Исследование некоторых моделей риска на основе асимптотического анализа и численных методов
Диссертация
Невозможность получения явного вида вероятности разорения во многих моделях приводит к необходимости нахождения различных аппроксимаций. К подобным аппроксимациям можно отнести асимптотические формулы, дающие выражения для вероятностей разорения при больших значениях начального капитала. Примером может служить знаменитая формула Крамера-Лундберга (см.). Другими примерами являются аппроксимации… Читать ещё >
Список литературы
- Abate J., Choudhury G.L., Whitt W. Waiting time tail probabilities in queues with long-tail service time distributions // Queueing Systems — 1994. — V. 16. — P. 311−338.
- Asmussen S. Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the GI/G/1 queue // Adv. Appl. Prob. 1982. — V. 14. — P. 143−170.
- Asmussen S. Approximations for the probability of ruin within finite time // Scand. Actuarial J. 1984. — P. 31−57.
- Asmussen S. Applied Probability and Queues. Chichester: J. Wiley, 1987.
- Asmussen S. Risk Theory in a Markovian enviroment // Scand. Actuarial J. 1989. — P. 69−100.
- Asmussen S. Ladder heights and the Markov-modulated M | G J 1 queue // Stoch. Processes and Their Applications 1991. — V. 37 — P. 313−326.
- Asmussen S. Stationary distributions via first passage times // Advances in Queueing. Theory, Methods, and Open Problems (ed. J. Dshalalow). -Boca Raton: CRC Press, 1995. P. 79−102.
- Asmussen S. Ruin Probabilities. Singapore: World Scientific, 1996.
- Asmussen S., Frey A., Rolski Т., Schmidt V. Does Markov-modulation increase the risk? // ASTIN Bull. 1995. — V. 25. — P. 49−66.
- Asmussen S., Henriksen L.F., Kliippelberg C. Large claims approximations for risk processes in a Markovian environment // Stoch. Proc. Appl. 1994. — V. 54, P. 29−43.
- Asmussen S., Kliippelberg C. Large deviations results in the presence of heavy tails, with applications to insurance risk.// Preprint of J. Gutenberg-Universitat Mainz, 95−1, April 1995.
- Asmussen S., Nielsen H.M. Ruin probabilities via local adjustment coefficients // J. Appl. Prob. 1995. — V. 33. — P. 736−755.
- Asmussen S., Petersen S.S. Ruin probabilities expressed in terms of storage processes // Adv. Appl. Prob. 1989. — V. 20. — P. 913−916.
- Asmussen S., Rolski T. Computational methods in risk theory: a matrix-algorithmic approach // Insurance: Math, and Econom. 1991. — V. 10. -P. 259−274.
- Asmussen S., Rolski T. Risk theory in a periodic environment: the Сгатёг-Lundberg approximation and Lundberg’s inequality // Mathematics of Oper. Res. 1994. — V. 19. — P. 410−433.
- Asmussen S. Subexponential asymptotics for stochastic processes: extremal behaviour, stationary distributions and first passage probabilities //The Annals of Applied Probability. 1998. V. 8. P. 354−374.
- Asmussen S., Schmidt V. Ladder height distribution with marks // Stoch. Proc. Appl. 1995. — V. 58. — P. 105−119.
- Asmussen S., Teugels J.L. Convergence rates for M/G/l queues and ruin problems with heavy tails // 1995.19. von Bahr B. Ruin probabilities expressed in terms of ladder height distributions // Scand. Actuarial J. 1974. — P. 190−204.
- Barndorff-Nielsen O., Schmidli H. Saddlepoint approximations for the probability of ruin in finite time // Res. Report, No 284. Dept. Theor. Statist., Aarhus University, 1994.
- Beekman J. A ruin function approximation // Trans, of the Soc. of Actuaries. 1969. — V. 21. — P. 41−48, P. 275−279.
- Beekman J. Two stochastic processes. Stockholm: Almqvist & Wiksel, 1974
- Benckert L.G., Jung J. Statistical models of claim distributions in fire insurance // ASTIN Bull. 1974. — V. 8. — P. 1−25.
- Bingham N.H., Goldie C.M., Teugels J.L. Regular variation. Cambridge: Cambridge Univ. Press, 1987.
- Bjork Т., Grandell J. An insensitivity property of the ruin probability // Scand. Actuarial J. 1985. — P. 148−156.
- Bjork Т., Grandell J. Exponential inequalities for ruin probabilities in the Cox case // Scand. Actuarial J. 1988. — P. 77−111.
- Bohman H. The ruin probability in a special case // ASTIN Bull. 1971. — V. 1. — P. 66−68.
