Использование rhHsp70 для регуляции активности иммунокомпетентных клеток
Диссертация
Кроме того, показано, что многие БТШ обладают иммунорегуляторной активностью и стимулируют созревание незрелых ДК и секрецию ДК цитокинов ИЛ-1, ИЛ-6, ФНОа и ИЛ-12, которые обеспечивают и поддерживают индукцию и пролиферацию антигенспецифических, в том числе, опухолеспецифических ЦТЛ. Однако, сведения об иммунорегуляторной активности БТШ весьма противоречивы. Важно отметить, что при исследовании… Читать ещё >
Список литературы
- Srivastava РК, Menoret A, Basu S, et al. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. // Immunity. — 1998. — Vol.8.-P.657−65.
- Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. // J. Immunol. 1994. -Vol. 152(1 l).-P.5398−403.
- Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. // Science. 1995. — Vol.269(5230). — P.1585−8.
- Przepiorka D, Srivastava PK. Heat shock protein—peptide complexes as immunotherapy for human cancer. // Mol. Med. Today. 1998. — Vol.4(ll). -P.478−84.
- Ishii T, Udono H, Yamano T, Ohta H, et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. // J. Immunol. 1999. — Vol. 162(3). — P. 1303−9.
- Blachere NE, Li Z, Chandawarkar RY, et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity.//J. Exp. Med. 1997. — Vol.186. -P.1315−22.
- Li Z. In vitro reconstitution of heat shock protein-peptide complexes for generating peptide-specific vaccines against cancers and infectious diseases. // Methods. 2004. — Vol.32(l). — P.25−8.
- Wang XY, Li Y, Yang G, Subjeck JR. Current ideas about applications of heat shock proteins in vaccine design and immunotherapy. // Int. J. Hyperthermia. 2005. — Vol.21(8). — P.717−22.
- Zhang X, Yu C, Zhao J, et al. Vaccination with a DNA vaccine based on human PSCA and HSP70 adjuvant enhances the antigen-specific CD8+ T-cellresponse and inhibits the PSCA+ tumors growth in mice. J Gene Med. 2007 Aug-9(8):715−26.
- Arnold-Schild D, Hanau D, Spehner D, et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. //J. Immunol. 1999. — 162(7).-P.3757−60.
- Noessner E, Gastpar R, Milani V, et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. // J. Immunol. 2002. — Vol.169(10). — P.5424−32.
- Asea A, Rehli M, Kabingu E et al. Novel signal transduction pathway utilized by extracellular HSP70 role of toll-like receptor (TLR) 2 and TLR4. // J. Biol. Chem. 2002. — Vol.277. — P. 15 028−43.
- Asea A. Stress proteins and initiation of immune response: chaperokine activity of hsp72. // Exerc. Immunol. Rev. 2005. — Vol.11. — P.34−45.
- Tsan MF, Gao B. Heat Shock Protein and Innate Immunity. // Cellular & Molecular Immunology. 2004. — Vol. 1(4). — P.274−279.
- Bausinger H, Lipsker D, Ziylan U et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. // Eur. J. Immunol. 2002. — Vol.32. -P.3708−13.
- Bendz H, Ruhland SC, Pandya MJ, et al. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. // J. Biol. Chem. 2007. -Vol.282(43). — P.31 688−702.
- Srivastava PK. Peptide-binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation.// Adv. Cancer. Res. 1993. — Vol.62. — P. 153−77.
- Udono H, Srivastava PK. Heat Shock Protein 70-associated Peptides Elicit Specific Cancer Immunity.// J. Exp. Med. 1993. — Vol. l78(4). — P.1391−6.
- Ciupitu AM, Petersson M, Kono K, et al. Immunization with heat shock protein 70 from methylcholanthrene-induced sarcomas induces tumor protection correlating with in vitro T cell responses.// Cancer Immunol. Immunother. 2002. — Vol.51. — P. 163−170.
- Navaratnam M, Deshpande MS, Hariharan MJ, Zatechka DS, Srikumaran S. Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specific for bovine herpesvirus 1. // Vaccine. — 2001. Vol.19(11−12). — P.1425−1434.
- Wallin RP, Lundqvist A, More SH, et al. Heat-shock proteins as activators of the innate immune system. // Trends Immunol. 2002. — Vol.23. -P.130−135.
- Tsan MF, Gao B. Cytokine function of heat shock proteins. // Am. J. Physiol. 2004. — Vol.286. — P.739−744.
