΊΠ»ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈ Π²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ. Π.: ΠΠΈΡ, 1979.
- ΠΠΈΠ»Π±Π°ΡΠ³ Π., Π’ΡΡΠ΄ΠΈΠ½Π³Π΅Ρ Π. ΠΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ°ΡΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°. Π.: ΠΠ°ΡΠΊΠ°, 1989.
- Π¦ΠΈΡΠ»Π°Π½Π°Π΄Π·Π΅ Π. Π‘. Π’Π΅ΠΎΡΠ΅ΠΌΡ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΠ΅ΠΊ ΠΌΠΈΠ½ΠΈΠΌΠ°ΠΊΡΠ° Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°Ρ ΠΠ°Π½Π°Ρ Π° ΠΈ ΠΈΡ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ // Π’Ρ. Π. ΠΠ°ΡΠ΅ΠΌ. ΠΎ-Π²Π°. 1953. Π’. 2. Π‘. 235−274.
- ΠΠ°ΠΉΠ½Π±Π΅ΡΠ³ Π. Π. ΠΠ°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ². Π., 1956.
- ΠΠ°ΠΉΠ½Π±Π΅ΡΠ³ Π. Π. ΠΠ°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ². Π., 1972.
- ΠΠΈΠΎΠ½Π΅ Π.-Π. ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΠΊΡΠ°Π΅Π²ΡΡ Π·Π°Π΄Π°Ρ. Π.: ΠΠΈΡ, 1972.
- ΠΠΎΡ ΠΎΠΆΠ°Π΅Π² Π‘. Π. ΠΠ± ΠΎΠ΄Π½ΠΎΠΌ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π΅ ΠΊ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌ // ΠΠΠ Π‘Π‘Π‘Π . 1979. Π’. 247. Π‘. 1327−1331.
- ΠΠΈΠΎΠ½Π΅ Π.-JI. Π£ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠ½Π³ΡΠ»ΡΡΠ½ΡΠΌΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ. Π.: ΠΠΈΡ, 1987.
- ΠΠΎΡ ΠΎΠΆΠ°Π΅Π² Π‘. Π. ΠΠ± ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΠΎΠΌ ΠΌΠ΅ΡΠΎΠ΄Π΅ Π²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠΈΡΠ»Π΅Π½ΠΈΡ // ΠΠΠ Π‘Π‘Π‘Π . 1988. Π’. 298. Π‘. 1330−1333.
- ΠΠΎΡ ΠΎΠΆΠ°Π΅Π² Π‘. Π. Π ΠΌΠ΅ΡΠΎΠ΄Π΅ ΡΠ°ΡΡΠ»ΠΎΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΠΊΡΠ°Π΅Π²ΡΡ Π·Π°Π΄Π°Ρ // Π’Ρ. ΠΠΠΠ Π‘Π‘Π‘Π . 1990. Π’. 192. Π‘. 146−163.
- ΠΠΎΡ ΠΎΠΆΠ°Π΅Π² Π‘. Π. Π ΠΌΠ΅ΡΠΎΠ΄Π΅ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ»ΠΎΠ΅Π½ΠΈΡ Π² Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΡ Π·Π°Π΄Π°ΡΠ°Ρ // Π’Ρ. ΠΠΠΠ. 1997. Π’. 219. Π‘. 286−334.
- ΠΠ»ΡΡΡΠΎΠ² Π―. Π¨. Π ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ»ΠΎΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΎΠ² Π½Π°Π΄ Π±Π°Π½Π°Ρ ΠΎΠ²ΡΠΌΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°ΠΌΠΈ // Π’Ρ. ΠΠΠΠ. 2001. Π’. 232. Π‘. 156−163.
- ΠΠ»ΡΡΡΠΎΠ² Π―. Π¨. Π’ΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΠΠΎΡ ΠΎΠΆΠ°Π΅Π²Π° ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΡΠ°ΡΡΠ»ΠΎΠ΅Π½ΠΈΠΉ // ΠΠΈΡΡΠ΅ΡΠ΅Π½Ρ. ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 2002. Π’. 38. Π‘. 1453−1459.
- ΠΠ»ΡΡΡΠΎΠ² Π―. Π¨. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»Π° // Π€ΡΠ½ΠΊΡ. Π°Π½Π°Π»ΠΈΠ· ΠΈ Π΅Π³ΠΎ ΠΏΡΠΈΠ». 2007. Vol. 41. Π . 23−38.