- Boogaert P., Crijns V. Upper bounds on ruin probabilities in case of negative loadings and positive interest rates // Insurance: Math, and Econ.- 1987. V. 6. — P. 221−232.
- Boogaert P., Delbaen F., Haezendonck J. Limit theorems for the present value of the surplus of an insurance portfolio // Insurance: Math, and Econ.- 1988. V. 7. — P. 131−138.
- Bowers N., Gerber H., Hickman J., Jones D., Nesbitt, C. Actuarial mathematics. Ithaca: Soc. of Actuaries, 1986.
- Buhlmann H. Mathematical methods in risk theory. Berlin: Springer, 1970.
- Cramer H. On the mathematical theory of risk // Skandia Jubilee Volume, Stockholm 1930.
- Cramer H. Collective risk theory // Skandia Jubilee Volume, Stockholm -1955.
- Christ R., Steinebach J. Estimating the adjustment coefficient in an ARMA (p, q) risk model // Insurance: Math, and Econom. 1995. — V. 14.- P. 149−161.
- Croux K., Veraverbeke N. Nonparametric estimators for the reliability of ruin // Insurance: Math, and Econom. 1990. — V. 9. — P. 127−130.
- Dassios A., Embrechts P. Martingales and insurance risk // Stoch. Models- 1989. V. 5. — P. 181−217.
- Deheuvels P., Steinebach J. On some alternative estimates of the adjustment coefficient in risk theory // Scand. Actuarial J. 1990. — P. 135−159.
- Dembo A., Zeitouni O. Large deviations. Techniques and Applications. -Boston: Jones and Bartlett, 1993.
- Dickson D.C.M., Waters H.R. The probability and severity of ruin in finite and infinite time // ASTIN Bull. 1992. — V. 22. — P. 177−190.
- Dufresne F., Gerber H.U. The probability and severity of ruin for combinations of exponential claim amount distributions and their translations // Insurance: Math, and Econom. 1988. — V. 7. — P. 75−80.
- Dufresne F., Gerber H.U. The surpluses immediately before and at ruin, and the amount of claim causing ruin // Insurance: Math, and Econom. -1988. V. 7. — P. 193−199.
- Dufresne F., Gerber H.U. Three methods to calculate the probability of ruin // ASTIN Bull. 1989. — V. 19. — P. 71−90.
- Dufresne F., Gerber H.U. Risk theory for the compound Poisson process that is perturbed by diffusion // Insurance: Math, and Econom. 1991. -V. 10. — P. 51−59.
- Dufresne F., Gerber H.U. Rational ruin problems a note for the teacher // Insurance: Math, and Econom. — 1991. — V. 10. — P. 21−29.
- Dufresne F., Gerber H.U. The probability of ruin for the inverse Gaussian and related processes // Insurance: Math, and Econom. 1993. — V. 12. -P. 9−22.
- Dufresne F., Gerber H.U., Shiu S.W. Risk theory with the gamma process 11 ASTIN Bull. 1991. — V. 21. — P. 177−192.
- Durrett R. Conditioned limit theorems for random walks with negative drift // Z. Wahrscheinlichkeitstheorie verw. Geb. 1980. — V. 52. — P. 277−287.
- Eade J. The ruin problem for mixed Poisson risk processes // Scand. Actuarial J. 1983. — P. 193−210.
- Embrechts P. Martingales in non-life insurance // Vilnius Conference Proceedings, VNU Press 1990. — V. 1. — P. 314−322.
- Embrechts P., Goldie C.M. On closure and factorization properties of subexponential and related distributions // J. Austral. Math. Soc. 1980. — V. A29. — 243−256.
- Embrechts P., Goldie C.M., Veraverbeke N. Subexponentiality and infinite divisibility // Z. Wahr. verw. Gebiete 1979. — V. 49. — P. 335−347.
- Embrechts P., Grandell J., Schmidli H. Finite-time Lundberg inequalities in the Cox case // Scand. Actuarial J. 1993. — P. 17−41.
- Embrechts P., Kliippelberg C., Mikosch T. Modelling extremal events, with special emphasis on insurance and finance. Book manuscript, 1995.
- Embrechts P., Schmidli H. Ruin estimation for a general insurance risk model. Adv. Appl. Prob. 1994. — V. 26. — P. 404−422.
- Embrechts P., Schmidli H. Modelling of extremal events in insurance and finance // Zeitschrift fur Oper. Res. 1994. — P. 1−33.
- Embrechts P., Veraverbeke N. Estimates of the probability of ruin with special emphasis on the possibility of large claims // Insurance: Math, and Econ. 1982. — V. 1. — P. 55−72.
