ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΡΠΈΠ±ΠΎΡΠΎΠΌΠ½ΡΡ Π±Π΅Π»ΠΊΠΎΠ² S8 ΠΈ L5 Ρ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ 16S ΠΈ 5S pΠ ΠΠ ΠΈ Π°Π½Π°Π»ΠΈΠ· Π ΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
Π‘Π ΠΠΠΠΠ’ΠΠΠ¬ΠΠ«Π ΠΠΠΠΠΠ Π‘Π’Π Π£ΠΠ’Π£Π Π‘ΠΠΠΠΠΠΠ«Π₯ ΠΠΠΠΠΠ Π ΠΠ₯ ΠΠΠΠΠΠΠΠ‘ΠΠ Π‘ ΡΠ ΠΠ ΠΠ Π ΠΠΠΠΠ§ΠΠ«Π₯ ΠΠ ΠΠΠΠΠΠΠΠ3. 1. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΡΡΡΡΠΊΡΡΡ ΡΠΈΠ±ΠΎΡΠΎΠΌΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° S8 ΠΈ Π΅Π³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Ρ 16S ΡΠ ΠΠ3. 1. 1. ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ Π ΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡΡ Π±Π΅Π»ΠΊΠ° S8 ΠΈ 16SpPHK. Π‘ΡΡΡΠΊΡΡΡΠ° Π±Π΅Π»ΠΊΠ° L5 ΠΈΠ· Π’. thermophilus. ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ·Π½Π°ΡΡΠΈΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ Π½Π° ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΈΡΡΡΡΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡΡ Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π ΠΠ Π² ΡΡΡΡΠΊΡΡΡΠ°Ρ Π ΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ … Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Π‘ Π. ΠΠΈΠΊΠΎΠ½ΠΎΠ², Π. Π. ΠΠ΅Π²ΡΠΊΠ°Ρ, Π. Π. Π€ΠΎΠΌΠ΅Π½ΠΊΠΎΠ²Π°, Π. Π. ΠΠΈΠΊΡΠ»ΠΈΠ½, Π . Π. Π€Π΅Π΄ΠΎΡΠΎΠ²,
- Π.Π.ΠΠ»ΠΈΡΠ΅ΠΉΠΊΠΈΠ½Π°, Π‘ Π. Π’ΠΈΡΠ΅Π½ΠΊΠΎ, Π. Π. ΠΠ°ΡΠ±Π΅Ρ (1999), «Π‘ΡΡΡΠΊΡΡΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΊ ΡΠΈΠ±ΠΎΡΠΎΠΌΠ½ΡΡ Π±Π΅Π»ΠΊΠΎΠ²» ΠΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡ. Π Π΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΠ΅ ΡΠΈΠ½Ρ ΡΠΎΡΡΠΎΠ½Π½ΡΠ΅ ΠΈ Π½Π΅ΠΉΡΡΠΎΠ½Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, 2, 6−9.
- Agalarov, S., Prasad, G.S., Funke, P .M., Stout, C D. , Williamson, J.R. (2000). Structure of the
- SI 5, S6, S18-rRNA complex: Assembly of the 308 ribosome central domain. Science, 288, 107 112.
- Main, F.H., Gubser, C C, Howe, P.W., Nagai, K., Neuhaus, D. and Varani, G. (1996).
- Specificity of ribonucleoprotein interaction determined by R N A folding during complexformation. Nature, 380, 646−650.
- Allain, F. H. and Varani, G. (1995). Structure of the P1 helix from group I self-sphcing introns.1. J.MolBiol. 250,333−353.
- Allain, F.H., Howe, P.W., Neuhaus, D. and Varani, G. (1997). Structural basis of the RNAbinding specificity of human ΠΈ 1A protein. ?MS (7 J., 16, 5764−5772.
- Allers, J. and Shamoo, Y. (2001). Srtucture-based analysis of protein-RNA interactions using theprogram ENTAGLE. J. Mol. Biol, 311, 75−86.
- Amidon, G.L., Anik, S. and Rubin, J. (1975). In «Structure and conformation of nucleic acidsand protein — nucleic acid interactions» (M. Sundralingham and S.T. Rao, eds., p. 729, Univ. 1. Park Press, Baltimore.