- Ritossa FA. A new puffing pattern induced by temperature shock and DNP in Drosophila. // Experientia. 1962. — Vol. l8. — P.571−573.
- Tissieres A, Mitchell HK, Tracy U. Protein synthesis in salvary glands of Drosophila melanpgaster: relation to chromosome puffs. // J. Mol. Biol. 1974. — Vol.84.-P.389−398.
- Fink AL. Chaperone-mediated protein folding. // Physiol. Rev. -1999. Vol.79. — P.425−449.
- Hard FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. // Science. 2002. — Vol.295. — P. l852−1858.
- Lindquist S, Craig EA. The heat-shock proteins. // Annu. Rev. Genet. 1988.- Vol.22. -P.631−677.
- Jaattela M. Heat shock proteins as cellular lifeguards. // Ann Med. -1999.-Vol.31.-P.261−271.
- Hightower LE, Hendershot LM. Molecular chaperones and the heat shock response at Cold Spring Harbor. Cell Stress Chaperon. 1997. — Vol.2. — P. l-11.
- Ingolia T.D., Craig E.A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. // Proc. Natl. Acad. Sci. USA, 1982. — Vol.79. -P.2360−2364.
- Brocchieri L, Conway de Macario E, Macario AJ. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. // BMC Evol. Biol. 2008. — Vol.8. — P. 19.
- Singh R, Kolvraa S, Rattan SI. Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes. // Front. Biosci. 2007. -Vol.12.-P.4504−4513.
- Milner CM, Campbell RD. Structure and expression of the three МНС-linked HSP70 genes. // Immunogenetics. 1990. — Vol.32. — P.242−251.
- Flaherty KM, DeLuca-Flaherty C, McKay DB. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. // Nature. -1990. Vol.346. — P.623−628.
- Cegielska A, Georgopoulos C. Functional Domains of the Escherihia coli dnaK Heat Shock Protein as Revealed by Mutational Analysis // J. Biol. Chem. — 1998. — Vol. 264(35). — P.21 122−21 130.
- Caplan AJ, Cyr DM, Douglas MG. Eukaiyotic homologues of Escherichia coli dnaj: a diverse protein family that functions with hsp70 stress proteins. // Mol. Biol. Cell. 1993. — Vol.4. — P.555−563.
- Kathryn V. Anderson, Gerd Jiirgens, Christiane Nusslein-Volhard. Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product. // Cell. 1985. -Vol.42(3). — P.779−89.
- Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. // Cell. 1985. — Vol.42(3). — P.791−8.
- Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/ToII/cactus controls the potent antifungal response in Drosophila adults. // Cell. 1996. — Vol.86(6). — P.973−83.
- Medzhitov R, Preston-Hurlburt P, Janeway С A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. // Nature. -1997. Vol.388 (6640). — P.394−7.
- Gay N, Keith F. Drosophila Toll and IL-1 receptor. // Nature — 1991. — Vol.351. -P.355−356.
- Bowie A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. // J. Leukoc. Biol. 2000. — Vol.67(4). -P.508−14.
- Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. // Science. 1998. -Vol.282. -P.2085−2088.
- Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. // J. Immunol. 1999. — Vol.162. — P.3749−3752.
- Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. // Nat. Immunol. 2000. — Vol. 1. — P.398−401.
- Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through tolllike receptor 4. // J. Immunol. — 2001. Vol.167. — P.2887−2894.
- Taylor KR, Trowbridge JM, Rudisill JA, et al. Hyaluronan fragments stimulate dermal endothelial recognition of injury through TLR4. // J. Biol. Chem.- 2004. Vol.279. — P. 17 079−17 084.
- Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. // J. Exp. Med. 2002. -Vol.195.-P.99−111.
- Tobias PS, Soldau K, Ulevitch RJ. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. // J. Exp. Med. 1986. — Vol.164.- P.777−793.
- Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. // J. Exp. Med. 1999. -Vol.189.-P.1777−1782.
- Viriyakosol S, Kirkland T, Soldau K, Tobias P. MD-2 binds to bacterial lipopolysaccharide. // J. EndotoxinRes. 2000. — Vol.6 — P.489−491.
- Medzhitov R, Preston-Hurlburt P, Kopp E, et al. MyD88 is an adaptor protein in the hToML-1 receptor family signaling pathways. // Mol. Cell. 1998.- Vol.2.-P.253−258.
- Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. // Science. 1997. -Vol.278.-P.1612−1615.
- Muzio M, Natoli G, Saccani S, et al. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). // J. Exp. Med. -1998. Vol.187. — P.2097−2101.
- Yamamoto M, Sato S, Hemmi H, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. // Nat. Immunol. 2003. — Vol.4(l 1). — P. 1144−50.
- Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. // Nature 2002. -Vol.420(6913). -P.324−9.
- Schwadner R, Dziarski R, Wesche H, et al. Peptidoglycan- and lipoteichoic acidinduced cell activation is mediated by Toll-like receptor 2. // J. Biol. Chem. 1999. — Vol.274. — P. 17 406−17 409.
- Yoshimura A, Lien E, Ingalls RR, et al. Cutting edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. // J. Immunol. 1999. — Vol.165. — P. 1−5.
- Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. // Science. 1999. — Vol.285. — P.732−736.
- Means TK, Wang S, Lien E, et al. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. // J. Immunol. 1999. -Vol.163.-P.3920−3927.
- Underhill DM, Ozinsky A, Hajjar AM, et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. // Nature. 1999. — Vol.401. — P.811−815.
- Bieback K, Lien E, Klagge IM, et al. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. // J. Virol. 2002. — Vol.76.-P.8729−8736.
- Compton T, Kurt-Jones EA, Boehme KW, et al. Human cytomegalovirus activates inflammatory cytokine responses via CD 14 and Tolllike receptor 2. // J. Virol. 2003. — Vol.77. — P.4588−4596.
- Kurt-Jones EA, Chan M, Zhou S, et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. //Proc. Natl.Acad. Sci. USA 2004. — Vol.101. -P.1315−1320.
- Werts C, Tapping RI, Mathison JC, et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. //Nat. Immunol. 2001. — Vol.2. — P.346−352.
- Ogawa T, Asai Y, Hashimoto M, et al. Cell activation by Porphyromonas gingivalis lipid A molecule through Toll-like receptor 4- and myeloid differentiation factor 88-dependent signaling pathway. // Int. Immunol. -2002. Vol.14. — P.1325−1332.
- Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. // Proc. Natl. Acad. Sci. USA 2000. -Vol.97.-P.13 766−13 771.
- Takeuchi O, Sato S, Horiuchi T, et al. Role of TLR 1 in mediating immune response to microbial lipoproteins. // J. Immunol. 2002. — Vol.169. — P.10−14.
- Cooperstock MS. Inactivation of endotoxin by polymyxin B. // Antimicrob. Agents Chemother. 1974. — Vol.6 — P.422−425.
- Cavaillon JM, Haeffner-Cavaillon N. Polymyxin В inhibition of LPS-induced interleukin-1 secretion by human monocytes is dependent upon the LPS origin. // Mol. Immunol. 1986. — Vol.23. — P.965.
- Stokes DC, Shenep JL, Fishman M, et al. Polymyxin В prevents lipopolysaccharide-induced release of tumor necrosis factors from alveolar macrophages. // J. Infect. Dis. 1989. — Vol.160. — P.52.
- Asea A, Kraeft SK, Kurt-Jones EA, et al. Hsp70 stimulates cytokine production through a CD-14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. // Nat. Med. 2000. — Vol.6 — P.43 5−442.
- Chen W, Syldath U, Bellmann K, et al. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. // J. Immunol. 1999. -Vol.162.-P.3212−3219.
- Dybdahl B, Wahba A, Lien E, et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through Toll-like receptor-4. // Circulation. 2002. — Vol.105. — P.685−690,.
- Kol A, Lichtman AH, Finberg RW, et al. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD 14 is an essential receptor for HSP60 activation of mononuclear cells. // J. Immunol. 2000. -Vol.164. -P.13−17.
- Retzlaff C, Yamamoto Y, Hoffman PS, et al. Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. // Infect. Immun. 1994. — Vol.62. — P.5689−5693.
- Retzlaff C, Yamamoto Y, Okubo S, et al. Legionella pneumophila heat-shock protein-induced increase of interleukin-1 mRNA involves protein kinase С signaling in macrophages. // Immunology 1996. — Vol.89. — P.281−288.
- Wang Y, Kelly CG, Singh M, et al. Stimulation of Th-1 polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. // J. Immunol. — 2002. -Vol.169.-P.2422−2429.