- Embrechts P., Villasenor J.A. Ruin estimates for large claims // Insurance: Math, and Econ. 1988. — V. 7. — P. 269−274.
- Engelander S. Konfidenzintervalle fur empirische Ruinwahrscheinlickeiten: asymptotisches Verhalten und Monte-Carlo Simulation. Diploma thesis, University of Cologne, 1987.
- Феллер В. Введение в теорию вероятностей и ее приложения, том 2. -М.: Мир, 1984.
- Frees E.W. Nonparametric estimation of the probability of ruin // ASTIN Bull. 1986. — V. 16. — P. 81−90.
- Furrer H. Risikoprozesse destort durch Diffusion. Diplomarbeit, ETH Zurich, 1993.
- Furrer H., Schmidli H. Exponential inequalities for ruin probabilities of risk processes perturbed by diffusion // Insurance: Math, and Econom. -1994. V. 15. — P. 23−36.
- Gerber H.U. Martingales in risk theory // Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker. 1973. — 73. Band. — Heft 2. — P. 205−216.
- Gerber H.U. An extension of the renewal equation and its application in the collective theory of risk // Skand. Aktuar. Tidskr. 1970. — V. 53. — P. 205−210.
- Gerber H.U. An Introduction to mathematical risk theory. Philadelphia: University of Pennsylvania, 1979.
- Gerber H.U. Mathematical fun with ruin theory // Insurance: Math, and Econom. 1988. — V. 7. — P. 15−23.
- Gerber H.U. Mathematical fun with the compound binomial process // ASTIN Bull. 1988. — V. 18. — P. 161−168.
- Gerber H.U. From the convolution of uniform distributions to the probability of ruin // Mitteilungen der Schweizerischen Vereinigung fur Versicherungsmathematiker. 1989. — P. 283−292.
- Gerber H.U. When does the surplus reach a given target? // Insurance: Math, and Econom. 1990. — V. 9. — P. 115−119.
- Gerber H.U. On the probability of ruin for infinitely divisible claim amount distributions // Insurance: Math, and Econom. -1992. V. 11. — P. 163−166.
- Gerber H.U. Martingales and tail probabilities // ASTIN Bull. 1994. -V. 24. — P. 145−146.
- Gerber H.U., Goovaerts M.J., Kaas R. On the probability and severity of ruin // ASTIN Bull. 1987. — V. 17. — P. 151−163.
- Goldie C.M. Subexponential distributions and dominated-variation tails // J. Appl. Probab. 1978. — V. 15. — P. 440−442.
- Goovaerts M. J., De Vylder F. A stable algorithm for calculation of ultimate ruin probability // ASTIN Bull. 1984. — V. 14. — P. 53−59.
- Grandell J. A class of approximations or ruin probabilities // Scand. Actuarial J. 1977. — P. 38−52.
- Grandell J. A remark on 'A class of approximations of ruin probabilities' // Scand. Actuarial J. 1978. — P. 77−78.
- Grandell J. Empirical bounds for ruin probabilities // Stoch. Processes and Their Applications 1979. — V. 8. — P. 243−255.
- Grandell J. Aspects of risk theory. New York: Springer-Verlag, 1991.
- Grandell J. Finite time ruin probabilities and martingales // Informatica.- 1992. V. 2. — P. 3−32.
- Grandell J., Peiram L. A note on the ruin problem for a class of stochastic processes with interchangeable increments // ASTIN Bull. 1973. — V. 7.- P. 81−89.
- Grandell J., Segerdahl C.O. A comparison of some approximations of ruin probabilities // Scand. Aktuar. Tidskr. 1971. — V. 54. — P. 144−158.
- Henriksen L.F. Large claims in ruin probability theory simulation studies and the case of a Markovian environment. — Cand. act. thesis, Lab. of Insurance Math., University of Copenhagen, 1992.
- Herkenrath U. On the estimation ot the adjustment coefficient in risk theory by means of stochastic approximation procedures // Insurance: Math, and Econ. 1986. — V. 5. — P. 305−313.
- Hipp C. Efficient estimators for ruin probabilities Proc. 4th Prague Symp. Asympt. Statist., 1988.
- Hoglund T. An asymptotic expression for the probability of ruin within finite time // Ann. Prob. 1990. — V. 18. — P. 378−389.
- Janssen J. Some transient results on the M | SM | 1 special semi-Markov model in risk and queueing theories // ASTIN Bull. 1980. — V. 11. — P. 41−51.
- Janssen J., Reinhard J.M. Probabilites de ruine pour une classe de modeles de risque semi-Markoviens // ASTIN Bull. 1985. — V. 15. — P. 123−133.