- Auffinger, P. & Westhof, E. (2001). Water and ion binding around r (UpA)12 and d (TpA)12oligomers, comparison with R N A and D N A (CpG)12 duplexes. J. Mol Biol 305, 1057−1072.
- Bailey, S. (1994). The CCP4 suit: Programs for protein crystallography. Acta Cryst., D50, 760 763.
- Ban, N. , Nissen, P., Hansen, J., Moore, P.B., & Steitz, T.A. (2000).The complete atomicstructure of the large ribosomal subunit at 2.4 A resolution. Science, 289, 905−920 .
- Batey, R.T. and Williamson, J.R. (1998). Effect of polyvalent cations on the folding of an R N Athree-way junction and binding of ribosomal protein S15. RNA, 4, 984−997.
- Battiste, J.L., Vao, H., Rao, N.5-, Tan, R., Muhandiram, D.R., Kay, L .E. , Frankel, A .D. and
- Williamson, J. R- (1996) a-helix major groove recognition in an H l V — l Rev peptide — RRE R N Acomplex. Science, 273, 1547−1551.
- Berg, P. and Ofengand, E.J.(1958). An enzymatic mechanism for linking amino acids to RNA.
- Proa Natl. Acad. Sei. USA, 44,78−86.
- Bogdanov, A .A. , Dontsova, O.A., Dokudovskaya, S.S. and Lavrik, I.N. (1995). Structure andfunction of 5S rRNA in the ribosome. Bichem. Cell Biol, 13, 869−876.
- Brunei, C, Romby, P., Westhof, E., Ehresmann, & Ehresmann, Π. (1991). Three-dimensionalmodel of Escherichia coli ribosomal 5S R N A as deduced from structure probing in solution and computer modeling. J Mol Biol 111, 293−308.
- Brunger, A.T., Adams, P.D., Clore, G., DeLano, W.L., Gros, P., Grosse-Kunstleve, R. W., Jiang,
- J-S., Kuszewski, J., Nilges, M. , Pannu, N.S., Read, R.J., Rice, L. M. , Simonson, T. and Warren,
- G.L. (1998). Crystallography and N M R system: a new software suite for macromolecularstructure determination. Acta CrystallogrJ)54, 905−921.
- Burley, S.K. and Petsko, G.A. (1988). Weakly polar interactions in proteins. Adv. in Prot.1. Chem., 39, 125−189.
- R N A tertiary structure mediation by adenosine platforms. Science, 113, 1696−1699.
- Cavarelli, J., Rees, B., Ruff, M. , Thierry, J.-C. and Moras, D. (1993). Yeast tRNA^^ recognitionby its cognate class II aminoacyl-tRNA synthetase. A’afMre, 362, 181−184.
- Conn, G.L., Draper, D.E., Lattman, E.E. and Guttis, A.G. (1999). Crystal structure of aconserved ribosomal protein-RNA complex, xyczewce, 284, 1171−1174.
- Correll, C. C, Freeborn, B., Moore, P.B. and Steitz, T.A. (1997). Metals, motifs and recognitionin the crystal structure of a 5S rRNA domain. Cell, 91,705−712.
- Correll, C.C., Munishkin, A., Chan, Y .L. , Ren, Z., Wool, I.G. and Steitz, T.A. (1998). Crystalstructure of the ribosomal R N A domain essential for binding elongation factors. Proc. Natl
- Crowder, S.M., Kanaar, R., Rio, D.C. and Alber, T. (1999). Absence of interdomain contacts inthe crystal structure of the RNA-recognition motifs of Sex-lethal. Proc. Natl Acad. Sci. USA, 96, 4892−4897.
- Cruickshank, D.W.J. (1999). Remark about protein structure precision. Acta Crysl, D55, 583 601.
- Dallas, A. and Moore, P. B. (1997). The loop E — loop D of Escherichia coli 5S rRNA: thesolution structure reveals an unusual loop that may important for binding ribosomal proteins. 1. Structure, 5, 1639−1653.
- Davis, C, Ramakrishnan, Y. & White, S. W. (1996). Structural evidence for specific S8-RNAand S8-protein interactions within the 30 S ribosomal subunit- ribosomal protein S8 from
- Bacillus stearothermophilus at 1.9 A resolution. Structure, 4, 1093−1104.