- Alama S., Pino Π. Del. Solutions of elliptic equations with indefinite nonlin-earities via Morse theory and linking // Ann. Inst. H. Poincare Anal. Non Lineaire. 1996. Vol. 13. Pp. 95−115.
- Ambrosetti A., Azorero J. Garcia, Alonso I. Peral. Multiplicity results for some nonlinear elliptic equations //J. Funct. Anal. 1996. Vol. 137. P. 219−242.
- Ambrosetti A., Brezis H., Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems // J. Funct. Anal. 1996. Vol. 137. P. 219−242.
- Ambrosetti A., Rabinowitz P. H. Dual variational methods in critical point theory and applications //J. Functional Analysis. 1973. Vol. 14. Pp. 349−381.
- Aubin T. Nonlinear analysis on manifolds. Monge-Ampere equations. Grundlehern der amthematiscshen Wissenschaften, 1982.
- Azorero J. Garcia, Alonso I. Peral. Some results about existence of a second positive solution in a quasilinear critical problem // Indiana Univ. Math. J. 1994. Vol. 43. P. 941−957.
- Azorero J. Garcia, Manfredi J., Alonso I. Peral. Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations // Comm. Contemp. Math. 2000. Vol. 2. P. 385−404.
- Benci V. Some critical point theorems and applications // Comm. Pure Appl. Math. 1980. Vol. 33. Pp. 147−172.
- Bifurcation theory and nonlinear eigenvalue problems, Ed. by J. B! Keller, S. Antman. Courant Institute of Mathematical Sciences, 1967.
- Bozhkov Y., Mitidieri E. Existence of multiple solutions for quasilinear systems via fibering method //J. Differential Equations. 2003. Vol. 190. Pp. 239−267.
- Bozhkov Y., Mitidieri E. Existence of Multiple Solutions for Quasilinear Equations via Fibering Method // Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl. 2006. Vol. 66. Pp. 115−134.
- Brezis H., Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents // Comm. Pure Appl. Math. 1983. Vol. 36. Pp. 437−477.
- Chang K. C. Infinite dimensional Morse theory and multiple solution problems. Boston: Birkhauser, 1993.
- Cherrier P. Problemes de Neumann non lineaires sur les varietes Riemanni-ennes // J. Func. Anal. 1984. Vol. 57. Pp. 154−206.
- Chhetri M., Girg P. Existence and nonexistence of positive solutions for a class of superlinear semipositone systems // Nonlinear Anal. 2009. Vol. 71. Pp. 4984−4996.
- Clement Ph., de Figueiredo D.G., Mitidieri E. Positive solutions of semilinear elliptic systems // Comm. Partial Differential Equations. 1992. Vol. 17. Pp. 923−940.
- Crandall M. G., Rabinowitz P. H. Bifurcation from simple eigenvalues // J. Func. Anal. 1971. Vol. 8. Pp. 321−340.
- Egnell H. Elliptic boundary value problems with singular coefficients and critical nonlinearities // Indiana Univ. Math. J. 1989. Vol. 38. P. 235−251.
- Escobar J. F. Conformai deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary // Ann. of Math. 1992. Vol. 136. Pp. 1−50.
- Evans L. C. Partial Differential Equations. American Mathematical Society, Providence, 1998.
- Gongbaoa L., Guo Z. Multiple solutions for the p$zq-Laplacian problem with critical exponent // Acta Mathematica Scientia. 2009. Vol. 29. Pp. 903−918.100
- Hulshof J., Mitidieri E., vanderVorst R. C. A. M. Strongly indefinite systems with critical Sobolev exponents // Trans. Amer. Math. Soc. 1998. Vol. 350. Pp. 2349−2365.
- Hulshof J., vanderVorst R. C. A. M. Differential systems with strongly indefinite variational structure // J. Funct. Anal. 1993. Vol. 114. Pp. 32−58.
- Il’yasov Y. On nonlocal existence results for elliptic equations with convex-concave nonlinearities // Nonlinear Anal. 2005. Vol. 61. Pp. 211−236.
- Kyritsi S. T., Papageorgiou N. S. Pairs of positive solutions of p-Laplacian equations with combined nonlinearities // Comm. Pure and Applied Analysis. 2010. Vol. 8. Pp. 1031−1051.
- Li S. J., Wu S., Zhou H. S. Solutions to semilinear elliptic problems with combined nonlinearities //J. Differential Equations. 2002. Vol. 185. P. 200−224.