- Калашников В.В. Качественный анализ поведения сложных систем методом пробных функций. М.: Наука, 1978.
- Kalashnikov V.V. Two-sided estimates of geometric convolutions // LN in Math., Springer, Berlin. 1993. — V. 1546. — P. 76−88.
- Kalashnikov V.V. Mathematical methods in queueing theory. Dordrecht: Kluwer Acad. Publ., 1994.
- Kalashnikov V.V. Topics on regenerative processes. Boca Raton: CRC Press, 1994.
- Kalashnikov V.V. Bounds for geometric sums in the presence of heavy-tailed summands. Pr6publications de l’Equipe d’Analyse et de Math? matiques Appliqu6es, Universite de Marne-La-Vallee, No 27, Septembre 1995.
- Kalashnikov V.V. Two-sided bounds of ruin probabilities // Scand. Actuarial J. 1996. — P. 1−18.
- Kling B.M., Goovaerts M.J. A recursive evaluation of the finite time ruin probability based on an equation of Seal // Insurance: Math, and Econom. 1991. — V. 10. — P. 93−97.
- Kliippelberg С. Subexponential distributions and integrated tails // J. Appl. Probab. 1988. — V. 25. — P. 132−141.
- Kliippelberg C. Estimation of ruin probabilities by means of hazard rates // Insurance: Math, and Econ. 1989. — V. 8. — P. 279−285.
- Kliippelberg C., Mikosch T. Large deviations of heavy tailed random sums with applications in insurance and finance. Preprint of J. Gutenberg-Universitat Mainz, 95−2, April 1995.
- Kliippelberg C., Mikosch T. Delay in claim settlement and ruin probability approximations // Scand. Actuarial J. 1996. — в печати.
- Kliippelberg С., Stadtmuller U. Ruin probabilities in the presence of heavy tails and interest rates. Preprint of J. Gutenberg-Universitat Mainz, 95−7, Dezember 1995.
- Lin X. Tail of compound distributions and excess time // J. Appl. Probab. 1996. — V. 33. — в печати.
- Lindley D.V. The theory of queues with a single server // Proc. Cambridge Phil. Soc. 1952. — V. 48. — P. 277−289.
- Lundberg O. On radnom processes and their application to sickness and accident statistics. Uppsala: Almqvist and Wiksell, 1964.
- Meyer P. Processus a accroissements independants et positifs // Seminaire de ргоЬаЬПШёэ III, Lecture Notes in Mathematics. 1969. -V. 88.
- Meyers G., Beekman J.A. An improvement to the convolution method of calculating ip (u) // Insurance: Math, and Econ. 1988. — V. 7. — P. 267−274.
- Reinhard J.M. On a class of semi-Markov risk models obtained at classical risk models in a Markovian enviroment // ASTIN Bull. 1984. — V. 14. -P. 23−43.
- Pakes A.G. On the tails of waiting-time distributions // J. Appl. Prob. -1975. V. 12. — 555−564.
- Richter W.-D., Steinebach J., Taube S. On a class of estimators for an exponential tail coefficient with applications in risk theory // Statistics & Decisions. 1993. — V.ll. — P.145−173.
- Schmidli H. A general insurance risk model. Doct. thesis, Diss. ETH, Nr. 9881, ETH Zurich, 1992.
- Schmidli H. Diffusion approximations for a risk process with the possibility of borrowing and investment // Comm. in Statistics and Stochastic Models. 1994. — V. 10. — P. 365−388.
- Schmidli H. Cramer-Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion // Insurance: Math, and Econ. 1995.- V. 16. P. 135−149.
- Schmidli H. An extension to the renewal theorem and an application to risk theory. Res. Report, Dept. of Theoretical Statistics, Univ. of Aarhus.- No 333. October 1995.
- Sundt В., Teugels J.L. Ruin estimates under interest force. Preprint, 1995.
- Taylor G.C. A heuristic review of some ruin theory results // ASTIN Bull. 1985. — V. 15. — P. 73−88.
- Teugels J.L., Veraverbeke N. Cramer-type estimates for the probability of ruin // C.O.R.E. Discussion paper. 1973. — V. 7316.
- Thorin O. Ruin probabilities when the claim amounts are gamma distributed // Fotsakringstekniska forskingsnamnden. 1986. — V. 69.
- Thorin O., Wikstad N. Calculation and use of ruin probabilities // Trans, of the 20th Intern. Congress of Actuaries. 1976. — V. III. — P. 773−781.
- Thorin O., Wikstad N. Calculation of ruin probabilities when the claim distribution is lognormal // ASTIN Bull. 1977. — V. 9. — P. 231−246.