- Draper, D.E. (1999). Themes in RNA-protein recognition. J. Mol Biol. 293, 255−270.
- Ennifar, E., Nikulin, A., Tishchenko, S., Serganov, A., Nevskaya, N. & Garber, M. etal (2000).
- The crystal structure of U U C G tetraloop. J. Mol Biol 304, 35−42.
- Erdmann, V.A., Appel, Π., Digweed, M. , Kluwe, D., Lorennz, S., Luck, A., Schreiber, A. and
- Schuster, L. (1980). Structure and function of 5S and 5.8S ribosomal RNAs. In Genetics and
- Evolution of R N A Polymerase, tRNA and ribosomes, edited by S. Osawa, H. Ozeki, H. Uchida &
- T.Yura, Jniversity of Tokyo press, pp. 553−568.
- Fedorov, R., Nevskaya, N. , KhairuUina, A., Tishchenko, S., Mikhailov, A., Garber, M and
- Nikonov, S. (1999). Structure of ribosomal protein L30 from Thermus thermophilus at 1.9 Aresolution: conformational flexibility of the molecule. Acta Cryst. D55, 1827−1833.
- Structure of ribosomal protein TL5 complexed vdth R N A provides new insights into the CTCfamily of stress proteins. Acta Cryst. D57, 968−976.
- Fersht, A.R., Shi, J.-P., Knill-Jones, J., Lowe, D .M., Wilkinson, A.J., Blow, D .M., Brick, P.,
- Carter, P., Waye, M. M. Y. and Winter, G. (1985). Hydrogen bonding and biological specificityanalysed by protein engineering. Nature (London), 314, 235−238.
- Fredrick K, Dunny G M, NoUer HF. (2000). Tagging ribosomal protein S7 allows rapididentification of mutants defective in assembly and function of 30 S subunits. J. Mol. Biol. 298, 379−94.
- Garrett, R.A. and NoUer, H.F. (1979). Structures of complexes of 5S rRNA with ribosomalproteins L5, LIS and L25 from Escherichia coli: identification of kethoxal-reactive site on the 5S rRNA. J. Mol Biol, 132, 637−648.
- Gongadze, G.M., Tishchenko, S.V., Sedelnikova, S.E. and Garber, M. B. (1993). Ribosomalproteins, TL4 and TL5, from Thermus thermophilus form hybrid complexes with 5S ribosomal
- RNA from different microorganisms. FEBSLett 530:46−48.
- Gongadze, G.M., Perederina, A.A., Meshcheryakov, V.A., Fedorov, R.V., Moscalenko, S.E.,
- Rak, A .v. , Serganov, A.A., Shcherbakov, D.Y., Nikonov, S.V., Garber, M .B. (2001). The
- Thermus thermophilus 5S rRNA-protein complex: Identification of specific binding sites forproteins L5 and LIS in the 5S rRNA. Molecular Biology (Moscow), 35, 521−526.
- Course, R.L., Thurlow, D.L., Gerbi, S.A. and Zimmermann, R.A. (1981). Specific binding of aprokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implication for evolution and autoregulation. Proc. Natl. Acad. Set USA, 78, 2722−2726.
- Gregory, R. J., Cahill, P. B. F., Thurlow, D. L. & Zimmermann, R. A. (1988). Interaction of
- Escherichia coli ribosomal protein S8 with its binding sites in ribosomal R N A and messenger
- Ha, T., Zhuang, X., Kim, H.D., Orr, J.W., Williamson, J.R. and Chu, S. (1999). Ligand-inducedconformational changes observed in single R N A molecules. Proc. Natl Acad. Sei. USA, 96, 9077−9082.
- Hall, K .B. (1994). Interaction of R N A hairpins with the human U l A N-terminal RNA-bindingdomain. Biochemistry, 33, 10 076−1088.
- Handa, R., Nureki, O., Kurimoto, K., Kim, I., Sakamoto, H., Shimura, J., Muto, J. and
- Yokoyama, S (1999). Structural basis for recognition of the tra mRNA precursor by the sex-letalprotein. Nature, 398, 579−585.
