Магнитно-резонанская спектроскопия миокарда левого желудочка в изучении метаболизма 31Р
Больные АГ с ГЛЖ демонстрируют достоверное снижение энергетического индекса ФК/АТФ относительно группы нормы, в среднем, на 21% и достоверное повышение индекса НФ* 100/ФК на 34%. Энергетический индекс достоверно снижается у больных ГКМП по сравнению с группой нормы, в среднем, на 36%, а индекс НФ* 100/ФК повышается на 50%. Значения обоих энергетических индексов достоверно различаются между… Читать ещё >
Магнитно-резонанская спектроскопия миокарда левого желудочка в изучении метаболизма 31Р (реферат, курсовая, диплом, контрольная)
Содержание
- Цель работы
- Задачи исследования
- Научная новизна
- Практическая значимость
выводы.
1. ЭКГ — синхронизированный протокол проведения магнитно-резонансной спектроскопии сердца с положением пациента на спине, с расположением приемно-передающей катушки на передней поверхности грудной клетки, а электродов синхронизации с ЭКГ на задней поверхности дает высокие значения сигнал/шум для всех пиков фосфорного спектра.
2. Значения основного энергетического индекса (ФК/АТФ) в группе нормы составляет — 2,08 ± 0,35, а альтернативного энергетического индекса (НФ*100/ФК) — 8,87 ± 3,14.
3. В группе больных АГ с ГЛЖ основной энергетический индекс (ФК/АТФ) — составил 1,66 ± 0,11, а в группе больных ГКМП — 1,32 ± 0,16. Значения энергетического индекса НФ* 100/ФК в группе АГ с ГЛЖ составили — 13,5 ± 3,3, а в группе больных ГКМП — 17,52 ± 3,23.
4. Больные АГ с ГЛЖ демонстрируют достоверное снижение энергетического индекса ФК/АТФ относительно группы нормы, в среднем, на 21% и достоверное повышение индекса НФ* 100/ФК на 34%. Энергетический индекс достоверно снижается у больных ГКМП по сравнению с группой нормы, в среднем, на 36%, а индекс НФ* 100/ФК повышается на 50%. Значения обоих энергетических индексов достоверно различаются между группами с гипертрофией миокарда различного генеза.
5. В группе АГ с ГЛЖ энергетический индекс ФК/АТФ слабо коррелирует со сниженной фракцией выброса, а в группе ГКМП индекс ФК/АТФ слабо коррелирует с массой миокарда ЛЖ.
Практические рекомендации.
1. Фосфорную MPC сердца следует выполнять на высокопольном МР-томографе с синхронизацией импульсной последовательности с ЭКГ, в положении пациента лежа на спине и расположением электродов на задней поверхности грудной клетки.
2. Методика фосфорной MPC сердца должна выполняться в специализированных кардиологических учреждениях для оценки возможных нарушений энергетического метаболизма у больных с гипертрофией миокарда ЛЖ различного генеза.
1. Беленков Ю. Н., Привалова Е. В., Каплунова В. Ю., Стамбольский Д. В., Фомин А. А. Гипертрофическая кардиомиопатия исторические и современные взгляды на диагностику заболевания //Кардиология и сердечно-сосудистая хирургия, — 2008. № 4. — С. 4−10.
2. Devereux R.B., De Simone G. Ganau A. et al. Left ventricular hypertrophy and geometric remodeling in hypertension: stimuli, functional consequense and prognostic implications // J. Hypertens, 1994, V. 12, Suppl., p. 117−127.
3. Neubauer S., The failing heart an engine out of fuel, N. Engl. J. Med. 356 (11)(2007)1140−1151.
4. Kannel WB. Left ventricular hypertrophy as a risk factor // J Hypertens, 1991; 9 (Suppl. 2): S3-S9.
5. Чазова И. Е. Артериальная гипертония. Стандарты сегодняшнего дня и нерешенные проблемы Сердце 2002; 1: 217−219.
6. Manda G. et al. Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document, Journal of Hypertension 2009, 27:000−000.
7. Магнитно-резонансная спектроскопия. Руководство для врачей. Под редакцией Труфанова Г. Е., Тютина Л. А. СПб.: «ЭЛБИ-СПБ» 2008.
8. Fananapazir L (1999) Advance in molecular genetics and managmebt of hypertrophic cardiomyopathy. JAMA 281: 1746−1752.
9. Marian AJ. Mares A Jr. Kelly DP. Et al. Sudden cardiac death in hypertrophic cardiomyopathy. Variability in phenotipic expression of beta-myosin heavy chin mutations. Eur Heart J. 1995:16:368−376.