- Lions P. L. On the existence of positive solutions of semilinear elliptic equations // SIAM. 1982. Vol. 24. Pp. 441−467.
- Mitidieri E. A Rellich type identity and applications // Comm. Partial Differential Equations. 1993. Vol. 18. P. 125−151.
- Morse M. The calculus of variations in the large. 1934.
- Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in Rn // Commentationes Mathematicae Universitatis Car-olinae. 2003. Vol. 44. Pp. 645−658.
- Ni W.-M. Some minimax principles and their applications in nonlinear elliptic equations // J. Anal. Math. 1980. Vol. 37. Pp. 248−275.
- Ni W.-M. On the elliptic equation Au + K (x)u (n+2V= 0, its generalizations, and applications in geometry // Indiana Univ. Math. J. 1982. Vol. 31. Pp. 493−529.
- Ouyang T. On the positive solutions of semilinear equations Au--u+hup = 0 on compact manifolds. Part II // Indiana Univ. Math. J. 1991. Vol. 40. Pp. 1083−1141.
- Palais R. S. Morse theory on Hilbert manifolds // Topology. 1963. Vol. 2. Pp. 299−340.
- Palais R. S. Lusternik, Schnirelman theory on Banach manifolds // Topology. 1966. Vol. 5. Pp. 115−132.
- Pohozaev S. I. Handbook of Differential Equations. Stationary Partial Differential Equations // Ed. by M. Chipot. Amsterdam: Elsevier, 2008. Vol. 5. Pp. 49−209. Nonlinear variational problems via the fibering method.
- Salvatore A. Multiple solutions for elliptic systems with nonlinearities of arbitrary growth // J. Differential Equations. 2008. Vol. 244. Pp. 2529−2544.
- Smale S. Morse theory and nonlinear generalization of of the Dirichlet problem // Ann. of Math. 1964. Vol. 80. Pp. 382−396.
- Srikanth P. N. Uniqueness of solutions of nonlinear Dirichlet problems // Differential Integral Equations. 1993. Vol. 6. Pp. 663−670.
- Struwe M. Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer Varlag, 1990.
- Taira K. The Yamabe problem and nonlinear boundary value problems //J. Differential Equations. 1995. Vol. 122. Pp. 316−372.
- Taylor M. Pseudodifferential Operators. Princeton Univ. Press, 1981.
- Thews K. Nontrivial solutions of elliptic equations at resonance // Proc. Roy. Soc. Edinburgh. Sect. A. 1980. Vol. 85. Pp. 119−129.
- Umezu K. Nonlinear elliptic boundary value problems suggested by fermentation // Nonlinear Differential Equations Appl. 2000. Vol. 7. Pp. 143−155.
- Umezu K. Behavior and stability of positive solutions of nonlinear elliptic boundary value problems arising in population dynamics // Nonlinear Anal. 2002. Vol. 49. Pp. 817−840.
- Zhang L. Uniqueness of positive solutions of Au + u + uP = 0 in a ball // Comm. Partial Differential Equations. 1992. Vol. 17. Pp. 1141−1164.
- Zhang L. Prescribing curvatures on three dimensional riemannian manifolds with boundaries // Trans. Amer. Math. Soc. 2009. Vol. 361. Pp. 3463−3481.
- ΠΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ
- Al. Lubyshev V. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem // Commun. Pure Appl. Anal. 2009. Vol. 8. Pp. 999−1018.
- A2. ΠΡΠ±ΡΡΠ΅Π² Π. Π€. ΠΡΠ°ΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π²ΡΠΏΡΠΊΠ»ΠΎ-Π²ΠΎΠ³Π½ΡΡΠΎΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΡΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ Π·Π½Π°ΠΊΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΠ»Π΅Π½ // Π’Ρ. ΠΠΠΠ. 2010. Π’. 269. Π‘. 167−180.
- Π4. Lubyshev V. F. Multiple solutions of an even-order nonlinear problem with convex-concave nonlinearity // Nonlinear Anal. 2011. Vol. 74. Pp. 1345−1354.
- A5. ΠΡΠ±ΡΡΠ΅Π² Π. Π€. ΠΡΠ°ΡΠ½Π°Ρ ΡΠ°Π·ΡΠ΅ΡΠΈΠΌΠΎΡΡΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° // ΠΠ°Ρ. Π·Π°ΠΌΠ΅ΡΠΊΠΈ. 2011. Vol. 89. Π . 260−271.