- Galdiero M, DeL’ero GC, and Marcatili A. Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. // Infect. Immun. 1997. — Vol.65. — P.699−707.
- Asea A, Kraeft SK, Kurt-Jones EA, et al. Hsp70 stimulates cytokine production through a CD-14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. // Nat. Med. 2000. — Vol.6 — P.435−442.
- McLeish KR, Dean WL, Wellhausen SR, Stelzer GT. Role of intracellular calcium in priming of human peripheral blood monocytes by bacterial lipopolysaccharide. // Inflamation. 1989. — Vol.13. — P.681−92.
- Gao B, Tsan MF. Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. // Biochem. Biophys. Res. Commun. 2004. -Vol.317.-P.l 149−54.
- Gao B, Tsan MF. Endotoxin contamination in recombinant human Hsp70 preparation is responsible for the induction of TNFa release by murine macrophages. // J. Biol. Chem. 2003. — Vol.278. — P. 174−179.
- Johnson JD, Fleshner M. Releasing signals, secretory pathways, and function of endogenous extracellular heat shock protein 72. // J. Leucocyte Biol. — 2006. Vol.79. — P.425−433.
- Banchereau J, Bazan F, Blanchard D, et al. The CD40 antigen and its ligand. // Annu. Rev. Immunol. 1994. — Vol.12. — P.881−922.
- McWhirter SM, Pullen SS., Holton JM, et al. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. // Proc. Natl. Acad. Sci. USA. 1999.-Vol.96.-P.8408−8413.
- Cheng G, Cleary AM, Ye ZS, et al. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. // Science. 1995. — Vol.267. — P. 1494−1498.
- Ishida T, Tojo T, Aoki T, et al. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. // Proc. Natl. Acad. Sci. USA. 1996. — Vol.93. — P.9437−9442.
- Datta SK, Kalled SL. CD40-CD40 ligand interaction in autoimmune disease. // Arthritis Rheum. 1997. — Vol.40. — P. 1735−1745.
- Caux С, Massacrier С, Vanbervliet В, et al. Activation of human dendritic cells through CD40 cross-linking. // J. Exp. Med. 1994. — Vol.180. -P.1263−1272.
- Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. // Nature. 1998. -Vol.393. -P.474−478.
- Buhlmann JE, Foy TM, Aruffo A, et al. In the absence of a CD40 signal, В cells are tolerogenic. // Immunity. 1995. — Vol.2. — P.645−653.
- Bennett SRM, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. // Nature. 1998. — Vol.393 -P.478−480.
- Kiener PA, Moran-Davis P, Rankin BM, et al. Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes.//J. Immunol. 1995.-Vol.155. — P.4917−4295.
- Ballantyne J, Henry D. L, Muller J. R, et al. Efficient recombination of a switch substrate retro vector in CD40-activated В lymphocytes: implications for the control of CH gene switch recombination. // J. Immunol. 1998. — Vol.161. -P.1336−1347.
- Wang Y, Kelly C. G, Karttunen J. T, et al. 2001. CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. // Immunity. Vol.15. -P.971−983.
- Becker T, Hartl F. U, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. // J. Cell Biol. 2002. -Vol.158.-P.1277−85.
- Delneste Y, Magistrelli G, Gauchat J, et al. Involvement of Lox-1 in dendritic cell-mediated antigen cross-presentation. // Immunity. 2002. — Vol.17. — P.353−62.
- Binder R. J, Han D. K, Srivastava P.K. CD91: a receptor for heat-shock protein gp96. // Nat. Immunol. 2000. — Vol. 1. — P. l51−155.
- Basu S, Binder R. J, Ramalingam T, Srivastava P.K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. // Immunity. 2001. — Vol.14. — P.303−313.
- Robert J, Ramanayake T, Maniero G. D, et al. Phylogenetic conservation of glycoprotein 96 ability to interact with CD91 and facilitate antigen cross-presentation. // J. Immunol. -2008. Vol. 180(5). -P.3176−82.
- Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. // Pharmacol. Ther. 2002. — Vol.95(l). — P.89−100.
- Shimaoka T, Kume N, Minami M, et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. // J. Immunol. 2001. — Vol. 166(8). — P.5108−14.
- Kume N, Murase T, Moriwaki H, et al. Inducible expression of lectin-like oxidized LDL receptor-1 in vascular endothelial cells. // Circ. Res. 1998. -Vol.83(3). -P.322−7.