10. Monserrat L. et al. Non-Sustained Ventricular Tachycardia in Hypertrophic Cardiomyopathy: An Independent Marker of Sudden Death Risk in Young Patients JACC Vol. 42, No. 5, 2003 September 3, 2003:873−9.
11. Maron B.J. Hypertrophic cardiomyopathy //Lancet.- 1997. Vol. 350. P. 127−133.
12. Maron B.J. Cardiology patient pages. Hypertrophic cardiomyopathy //Circulation.- 2002. Vol. 106. P. 2419−2421.
13. Dawson J, Gadian D, Wilkie D Living muscle studied by 31P nuclear magnetic resonance. J Physiol 1976;258:82.
14. Jacobus W, Taylor G, Hollis D (1977) Phosphorus nuclear magnetic resonance of perfused rat hearts. Nature 1977;265:756−758.
15. Bottomley P.A., Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy, Science 1985;229:769−772.
16. Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am.
17. Nascimben L, Ingwall JS, Pauletto P, et al. Creatine kinase system in failing and nonfailing human myocardium. Circulation 1996;94:1894−1901.
18. Mootha VK, Arai AE & Balaban RS (1997). Maximum oxidative phosphorylation capacity of the mammalian heart. Am J Physiol 41, H769-H775.
19. Idem. Cardiac metabolism as a target for the treatment of heart failure. Circulation 2004;110:894−6.
20. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093−129.
21. Ventura-Clapier R, Gamier A, Veksler V. Energy metabolism in heart failure. J Physiol 2004;555:1−13.
22. Bessman S.P., P.J. Geiger, Transport of energy in muscle: thephosphorylcreatine shuttle, Science 211 (4481) (1981) 44852.
23. Guimbal C, Kilimann MWA. A Na (+) — dependent creatine transporter in rabbit brain, muscle, heart, and kidney: cDNA cloning and functional expression. J Biol Chem 1993;268:8418−21.
24. Wyss M, Wallimann T. Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 1994;133−134:51−66.27.1ngwall JS. ATP and the heart. Norwell, MA: Kluwer Academic, 2002.
25. Kostler H, Beer M, Landschiitz W, Buchner S, et al. 31P-Spektroskopie aller Wandabschnitte des Herzens mit akquistionsgewichteter chemical shift Bildgebung. Fortschr Rontgenstr 2001;173:1093−1098.
26. Kuno S., Ogawa T., Katsuta S., Itai Y., In vivo human myocardial metabolism during aerobic exercise by phosphorus-31 nuclear magnetic resonance spectroscopy, Eur. J. Appl. Physiol. Occup. Physiol. 1994;69:488−491.
27. Conway M.A., J.D. Bristow, M.J. Blackledge, et al. Cardiac metabolism during exercise measured by magnetic resonance spectroscopy, Lancet. 1998;2:692.
28. Weiss R.G., Bottomley P.A., Hardy C.J., Gerstenblith G., Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease, N. Engl. J. Med. 1990;323:1593−1600.
29. Lamb H.J., Beyerbacht H.P., Ouwerkerk R., et al., Metabolic response of normal human myocardium to high-dose atropine-dobutamine stress studied by 3IP-MRS, Circulation 1997;96:2969−2977.
30. Pluim B.M., Chin J.C., De Roos A., Doornbos J., et al., Cardiac anatomy, function and metabolism in elite cyclists assessed by magnetic resonanceimaging and spectroscopy, Eur. Heart J. 1996;17:1271−1278.
31. Beer M., Cardiac spectroscopy: techniques, indications and clinical results, Eur. Radiol. 2004;14:1034−1047.
32. Bottomley. P.A., MR spectroscopy of the human heart: the status and the challenges, Radiology 1994;191:593−612.
33. Schocke M.F., Metzler B., Wolf C., Steinboeck P., et al., Impact of aging on cardiac high-energy phosphate metabolism determined by phosphorus-31 2-dimensional chemical shift imaging (31P 2D CSI), Magn. Reson. Imaging 2003;21:553−559.
34. Bottomley P.A., Smith L.S., Brazzamano S., Hedlund L.W., et al., The fate of inorganic phosphate and pH in regional myocardial ischemia and infarction: a noninvasive 31P NMR study, Magn. Reson. Med. 1987;5:129−142.