- Harms,!., Schluenzen, F., Zarivach, R, Bashan, A., Gat Sharon, Agmon, I., Bartels, H. ,
- Franceschi, F., Yonath, A. (2001). High resolution structure of the large ribosomal subunit frommesophihc eubacterium. CeU, 107, 679−688.
- Held, W.A., Ballow, B., Mizushima, S. and Nomura, M. (1974). Assembly mapping of 30Sribosomal proteinsfrom?'. coli. Further studies. J. Mol Chem., 249, 3103−3111.
- Home, J.R. and Erdmaim, V. A. (1972). Isolation and characterization of 5S RNA-proteincomplexes from Bacillus stearothermophilus and Escherichia coli ribosomes. Molec Gen Genet 119, 337−344.
- Howe, P.W., Allain, F.H., Varani, G. and Neuhaus, D. (1998). Determination of the N M Rstructure of the complex between U l A protein and its R N A polyadenylation inhibition element. 1. J. Biomol NMR, 11, 59−84.
- Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Improved methods for thebuilding of protein models in electron density maps and the location of errors in these. Acta
- Jones, S., Daley, D.T.A., Luscombe, N .M. , Berman, H .M. and Thornton, J.M. (2001). Protein
- R N A interactions- a structural analysis. Nucl. Acid Res., 29, 943−954.
- Kalurachchi, K., Uma, K., Zimmermann, R. A. & Nikonowicz, E. P. (1997). Structural featuresof the binding site for ribosomal protein S8 in Escherichia coli 16 S rRNA defined using N M R spectroscopy. Proc. Natl Acad. Sci. USA, 94, 2139−2144.
- Ma, B., Kumar, S., Tsai, C.-J. andNussinov, R.(1999). Protein eng. 12, 713−720.
- ΠΠ°ΠΎ, Π., White, S. and Williamson, J.R. (1999). A novel loop-loop recognition motif in theyeast ribosomal protein L30 autoregulatory R N A complex. Nat. Str. Biol., 6, 1139−1147.
- Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol Biol, 33, Π¨-Π91.
- Misra, V .K. and Draper, D.E. (2001), A thermodynamic framework for Mg^"^ binding to RNA.
- Proc. Natl Acad. Sci USA, 98, 12 456−12 461.
- Moine, H., Cachia, C, Westhof, E., Ehresmann, B. & Ehresmann, C. (1997). The R N A bindingsite of SSribosomal protein of Escherichia coli: Selex and hydroxyl radical probing studies. 1. RNA, 3, 255−268.
- Minimal 16 S rRNA binding site and role of conserved nucleotides n Escherichia coli ribosomalprotein S8 recognition. Eur. J. Biochem. 215, 787−792.
- Navaza, J. (1994). AmoRe: An automated package for molecular replacement. Acta Crystallogr, 1. A50, 157−163.
- Nevskaya, N, Tishchenko, S., Paveliev, M. , Smolinskaya, Y. , Fedorov, R., Piendl, W.,
- Nakamura, Y. , Toyoda T., Garber M. and Nikonov, S. (2002). Structure of ribosomal protein L Ifrom Methanococcus thermolithotrophicus. Functionally important structural invariants on the L I surface. Acta Cryst., D58, 1023−1059.
- Nierhaus, K. H. and Dohme, F. (1974). Total reconstitution of functionally active 50S ribosomalsubunitsfrom?. coli. Proc.Natl.Acad. Set USA, 71, 4713−4717.
- Nikulin, A., Serganov, A., Eimifar, E., Tishchenko, S., Nevskaya, N. , Shepard, W., Portier, C ,
- Garber, M. , Ehresmann, B., Ehresmann, C, Nikonov, S. and Dumas, P. (2000). Crystal structureof the S15-rRNA complex. Nat. Sir. Biol. 7, 273−277. 157−163.
- Nissen, P., Hansen, J., Ban, N. , Moore, P.B. & Steitz, T.A. (2000). The structural basis ofribosomal activity in peptide bond synthesis. Science, 289, 920−930.
- Nomura, M. and Erdmann, V .A. (1970). Reconstitution of 50S ribosomal subunits fromdissociated molecular components. Nature, 228, 744−748.
- Nomura, M. (1973). Assembly of bacterial ribosomes. Science, 179, 864−873.