- Murase T, Kume N, Korenaga R, et al. Fluid shear stress transcriptionally induces lectin-like oxidized LDL receptor-1 in vascular endothelial cells. // Circ Res. 1998. — Vol.83(3). — P.328−33.
- Li D, Liu L, Chen H, et al. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. //Arterioscler. Thromb. Vase. Biol. -2003. -Vol.23(5). -P.816−21.
- Arnold D, Faath S, Rammensee H, Schild H. Cross-priming of minor histocompatibility antigen-specific cytotoxicT cellsupon immunization with the heat shock protein gp96. // J. Exp. Med. 1995. — Vol.182. — P.885−889.
- Roman E, Moreno C. Synthetic peptides non-cova-lently bound to bacterial hsp 70 elicit peptide-specific T-cell re-sponses in vivo. // Immunology. -1996. Vol.88 — P.487−492.
- Roman E, Moreno C. Delayed-type hypersensitivity elicited by synthetic peptides complexed with Mycobacterium tuberculosis hsp 70. // Immunology. 1997. — Vol.90. — P.52−56.
- Blachere N. E, Udono H, Janetzki S, et al. Heat shock protein vaccines against cancer. // J. Immunother. 1993. — Vol.14. — P.352−356.
- Banchereau J, Steinman R.M. Dendritic cells and the control of immunity. //Nature. 1998. — Vol.392. — P.245−252.
- Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. // Annu. Rev. Immunol. 2000. — Vol. 18. — P.767−811.
- Sallusto F, Schaerli P, Loetscher P, et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. // Eur. J. Immunol. 1998. — Vol.28. — P.2760−2769.
- Gunn M. D, Tangemann K, Tam C, et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. // Proc. Natl. Acad. Sci. USA. 1998. — Vol.95. — P.258−263.
- Dieu M. C, Vanbervliet В, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. // J. Exp. Med. 1998. — Vol.188. — P.373−386.
- Chaux P, Moutet M, Faivre J, et al. Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not В7−1 and В7−2 costimulatory molecules of the T-cell activation. // Lab. Invest. — 1996. — Vol.74. — P.975−983.
- Marincola F.M., Jaffee E.M., Hicklin D.J. et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance // Adv. Immunol. 2000. — Vol. 74. — P. 181 -273.
- Banchereau J, Schuler-Thurner B, Palucka A. K, Schuler G. Dendritic cells as vectors for therapy. // Cell. 2001. — Vol.106. — P.271−274.
- Nestle F. O, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. // Nat. Med. 1998. -Vol.4. -P.328−332.
- Mackensen A, Herbst B, Chen J.L., et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. // Int. J. Cancer 2000. — Vol.86. -P.385−392.
- Murphy G.P., Elgamal A.A., Troychak M.J., Kenny G.M. Follow-up ProstaScint scans verify detection of occult soft-tissue recurrence after failure of primary prostate cancer therapy. // Prostate. 2000. — Vol.42. — P.315−317.
- Brossart P., Wirths S., Stuhler G., et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. // Blood 2000. — Vol.96. — P.3102−3108.
- Yu J.S., Wheeler C.J., Zeltzer P.M., et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. // Cancer Res. 2001. — Vol.61. — P.842−847.
- Hsu F.J., Benike C., Fagnoni F., et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. // Nat. Med. -1996,-Vol.2.-P.52−58.
- Reichardt V.L., Okada C.Y., Liso A., et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma a feasibility study. // Blood. — 1999. — Vol.93. — P.2411−2419.
- Gao B, Tsan MF. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor a from murine macrophages. // J. Biol. Chem. 2003. — Vol.278. — P.22 523−22 529.
- Dhodapkar M.V., Steinman R.M., Krasovsky J., et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. // J. Exp. Med. 2001. — Vol.193. — P.233−238.
- Multhoff G. Activation of natural killer cells by heat shock protein 70. //Int. J. Hyperthermia. -2002. Vol. 18(6). -P.576−85.
- Батчикова Н.Б., Кулагина M.A., Луценко C.B. и др. Экспрессия синтетического гена интерлейкина-4 человека в клетках Е. coli. Получение- P.766−776.
- Гукасова H.B., Москалёва Е. Ю., Родина А. В. и др. Характеристика дендритных клеток человека, полученных с использованием стандартного и «ускоренного» методов культивирования. //Молекул. Медицина 2004. — Vol.2. — Р.38−44.