35. Bottomley P.A., Herfkens R.J., Smith L.S., Bashore T.M., Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy, Radiology 1987;165: 703−707.
36. Mitsunami K. K., Okada M., Inoue T., Hachisuka M., et al., In vivo 31P nuclear magnetic resonance spectroscopy in patients with old myocardial infarction, Jpn. Circ. J. 1992;56: 614−619.
37. Neubauer S., Krahe T., Schindler R., Horn M., et al., 31P magneticresonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure, Circulation 1992;86:1810−1818.
38. Moka D., Baer F.M., Theissen P., Schneider C.A., et al., Non-Q-wave myocardial infarction: impaired myocardial energy metabolism in regions with reduced 99mTc-MIBI accumulation, Eur. J. Nucl. Med. 2001 -28: 602 607.
39. Beer M., Sandstede J., Landschutz W., Viehrig M., et al., Altered energy metabolism after myocardial infarction assessed by 31P-MRspectroscopy in humans, Eur. Radiol. 2000;10:1323−1328.
40. Beer M., Buchner S., Sandstede J., Viehrig M., et al., 31P-MR Spectroscopy for the evaluation of energy metabolism in intact residual myocardium after acute myocardial infarction in humans, MAGMA 2001; 13: 70−75.
41. Luney D J.E., den Hollander J.A., Evanochko W.T., Johnson L.L., Pohost G.M., Spectroscopy of human myocardial scar, in: Proc. Soc. Magn. Reson. Med., 12th Annual Scientific Meeting, 1993: pl091.
42. Kalil-Filho R., de Albuquerque C.P., Weiss R.G., Mocelim A., et al., Normal high energy phosphate ratios in «stunned» human myocardium, J. Am. Coll. Cardiol. 1997;30:1228−1232.
43. Friedrich J., Apstein C.S., Ingwall J.S., 31P nuclear magnetic resonance spectroscopic imaging of regions of remodeled myocardium in the infracted rat heart, Circulation 1995;92:3527−3538.
44. Wolfe C.L., Moseley M.E., Wikstrom M.G., Sievers R.E., et al.,.
45. Assessment of myocardial salvage after ischemia and reperfusion using magnetic resonance imaging and spectroscopy, Circulation 1989;80:969−982.
46. Conway M.A., Allis J., Ouwerkerk R., Niioka T., et al., Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy, Lancet 1991;338: 973−976.
47. Jung W.I., Sieverding L., Breuer J., Hoess T., et al., 31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy, Circulation 1998;97:2536−2542.
48. Sakuma H., Takeda K., Tagami T., Nakagawa T., et al., 31P MRspectroscopy in hypertrophic cardiomyopathy: comparison with Tl-201 myocardial perfusion imaging, Am. Heart J. 1993;125:1323−1328.
49. Neubauer S., Horn M., Pabst T., Harre K., et al., Cardiac high-energyphosphate metabolism in patients with aortic valve disease assessed by 31Pimagnetic resonance spectroscopy, J. Investig. Med. 1997;45:453−462.
50. Beer M., Viehrig M., Seyfarth T., Sandstede J., et al., Cardiac energy metabolism in heart valve diseases with 31P MR spectroscopy, Radiologe 2000;40:162−167.
51. Ross Jr., Braunwald E., Aortic stenosis, Circulation 1968;38:61−67.
52. Heyne J.P., Rzanny R., Hansch A., Leder U., et al., 31PMR spectroscopic imaging in hypertensive heart disease, Eur. Radiol. 2006;16:1796−1802.
53. Lamb HJ., Beyerbacht H.P., van der Laarse A., Stoel B.C., et al., Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism, Circulation 1999;99: 2261−2267.
54. Hardy C.J., Weiss R.G., Bottomley P.A., Gerstenblith G., Altered myocardial high-energy phosphate metabolites in patients with dilatedcardiomyopathy, Am. Heart J. 1991;122:795−801.
55. Krahe T., Schindler R., Neubauer S., Ertl G., et al., 31P-cardioMR-spectroscopy in myocardial insufficiency, Rofo 1993; 159: 64−70.
56. Sieverding L., Jung W.I., Breuer J., Widmaier S., et al., Proton-decoupled myocardial 31P NMR spectroscopy reveals decreased PCr/Pi in patients with severe hypertrophic cardiomyopathy, Am. J. Cardiol. 1997;80: 34A-40A.