- Omstein, R.L. (1989). C H — X hydrogen-bonded pseudo-Watson-Crick base pairing with 7dezanebularin and canonicalbases in D N A and RNA. Prog. Clin. Biol. Res., 289, 131−142.
- Otwinowski, Z. & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillationmodQ. Methods Enzymol. 276, 307−326.
- Oubridge, S., Ito, N, Evans, P.R., Teo, C.-H. and Nagai, K. (1994). Crystal structure at 1.92 Aresolution of the RNA-binding domain of the U l A spliceosomal protein complexed with an
- Perederina, A., Nevskaya, N. , Nikonov, 0., Nikulin, A., Dumas, P., Yao, M. , Tanaka, I., Garber,
- M. , Gongadze, G. and Nikonov, S. (2002). Detailed analysis of RNA-protein interactions withinthe bacterial ribosomal protein L5/5S rRNA complex. Π¨Π, 8, 1548−1557.
- Perez-Canadillas, J .-M. and Varani, G. (2001). Recent advances in RNA-protein recognition.
- Curr. Opin. InStruc. Biol, 11, 53−58.
- Powers T, Daubresse G, Noller HF.(1993) Dynamics of in vitro assembly of 16 S rRNA into 30
- S ribosomal subunits. J Mol Biol, 231(2), 362−74.
- PugHsi, J.D., Chen, L., Blanchard, S. and Frankel, A .D. (1995). Solution structure of a bovineimmunodeficiency virus Tat-TAR peptide-RNA complex. Science, 270, 1200−1203.
- PugUsi, E .V., Green, R., Noller, H.F. and Puglisi, J.D.(1997). Srtucture of a conserved R N Acomponent of the peptidyl transferase center. Nat. Struct. Biol, 4, 775−778.
- Ramakrishnan, V. (1986). Distribution of protein and R N A in the 30S ribosomal subunit.1. Science, 231,1562−1564.
- Rohl, R. and Nierhaus, K. H. (1982). Assembly map of the large subunit (50S) of E. colinbosomes. Proc.Natl.Acad. Sei. USA, 79, 729−733.
- Rossmann, M. G. and Johnson, I.E. (1989). Icosahedral R N A virus structure. Annu. Rev.1. Biochem., 58, 533−573.
- Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M. , Jannel, D., Bashan, A. ,
- Bartels, H. , Agmon, I., Franceschi, F and Yonath, A. (2000). Structure of fiinctionally activatedsmall ribosomal subunit at 3.3 A resolution. Cell, 102, 615−623.
- Serdyuk, I.N. and Grenader, A .K. (1975). Joint use of light, X-ray and neutron scattering forinvestigation R N A and protein mutual distribution within the 5OS particle of E. coli ribosomes. 1. FEES kit., 59, 133−136.
- Sergiev, P.v., Bogdanov, A.A., Dahlberg, A .E. and Dontsova, O. (2000). Mutations at position
- A960 of E. coli 23S ribosomal R N A influence the structure of 5S ribosomal R N A and thepeptidyltransferase region of 23S ribosomal RNA. J. Mol Biol, 299,379−389.
- Sergiev, P., Dokudovskaya, S., Romanova, E., Topin, A., Bogdanov, A., Brimacombe, R. &
- Dontsova, O. (1998). The environment of 5S rRNA in the ribosome: cross-links to the GTPaseassociated area of 23S rRNA. Nucleic Acids Res, 26, 2511−2525.
- Sharp, K .A., Honig, B. and Harvey, S.C. (1990). Electrical potential of transfer RNAs- codonanticodon recognition. Biochemistry, 29, 340−346.
- Stanley, J., SUof, P. and Ebel, J.-P. (1978). The binding site of ribosomal protein L I from
- Escherichia coli on the 23 S ribosomal R N A from Bacillus stearothermophilus. A possible basepairind scheme differing from that proposed fo rA coli. Eur. J. Biochem., 85, 309−316.
- Stem, S., Weiser, B. and Noller, H.F. (1988). Model for the three-dimensional folding of 16Sribosomal RNA. J. Mol Biol, 204, 447−481.
- Szymanski, M. , Barciszewska, M.Z., Erdmann, V .A. , Barciszewski, J. (2002). 5S ribosomal^kd3i2iiZ.&Q. Nucleic Acids Res, 30, 176−178.