- Tijms H.C., Van Hoorn M.H. Algorithms for the state probabilities and the waiting times in single server queueing systems with random and quasirandom input and phase-type service times // OR Spectrum. 1981. — V. 2. — P. 145−152.
- De Vylder F. Martingales and ruin in a dynamical risk process // Scand. Actuarial J. 1977. — P. 217−225.
- De Vylder F. A practical solution to the problem of ultimate ruin probability // Scand. Actuarial J. 1978. — P. 114−119.
- Waters H.R. Excess of loss reinsurance limits // Scand. Actuarial J. -1979. P. 37−43.
- Willekens E., Teugels J.L. Asymptotic expansions for waiting time probabilities in an M | G | 1 queue with long-tailed service time // Queueing Systems 1992. — V. 10. — P. 295−312.
- Willmot G. The total claims distribution under inflationary conditions // Scand. Actuarial J. 1989. — P. 1−12.
- Willmot G. Refinements and distributional generalizations of Lundberg’s inequality // Insurance: Math, and Econom. 1994. — V. 15. — P. 49−63.
- Willmot G., Lin X. Lundberg bounds on the tails of compound distributions // J. Appl. Prob. 1994. — V. 31. — P. 743−756.
- Kalashnikov V.V., Tsitsiashvili G.Sh. Tails of waiting times and their bounds//Queueing Systems. 1999. V. 32. P. 257−283.
- Konstantinides D.G., Tang Q.H., Tsitsiashvili G.Sh. Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails //Insurance: Mathematics and Economics. 2002. V. 31. N. 3. P. 447−460.
- Ortobelli S.I., Huber I., Rachev S.T., Schwartz E. Portfolio Choice Theory with non-Gaussian Distributed Returns. Handbook of Heavy Tailed Distributions in Finance. North Holland Handbooks of Finance. Series Editor Zimba W.T.
- Rogozin, B.A., Sgibnev, M.S. Banach algebras of measures on the line with given asymptotics of distributions at infinity. Siberian Math. J. 40, 1999, 565−576.
- Tang Q., Tsitsiashvili G.Sh. Precise Estimates for the Ruin Probability in Finite Horizon in a Discrete-time Model with Heavy-Tailed Insurance and Financial Risks. Stochastic Process. Appl., 108, 2003, pp. 299−325.
- Скварник E.C. Численные оценки вероятности разорения в классической модели риска с постоянным интересом в случае тяжелых хвостов //Дв. мат. журнал 2004, том 5, выпуск 1, С. 72−82.
- Скварник Е.С. Численные оценки вероятности разорения в классической модели риска с постоянным приростом капитала//
- Препринт. Владивосток: ИПМ ДВО РАН. 2004.
- Цициашвили Г. Ш., Скварник Е. С., Кольев А. Н. Фазовый переход в модели страхования с логарифмически устойчивым распределением финансового риска. //Пятый Всероссийский симпозиум по прикладной и промышленной математике (Кисловодск, 2 мая-8 мая 2004 г.)
- Скварник Е.С. Численные оценки вероятности разорения в классической модели риска//Тез. докл. Дальн. школы им. Е. В. Золотова. Владивосток: Дальнаука. 2001. С. 64−65.
- Скварник Е.С. Оценки вероятности разорения в классической модели риска с постоянным интересом//Тез. докл. 5-ой Дальн. конф. студентови аспирантов по мат. моделированию, Владивосток: Дальнаука, 2001, С. 21
- Цициашвили Г. Ш., Скварник Е. С. Численное решение задачи о средних значениях в классической модели риска//Препринт. Владивосток: ИПМ ДВО РАН. 2001.
- Цициашвили Г. Ш., Скварник Е. С. Численное решение задачи о средних значениях в классической модели риска//
- Обозрение прикладной и промышленной математики. Том 1. Jf" 1. Москва: ТВП. 2001. С. 127−128
- Скварник Е.С. Численные оценки вероятности разорения в дискретной модели риска с конечным числом шагов на основе метода Монте-Карло //Тез. докл. 6-ой Дальн. конф. студентов и аспирантов по мат. моделированию, Владивосток: Дальнаука, 2003, С. 24
- Скварник Е.С. Оценки вероятности разорения в дискретной модели риска на одном шаге// Тез. докл. 6-ой Дальн. конф. студентов и аспирантов по мат. моделированию. Владивосток: Дальнаука. 2002. С. 20−21.
- Скварник Е.С. Быстрый алгоритм численного интегрирования медленно меняющихся функций //Тез. докл. Дальн. школы им. Е. В. Зо-лотова. Владивосток: Дальнаука. 2002. С. 64−65.