57. Schaefer S., Gober J.R., Schwartz G.G., Twieg D.B., et al., In vivo phosphorus-31 spectroscopic imaging in patients with global myocardial disease, Am. J. Cardiol. 1990;65:1154−1161.
58. Auffermann W., Chew W.M., Wolfe C.L., Tavares N.J., et al., Normal and diffusely abnormal myocardium in humans: functional and metabolic characterization with P-31 MR spectroscopy and cine MR imaging, Radiology 1991;179:253−259.
59. Jung W.I., Sieverding L., Breuer J., Schmidt O., et al., Detection of phosphomonoester signals in proton-decoupled 31P NMR spectra of the myocardium of patients with myocardial hypertrophy, J. Magn. Reson. 1998;133:232−235.
60. Crilley JG, Boehm EA, Blair E, et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 2003;41:1776−82.
61. Neubauer S., Horn M., Cramer M., von Kienlin K., et al., Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy, Circulation 1997; 96:2190−2196.
62. Гогин E.E. Гипертоническая болезнь // M., 1997, 400 стр
63. Messerli F.H. Left Ventricular Hypertrophy and its regression // Science Press, 1996, 6.
64. Карлонски И. Н., Желев B.C. Значение давности артериальной гипертонии и возраста пациентов в формировании структуры и функции левого желудочка// Терапевтический архив, 1990, 4: 78−81.
65. Шеридан Д. Гипертрофия левого желудочка: диагностика и лечение // Международные направления в исследовании артериальной гипертензии, 1998, вып.6, стр. 4−6.
66. Преображенский Д. В., Сидоренко Б. А. Лечение артериальной гипертензии // М. Практическая кардиология, 1999, 215 стр.
67. Messerli F., Dunn F., Frohlish E. et al Disparate cardiovascular effects of obesity and arterial hypertension // Am. J. Med., 1983, 74 (5): 808.
68. Соколова Л. А., Толетова И. А., Винник Т. А. Инсулинорезистентность и сердечно-сосудистая патология // С.-П., Сборник научных трудов 100 лет кафедре факультетской-терапии им. академика Г. Ф. Ланга, 2000: 8799.
69. Paolisso G., Galderisi М., Tagliamonte M.R. et al LVH and insulinsensitivity in essential hypertensives // Am. J. Hypertens, 1997, 10: 1250−56.
70. Amad K., Brennan J., Alexander J. The cardiac patology of chronic exogenous obesity // Circulation, 1965, V. 32, p. 740−745.
71. Сперелакис H. Физиология и патофизиология сердца // М. Медицина, 1988, том 2, 623 стр.
72. Weber K. Tv, Brilla C.G. Myocardial fibrosis and elevations in plasma aldosterone in arterial hypertension // Aldosterone: Fundamental Aspects, 1991.
73. Maron В., Gardin J., Flack J. et al Prevalence of hypertrophic cardiomyopathy in a general population of young adultsechocardiographic.
74. Maron B.J. Hypertrophic cardiomyopathy: a systematic review //Jama.-2002. Vol. 287. P. 1308−1320.
75. Maron B.J. Risk stratification and prevention of sudden death in hypertrophic cardiomyopathy //Cardiol Rev.- 2002. Vol. 10. P. 173−181.
76. Maron M.S., Olivotto I., Betocchi S., Casey S.A., Lesser J.R., Losi M.A., Cecchi F., Maron B.J. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy //N Engl J Med.- 2003.-Vol: 348.-P. 295−303.
77. Thierfelder L., Wfatkins H., MacRae C. et al Alpha-tropomiosin and cardiac 'troponin T mutations cause familial hypertrphic cardiomyopathy: a disease of the sarcomere // Cell, 2002, 109: 357−62.
78. Niimura H., Bachinski L., Sangwatanaroj S. et al Mutations in the gene for cardiac myosin-binding protein С and late-onset familial hypertrophic cardiomiopathy //N. Engl. J. Med., 1998, 338: 1248−57.
79. Wigle D., Rarowsky H., Kimball B. et alHypertrophic cardiomyopathy.
80. Clinicalspectrum and treatment // Circulation, 1995, 92: 1680.
81. Джанашия П. Х., Круглов B.A., Назаренко B.A. с соавт. Кариомиопатии и миокардиты // М.: РГМУ, 2000.
82. Manabe I., Shindo Т., Nagai R. Gene expression in fibroblasts and fibrosis: Involvement in cardiac hypertrophy // Circ. Res., 2002, 91: 1103−1113.
83. Sadoshima J., Xu Y., Slayter H. et al Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro // Cell, 1993, 75: 977−84 S. Neubauer. The Failing Heart — An Engine Out of Fuel, N Engl J Med 2007;356:1140−51.
84. Singhal A., K. Shivkumar, A. Huda, A. Thomas. Progress in Nuclear Magnetic Resonance Spectroscopy 54 (2009) 255−277.
85. Ринк П. А. Магнитный резонанс в медицине. П. А. Ринк М.-.ГЭОТАР-МЕД, 2003.
86. Shivu GN, et al. 31Pmagnetic resonance spectroscopy to measure in vivo cardiac energetics in normalmyocardium and hypertrophic cardiomyopathy: Experiences at 3 T. Eur J Radiol (2008).
87. Lerne et al. Evaluation of the Metabolism of High Energy Phosphates in Patients with Chagas' Disease. Arq Bras Cardiol 2010; 95(2): 264−271.
88. J.-P. Heyne R. Rzanny, A. Hansch, U. Leder, J. R. Reichenbach, W. A. Kaiser 31P-MR spectroscopic imaging in hypertensive heart disease, Eur Radiol (2006) 16: 1796−1802.
89. Neubauer and Hudsmith MR Spectroscopy in Myocardial Disease. JACGCardiovascularimging, Vol.2, No. 1.2009.
90. Hansch A., R. Rzanny, J.R. Reichenbach, W.A. KaiserJena/DE Noninvasive measurement of cardiac high-energy phosphate metabolites using 31P-spectroscopic chemical shift imaging. ECR 2009, e-Poster: C-174.
91. Neubauer S, Horn M, Cramer M, Harre К, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek К (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients withdilated cardiomyopathy. Circulation 96:2190−2196.
92. Loffler R, Sauter R, Kolem H, Haase A, von Kienlin M (1998) Localized spectroscopy from anatomically matched compartments: improved sensitivity and localization for cardiac 31P MRS in humans. J Magn Reson 134:287−299.
93. Zhang J, Merkle H, Hendrich K, Garwood M, From AHL, Ugurbil K, Bache RJ. Bioenergetic abnormalities associated with severe left ventricular hypertrophy. J Clin Invest. 1993;92:993−1003.
94. Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991;338:973−976.
95. Massie BM, Schaefer S, Garcia J, McKirnan MD, Schwartz GG, Wisneski JA, Weiner MW, White FC. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation. 1995;91:1814−1823.
96. Spindler M, Saupe KW, Christe ME, Sweeny HL, Seidman CE, Seidman JG, Ingwall JS. Diastolic dysfunction and altered energetics in the aMHC403/l mouse model of familial hypertrophic cardiomyopathy. J Clin Invest. 1998;101:1775−1783.
97. Miller DD, Walsh RA. In vivo phosphorus-31 NMR spectroscopy of abnormal myocardial high-energy phosphate metabolism during cardiac stress in hypertensive-hypertrophied non-human primates. Int J Card Imaging. 1990;91−6:57−70.
98. Osbakken M, Douglas PS, Ivanics T, Zhang D, Van Winkle T. Creatinekinase kinetics studied by phosphorus-31 nuclear magnetic resonance in a canine model of chronic hypertension-induced cardiac hypertrophy. J Am Coll Cardiol. 1992;19:223−228.
99. Neubauer S., Cardiac magnetic resonance spectroscopy: potential clinical applications, Herz 2000;25:452−460.
100. Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, Allen PD. The creatine kinase system in normal and diseased human myocardium. N Engl J Med. 1985;313:1050 -1054.
101. Perings SM, Schulze K, Decking U, Kelm M, Strauer BE (2000) Agerelated decline of PCr/ATP-ratio in progressively hypertrophied hearts of spontaneously hypertensive rats. Heart Vessels 15(4): 197−202.
102. Smith V, Schulman P, Karimeddini MK, White WB, Meeran MK, Katz AM. Rapid ventricular filling in left ventricular hypertrophy, II: pathologic hypertrophy. J Am Coll Cardiol. 1985;5:869−874.
103. Bonow RO, Udelson JE. Left ventricular diastolic dysfunction as a cause of congestive heart failure. Ann Intern Med. 1992;117:502−510.
104. Susie D, Nun~ez E, Frohlich ED, Prakash O. Angiotensin II increases left ventricular mass without affecting myosin isoform mRNAs. Hypertension. 1996;28:265−268.
105. Schunkert H, Hense H, Holmer SR, Stender M, Perz S, Keil U, Lorell BH, Riegger GAJ Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994;330:1634 -1638.
106. Granger CB, Karimeddini MK, Smith V, Shapiro HR, Katz AM, Riba AL. Rapid ventricular filling in left ventricular hypertrophy, I: physiologic hypertrophy. J Am Coll Cardiol. 1985;5:862- 868.
107. Fouad FM, Tarazi RC, Gallagher JH, Macintyre WJ, Cook SA. Abnormal left ventricular relaxation in hypertensive patients. Clin Sci. 1980;59: 411s- 414s.
108. Inouye I, Massie B, Loge D, Topic N, Silverstein D, Simpson P, Tubau J. Abnormal left ventricular filling: an early finding in mild to moderate systemic hypertension. Am J Cardiol. 1984;53:120 -126.
109. Radice M, Albertini A, Alii C, Canciani C, di Tullio M, Manzini M, Mariotti G, Salmoirago E, Taioli E, Zatta G, Tarolo GL. Assessment of ventricular function in arterial hypertension with radionuclide ventriculography. Am J Med. 1988;84:133−135.
110. Ren J, Pancholy SB, Iskandrian AS, Lighty GW, Mallavarapu C, Segal BL. Doppler echocardiographic evaluation of the spectrum of left ventricular diastolic dysfunction in essential hypertension. Am Heart J. 1994; 127:906 -913.
111. Betocchi S, Hess OM, Losi MA, Nonogi H, Krayenbuehl HP. Regional left ventricular mechanics in hypertrophic cardiomyopathy. Circulation. 1993;88:2206 -2214.
112. Brush JE Jr, Eisenhofer G, Garty M, Stull R, Maron BJ, Cannon RO III, Panza JA, Epstein SE, Goldstein DS. Cardiac norepinephrine kinetics in hypertrophic cardiomyopathy. Circulation. 1989;79:836−844.
113. Goodwin GW, Ahmad F, Taegtmeyer H. Preferential oxidation of glycogen in isolated working rat heart. J Clin Invest. 1996;97:1409 -1416.
114. Balaban RS. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol. 1990;258:C377-C389.
115. Conway MA, Bristow JD, Blackledge MJ, Rajagopalan B, Radda GK. Cardiac metabolism during exercise measured by magnetic resonance spectroscopy. Lancet. 1988;2:692.
116. Schaefer S, Schwartz GG, Gober JR, Wong AK, Camacho SA, Massie B, Weiner MW. Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. J Clin Invest. 1990;85:706 -713.
117. Maron BJ. Hypertrophic cardiomyopathy. Curr Prob Cardiol. 1993;18: 639−704.
118. Maron BJ, Epstein SE, Roberts WC. Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries. Am J Cardiol. 1979;43:1086 -1102.
119. Nienaber CA, Gambhir SS, Mody FV, Ratib O, Huang SC, Phelps ME, Schelbert HR. Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophic cardiomyopathy. Circulation. 1993;87:1580 -1590.
120. Arai AE, Grauer SE, Anselone CG, Pantely GA, Bristow D. Metabolicadaption to a gradual reduction in myocardial blood flow. Circulation. 1995;92:224 -252.
121. Allard MF, Henning SL, Wambolt RB, Granleese SR, English DR, Lopaschuk GD. Glycogen metabolism in the aerobic hypertrophied rat heart. Circulation. 1997;96:676−682.
122. Holden JE, Stone CK, Clark CM, Brown WD, Nickles RJ, Stanley C, Hochachka PW. Enhanced cardiac metabolism of plasma glucose in high-altitude natives: adaptation against chronic hypoxia. J Appl Physiol. 1995;79:222−228.
123. Perrone-Filardi P, Bacharach SL, Dilsizian V, Panza JA, Maurera S, Bonow RO. Regional systolic function, myocardial blood flow and glucose uptake at rest in hypertrophic cardiomyopathy. Am J Cardiol. 1993;72:199 -204.
124. Zhang J, Zhang Y, Murakami Y, From AH, Ugurbil K, Bache RJ. Myocardial oxygenation and bioenergetics at high work states in hearts with left ventricular hypertrophy. Circulation. 1997;96(suppl I):I-1413. Abstract.