- Tan, R. and Frankel, A. D (1995). Structural variety of arginine-rich RNA-binding peptides.
- Proc. Natl Acad. Scl USA, 92, 5282−5286.
- Thakurta, D.G. and Draper, D.E. (2000). Contribution of basic residues to ribosomal protein L I 1recognition of RNA. J. Mol Biol, 295, 569−580.
- Tinoco, I.J. and Bustamante, C. (1999). How R N A folds. J. Mol Biol 293, 271−281.
- Tishchenko, S., Nikulin, A., Fomenkova, N. , Nevskaya, N. , Nikonov, O., Dumas, P., Moine, H. ,
- Ehresmann, B., Ehresmann, C, Piendl, W., Lamzin, V., Garber, M. and Nikonov S. (2001).
- Detailed analysis of RNA-protein interactions vdthin the ribosomal protein S8-rRNA complexfrom the archaeaon Methanococcus jannaschil J. Mol Biol, 311, 311−324.
- Traub, P. and Nomura, M. (1968). Structure and function of Escherichia coH ribosomes. I. Partialfunction of the functionally active ribosomal proteins and reconstitution of artificial subribosomal particles. J. Mol Biol, 34, 575−593.
- Traub, P. and Nomura, M. (1969). Structure and function of Escherichia coli ribosomes. VI.
- Mechanism of assembly of 30S ribosomes studied in vitro. J. Mol Biol, 40, 391−413.
- Treiber, D.K. and Williamson, J.R. (1999). Exposing the kinetic traps in R N A folding. Curr.
- Treger, M. and Westhof, E. (2001). Statistical analysis of atomic contacts at RNA-proteinintQTfacQS. J. Mol Recognit., 14, 199−214.
- Valdar, W.S. and Tomton, J .M. (2001). Conservation helps to identify biologically relevantcrystal contacts. J. Mol Biol, 313, 399−416.
- Van Gilst, M.R., Rees, W.A., Das, A. and von Hippel, P.H. (1997). Complexes of Nantitermination protein of phage lambda with specific and nonspecific R N A target sites on the mscenttvmscnpt. Biochemistry, 36, 1514−1524.
- Varani, G. (1997). RNA-protein intermolecular recognition, ^ cc. Chem. Res., 30, 189−195.
- Weeks, K. M. and Cech, T.R. (1996). Accembly of a ribonucleoprotein catalyst by tertiallystructure capture. Science, 271, 345−348.
- Wimberly, B.T., Brodersen, D.E., demons, W. M. , Morgan-Warren, R.J., Carter, A.P.,
- Vonrhein, C. et al. (2000). Structure of the 30S ribosomal subunit. Nature, 407, 327−339.
- Williamson, J. R. (2000). Induced fit in RNA-protein recognition. Nat Struc. Biol, 1, 834−840.
- Wu, M. and Tinoco, I. J. (1998). R N A folding causes secondary structure rearrangement. Proc.
- Natl Acad. Scl USA, 95, 11 555−11 560.
- Wuyts, J., De Rijk, P., Van de Peer, Y. , Pison, G., Rousseeuw, P. & De Wachter, R. (2000).
- Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots inarea V4 of eukaryotic small subunit ribosomal RNA. Nucl Acids Res. 28, 4698−4708.
- Ye, X. , Kumar, R.A. and Patel, D.E. (1995). Molecular recognition in immunodeficiency virus
- Tat peptide — TAR R N A complex. Chem. Biol, 2, 827−840.
- Yonath, A., Mussig, G., Tesche, B., Lorenz, S., Erdmann, Y.a. and Wittmann, H.G. (1980).
- Crystallization of the large ribosomal subunits from Bacillus stearothermophilus. Biochem. Int, 1, 428−435.
- Yusupov, M. M. and Spirin, A.S. (1986). Are the proteins between the ribosomal subunits? Hottritium bombardment experiments. FEBS letters, 197, 229−233. 1. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΠ½ΠΎΡΡΠΈ
- ΠΡΡΠ°ΠΆΠ°Ρ ΠΈΡΠΊΡΠ΅Π½Π½ΡΡ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΠ½ΠΎΡΡΡ ΠΌΠΎΠΈΠΌ Π½Π°Π·^Π½ΡΠΌ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠΌ ΠΠ°ΡΠΈΠ½Π΅
- ΠΠΎΡΠΈΡΠΎΠ²Π½Π΅ ΠΠ°ΡΠ±Π΅Ρ ΠΈ ΠΠ°ΡΠ°Π»ΠΈΠ΅ ΠΠ»Π΅ΠΊΡΠ°Π½Π΄ΡΠΎΠ²Π½Π΅ ΠΠ΅Π²ΡΠΊΠΎΠΉ Π·Π° ΡΡΡΠΊΠΎΠ΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ, Π²ΡΠ΅ΡΡΠΎΡΠΎΠ½Π½ΡΡ ΠΏΠΎΠΌΠΎΡΡ Π² ΡΠ°Π±ΠΎΡΠ΅ ΠΈ Π² ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ΅ Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ, Π·Π° ΡΠ΅Π½Π½Π΅ΠΉΡΠΈΠ΅ ΡΠΎΠ²Π΅ΡΡ ΠΈ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ.
- ΠΠ³ΡΠΎΠΌΠ½ΠΎΠ΅ ΡΠΏΠ°ΡΠΈΠ±ΠΎ Π²ΡΠ΅ΠΌ ΡΠΎΡΡΡΠ΄Π½ΠΈΠΊΠ°ΠΌ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉΠ°ΠΏΠΏΠ°ΡΠ°ΡΠ°ΡΠ° ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Ρ ΠΈΠΌΠ΅Ρ ΡΠ΅ΡΡΡ ΡΠ°Π±ΠΎΡΠ°ΡΡ, Π·Π° ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π΄ΡΡΠΆΠ΅ΡΠΊΠΎΠΉ, ΠΏΠ»ΠΎΠ΄ΠΎΡΠ²ΠΎΡΠ½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ΠΉ ΠΎΠ±ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π² ΠΎΠ³ΡΠΎΠΌΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°Π»Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ.
- ΠΡΠΎΠ±Π·ΡΠΎ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΠ½ΠΎΡΡΡ Ρ ΠΎΡΡ Π²ΡΡΠ°Π·ΠΈΡΡ ΡΠΎΡΡΡΠ΄Π½ΠΈΠΊΠ°ΠΌ Π³ΡΡΠΏΠΏΡ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠΈΠ±ΠΎΡΠΎΠΌΠ½ΡΡ Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π»ΠΈΡΠ½ΠΎ Π΅Π΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΠΈΡΠ΅Π»Ρ Π‘ΡΠ°Π½ΠΈΡΠ»Π°Π²Ρ ΠΠ»Π°Π΄ΠΈΠΌΠΈΡΠΎΠ²ΠΈΡΡ
- ΠΠΈΠΊΠΎΠ½ΠΎΠ²Ρ Π·Π° ΠΌΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΡΡΡΠΊΡΡΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΠΏΠΎΠΌΠΎΡΡ Π² ΡΠ°Π±ΠΎΡΠ΅.
- Π₯ΠΎΡΡ ΡΠ°ΠΊ ΠΆΠ΅ ΠΏΠΎΠ±Π»Π°Π³ΠΎΠ΄Π°ΡΠΈΡΡ ΠΠ»Π΅ΠΊΡΠ΅Ρ ΠΠΎΠ½Π°ΡΠΎΠ²ΠΈΡΠ° ΠΠΈΠΊΡΠ»ΠΈΠ½Π°, Π‘Π²Π΅ΡΠ»Π°Π½Ρ ΠΠΈΠΊΡΠΎΡΠΎΠ²Π½Ρ
- Π’ΠΈΡΠ΅Π½ΠΊΠΎ, ΠΠ½Π½Ρ ΠΠ½Π°ΡΠΎΠ»ΡΠ΅Π²Π½Ρ ΠΠ΅ΡΠ΅Π΄Π΅ΡΠΈΠ½Ρ, ΠΈ Π²ΡΠ΅Ρ ΠΊΡΠΎ ΡΡΠ°ΡΡΠ²ΠΎΠ²Π°Π» Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅, Π·Π°Π»ΠΈΡΠ½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ ΠΈ ΡΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅.