Самоорганизация растворителя при нормальных и сверхкритических условиях состояния в растворах и на границе раздела фаз
Диссертация
Апробация работы. Основные результаты работы представлены на Менделеевских съездах по общей и прикладной химии (Ташкент, 1989; Казань, 2003) — 6 Всесоюзной конференции по термодинамике органических соединений (Минск, 1990) — 8 Всесоюзном симпозиуме по межмолекулярным взаимодействиям (Новосибирск, 1990) — 10 конференции ИЮПАК по физической и органической химии- 6,7,8 Международных конференциях… Читать ещё >
Список литературы
- Jaynes Е. Т. Information Theory and Statistical Mechanics // In: Statistical Physics. Brandeis Lectures, New York: Benjamin. 1963. — Vol. 3. — P. 181.
- Ben-Naim A. Standard thermodynamics of transfer. Uses and misuses // J.Phys. Chem. 1978. — Vol. 82. — P. 792−803.
- Lazaridis T. Solvent reorganization energy and entropy in hydrophobic hydration // J. Phys. Chem. 2000. — Vol. 104. — P. 4964−4979.
- Bernal J. D. A geometical approach to the structure of liquids // Nature. -1959. V. 183. — N. 4655. — P. 141−147.
- Finney, J. L. Random packing and the structure of simple liquids. II. The ^ molecular geometry of simple liquids / Proceedings of the Royal Society of1. ndon A. 1970.-Vol. 319.-P. 495−507.
- Медведев H. H. Метод Вороного-Делоне в исследовании структуры некристаллических систем. Новосибирск Российская Академия Наук, 2000.
- Vaisman I. I., Brown, F. К. and Tropsha A. Distance dependence of water structure around model solutes // J. Phys. Chem. 1994. — Vol. 98. — P. 5559−5564.
- Voloshin, V. P., Naberukhin, Y. I. and Medvedev, N. N. Can various classes of atomic configurations (Delaunay simplices) be distinguished in randomdense packings of spherical particles? // Molecular Simulation. 1989. — Vol. 4. 1. P. 209−227.
- Kiselev M., Poxleiter M., Seitz-Beywl J., Heizinger K. An Investigation of the Structure of Aqueous electrolyte solutions by statistical geometry // Z. Naturforsch. 1993. — Vol. 48a. — P. 806−810.
- Garde S., Hummer G., Garcia A. E., Paulaitis M. E. and Pratt L. R. Origin of the entropy convergence in hydrophobic hydration and protein folding // Phys. Rev. Lett. 1996. — Vol. 77. — P. 4966−4968.
- Hummer G., Garde S., Garcia A. E., Pohorille A. and Pratt L. R. An information theory model of hydrophobic interactions // Proc. Natl. Acad. Sci. USA. 1996.-Vol. 93.-P. 8951−8955.
- Jorgensen W. L., Chandresekhar J., Madura J. D., Impey R. W., Klein M.L. Comparison of simple potential functions for simulating liquid water // J. Chem. Phys. 1983. — Vol. 79. — N. 2. — P. 926−935.
- Bopp P., Jancso G., Heinzinger K. An improved potential for non-rigid water molecules in the liquid phase // Chem. Phys. Lett. 1983. — Vol. 98. — P. 129 133.
- Kestin J., Sengers J. V., Kamgar-Parsi В., Levelt J. M. H. Sengers Thermophysical Properties of Fluid H20 // J. Phys. Chem. Ref. Data. 1984.
- Vol. 13.-N. l.-P. 175−183.
- Arthur J. W., Haymet A. D. J. Hydrophobic hydration: Heat capacity of solvation from computer simulations and from an information theory approximation//!. Chem. Phys. 1999. — Vol. 110.-N. 12. — P. 5873−5883.
- Hummer G., Garde S., Garcia A. E., Pratt L. R. New perspectives on hydrophobic effects // J. Chem. Phys. 2000. — Vol. 258. — P. 349−370.
- Kresheck G. C., Schneider H., and Scheraga H. A. The effect of D20 on the thermal stability of proteins- thermodynamic parameters for transfer of model compounds from H20 to D20 // J. Phys. Chem. 1965. — Vol. 69. — P.3132−3144.
- Wilhelm E., Battino R., Wilcock R. J. The Low Pressure Solubility of Gases in Liquid Water// Chem. Rev. 1977. — Vol. 77. — P. 219−262.
- Pratt L. R., Pohorille A. Hydrophobic effects and modeling of biophysical aqueous solution interfaces // Chem. Rev. 2002. — Vol. 102. — P. 2671−2692.
- Aurenhammer F. Voronoi diagrams a survey of a fundamental geometric data structure // ACM Computing Surveys. — 1991. — Vol. 23. — P. 345 405.
- Barber С. В., Dobkin D. P., Huhdanpaa H. The quickhull algorithm for convex hull, Tech. Rep. GCG53, Geometry Center, University of Minnesota, Minneapolis, MN 55 454. 1993. P.
- Sugihara K. and Inagaki H. Why is the 3D Delaunay Triangulation Difficult to Construct? // Information Processing Letters. 1995. — Vol. 54. — P. 275−280.
- Самойлов О. Я. Структура водных растворов электролитов и гидратация ионов. М.: Изд-во АН СССР, 1957. 182 с.
- Grossfield A., Ren P., Ponder J. W. Ion Solvation Thermodynamics from Simulation with Polarizable Force Field // JACS, принято в печать.
- Ben-Naim A., Marcus Y. Solvation thermodynamics of nonionic solutes. 11 J. Chem. Phys. 1984. — Vol. 81. — P. 2016−2027.
- Gao J. Potential of mean force for the isomerization of DMF in aqueous solution: A Monte-Carlo QM/MM simulation study // J. Am. Chem. Soc. 1993. -Vol. 115. -N. 7.-P. 2930−2935.
- Friedman R.A., Mezei M. The potential of mean force of sodium chloride and sodium dimethylphosphate in water: an aplicationsof adaptive umbrella sampling // J. Chem. Phys. 1995. — Vol. 102. — N. 1. — P. 419−426.
- Smith D. E., Zhang L., Haymet A. D. J. Entropy of association of methane in water: a new molecular dynamics computer simulation // J. Am. Chem. Soc. -1992. Vol. 114. — P. 5875−5876.
- Van Belle D., Wodak S. J. Molecular dynamics study of methane hydration and methane association in a polarizable water phase // J. Am. Chem. Soc. 1993. — Vol. 115. — P. 647−652.
- Liidemann S., Schreiber H., Abseher R. and Steinhauser O. The influence of temperature on pairwise hydrophobic interactions of methane-likeparticles: A molecular dynamics stud. // J. Chem. Phys. 1996. — Vol. 104. — P. 286−294.
- Liidemann S., Schreiber H., Abseher R. and Steinhauser O. The temperature-dependence of hydrophobic association in water: Pair versus bulk hydrophobic interactions // J. Am. Chem. Soc. 1997. — V. 119. — P. 4206−4214.
- Rick S. and Berne B. J. Electrostatic potentials and free energies of solvation of polar and charged molecules // J. Phys. Chem. 1997. — Vol. 101. — P. 3017−3020.
- Payne V. A., Matubayasi N., Murphy L. R. and Levy R. M. Monte Carlo Study of the Effect of Pressure on Hydrophobic Association // J. Phys. Chem. -1997. Vol. B101. — P. 2054−2060.
- New M. H, Berne B.J. Molecular dynamics calculation of the effect of solvent polarizability on the hydrophobic interaction. // J. Am. Chem. Soc. 1995. — Vol. 117. — N. 27. — P. 7172−7179.
- Крокстон К. Физика простых жидкостей. M.: Мир, 1978. — 400 с.
- Жидомиров Г. М., Багатурьянц А. А., Абронин И. А. Прикладная квантовая химия. М.: Химия, 1979. 295 с.
- Pople J. A., Beveridge D. L. Approximate molecular orbital theory. New York: McGraw-Hill, 1970. 214 p.
- Фудзинага С. Метод молекулярных орбиталей. М.: Мир, 1983.461с.
- Frish М. J. et al. // Gaussian 98 (Revision A. lx), Gaussian, Inc., Pittsburgh PA, 2001.
- Diercksen G.F.H., Kraemer W.P., Ross B.O. // Theor. Chim. Acta. -1975.-Vol. 36.-P. 249−267.
- Toth G. Ab initio pair potential parameter set for the interaction of a rigid and a flexible water model and the complete series of the halides and alkali cations // J.Chem. Phys. 1996. — Vol. 105. — N13. — P. 5518−5524.43.
- Matsuoka О., Clementi E., Yoshimine M. CI study of the water dimer potential surface//J. Chem. Phys. 1976. — Vol. 64, N. 4.-P. 1351−1361.
- Kolos W. Possible improvements of the interaction energy calculated using minimal basis sets // Theor. Chim. Acta. 1979. Vol. 51. -N 3. — P. 219−240.
- Aastrand O., Wallqvist A., Karlstroem G. On the basis set superposition error in the evaluation of water dimer interactions // J. Phys Chem. 1991. — Vol. 95.-P. 6395 — 6396.
- Dannenberg J. J., Mezei M. Reply to the Comment on the Application of Basis Set Superposition Error to ab Initio Calculation of Water Dimer // J. Phys. Chem. 1991. — Vol. 95. — P. 6396−6398.
- Симкин Б. Я., Шейхет И. И. Квантово-химическая и статистическая теория растворов. Вычислительные методы и их применение. М.: Химия, 1989.-256 с.
- Dannenberg J. J. An AMI and ab initio molecular orbital study of water dimer // J. Phys. Chem. 1988. — Vol. 92. — N 24. — P. 6869−6871.
- Hobza P., Schnaider В., Garsky P., Zahradnik R. The superposition error problem: The (HF)2 and (НгО^ complexes at the SCF and MP2 levels // J. Mol. Struct. Theochem. -1986. Vol. 138. -N. ¾. — P. 377−385.
- Car R., Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory // Phys. Rev. Lett. 1985. — Vol. 55. — P. 2471−2474.
- Galli G., Pasquarello A. // Computer simulation in chemical physics / Ed. by M.P. Allen and T.J. Tildesley. Dordrecht: Kluwer, 1993. P. 261−314.
- Ryckaert J.-P., Bellemans A. Molecular dynamics of liquid n-butane near its boiling point. // Chem. Phys. Lett. 1975. — Vol.30. — N. 1. — P. 123−125.
- Reuter N., Dejaegere A., Maigret В., Karplus H. Frontier Bonds in QM/MM Methods: A Comparison of Different Approaches // J. Phys. Chem. A -2000.-Vol. 104. -N. 8. P. 1720−1735.
- Tu Y., Laaksonen A. On the effect of Lennard-Jones parameters on the quantum mechanical and molecular mechanical coupling in a hybrid molecular dynamics simulation of liquid water // J. Chem. Phys. 1999. — Vol. 111. — N 16. -P. 7519−7525.
- Wang F., Jordan K. D. Application of a Drude model to the binding of excess electrons to water clusters // J. Chem. Phys. 2002. — Vol. 116. -N 16. — P. 6973−6981.
- Carpenter J. E., Yets W. Т., Carpenter I. L., Hehre W. J. Selection of configurations for parameterization of two-body interaction potentials // J. Phys. Chem. 1990. — Vol. 94. — P. 443−447.
- Puhovski Y. P., Rode В. M. Molecular dynamics simulations of aqueous formamide solution. 1. Structure of binary mixtures // J. Phys. Chem. -1995. Vol. 99. — P. 1566−1576.
- Wong C. F., Rabitz H. Sensitivity analysis and principal component analysis in free energy calculations // J. Phys. Chem. 1991. — Vol. 95. — P. 96 289 630.
- Zhu S.-B., Wong C. F. Sensitivity analysis of water thermodynamics // J. Chem. Phys. 1993. — Vol. 98. — N. 11 — P. 8892−8899.
- Zhu S.-B., Wong C. F. Sensitivity analysis of distribution functions of liquid water // J. Chem. Phys. 1993. — Vol. 99. — N 11. — P. 9047−9053.
- Berendsen H. J. C., Grigera J. R., Straatsma T. P. The missing term in effective pair potentials. // J. Phys. Chem. 1987. — Vol. 91. — N. 24. — P. 62 696 271.
- Киселев M. Г., Пуховский Ю. П., Ивлев Д. В., Кесслер Ю. М. Влияние отталкивательного взаимодействия на структурные и динамические особенности жидкой воды. Роль молекулярной поляризуемости // ЖСХ. -1999. Т. 40. — № 2. — С. 296−303.
- Арнольд В. И. Теория катастроф. М.: Наука, 1990. 128 с.
- Thole В. Т. // J. Chem. Phys. 1981. — Vol. 59. — P. 341−348.
- Kuwajima S., Warshel A. Incorporating Electric Polarizabilities in Water-Water Interaction Potentials // J. Chem. Phys. 1990. — Vol. 94. — P. 460 463.
- Sprik M., Klein M. L. A polarizable model for water using distributed charge sites // J. Chem. Phys. 1988. — Vol. — 89. — P. 7556−7560.
- Ahlstrom P., Wallqvist A., Engstrom S. A molecular dynamics study of polarizable water//Mol. Phys. 1989. — Vol. 68. -N 3. — P. 563−581.
- Zhu S.-B., Singh S., Robinson G. W. A new flexible/polarizable water model // J. Chem. Phys. 1991. — Vol. 95. — P. 2791−2799.
- Kutteh R., Nicholas J. B. Efficient dipole iteration in polarizable charged systems using the cell multipole method and application to polarizable water // Сотр. Phys. Comm. 1995. — Vol. 86. — N 3. — P. 227−235.
- Zhu S.-B., Yao S., Zhu J.-B., Singh S., Robinson G. W. A flexible/polarizable simple point charge water model // J. Phys. Chem. 1991. -Vol. 95.-P. 6211−6217.
- Caldwell J., Dang L. X., Kollman P. A. Implementation of nonadditive intermolecular potentials by use of molecular dynamics: development of a water-water potential and water-ion cluster interactions // J. Am. Chem. Soc. 1990. -Vol. 112. — P. 9144−9147.
- Rick S. W., Stuart S. J., Berne B. J. Dynamical fluctuating charge force fields: Application to liquid water // J. Chem. Phys. 1994. — V.101. — N 7. -P.6141−6156.
- Sprik M. Hydrogen bonding and the static dielectric constant in liquid water//J. Chem. Phys. 1991. Vol. 95. -N9. — P. 6762−6769.
- Niesar U., Corongiu G., Clementi E., Kneller G. R., Bhattacharya D. K. Molecular dynamics simulations of liquid water using the NCC ab initio potential // J. Phys. Chem. 1990. — Vol. 94. — P. 7949−7956.
- Matsuoka О., Clementi E., Yoshimine M. CI study of the water dimer potential surface // J. Chem. Phys. 1976. — Vol. 64. — N 4. — P. 1351 -1361.
- Sprik M. // Computer simulation in chemical physics / Ed. by M.P. Allen and T.J. Tildesley. Dordrecht: Kluwer, 1993. P. 211−259.
- Xu H., Stern H. A., Berne B. J. Can water polarizability be ignored in hydrogen bond kinetics? // J. Phys. Chem. B. 2002. — Vol. 106. — N 8. — P. 20 542 060.
- Jedlovszky P., Mezei M., Vallauri R. A molecular level explanation of the density maximum of liquid water from computer simulations with a polarizable potential model // Chem. Phys. Letters 2000. — Vol. 318. — P. 155−160.
- Berendensen H. J. C., Postma J. P. M., van Gunsteren W. F., Hermans J. // In intrermolecular forces (ed. Pullman В.). Reidel: Dodrecht. — 1981. — P. 331−342.
- Soper A. K., Phillips M. G. A new determination of the structure at 25 ^ degree-C // J. Chem. Phys. 1986. — Vol. 107. — N. 1. — P. 47−60.
- Baez L. A., Clancy P. Existence of a density maximum in extended simple point-charge water // J. Chem. Phys. 1994. — Vol. 101. — N. 11. — P. 98 379 840.
- Alejandre J., Tildesley D. J., Chapela G. A. Molecular dynamic simulation of the orthobaric densities and surface tension of water // J. Chem. Phys. 1995,-Vol. 102. — N. 11. — P. 4574−4583.
- Panhuis M. I. H., Patterson С. H., Lynden-Bell R. M. A molecular dynamics study of carbon dioxide in water: diffusion, structure andthermodynamics // Mol. Phys. 1998. — Vol. 94. — N. 6. — P. 963−972.
- Bulliter S. R., van Gunsteren W. F. Protonizable water model for quantum dynamical simulations // J. Chem. Phys. A. 1998. — V. 102. -N. 24. — P. 4669−4678.
- Lemberg H. L., Stillinger F. H. Central force model for liquid water // J. Chem. Phys. 1975. — Vol. 62. -N. 5. — P. 1677−1690.
- Rahman A., Stillinger F. H., Lemberg H. L. Study of a central force model for liquid water by molecular dynamics // J. Chem. Phys. 1975. — Vol. 63. -N. 12. — P. 5223−5230.
- Carney A. D., Curtiss L. A., Lanhoff S. R. Improved potential functions for AB2 molecules: water and ozone // J. Mol. Spectrosc. 1976 — Vol. 61. -N. 3. -P. 371−381.
- Robinson G. W., Zhu S.-B., Singh S., Evans M. W. Water in biology, chemistry and physics. (World science series in contemporary chemical physics -Vol.9.). World Scientific Publishing Co. Pte. Ltd, 1996. — 498 p.
- Jorgensen W. L. Optimized intermolecular potential for liquid alcohols // J. Phys. Chem. 1986. — Vol. 90. — N. 7. — P. 1276−1284.
- Haughney M., Ferrario M., McDonald I. R. Molecular dynamics simulation of liquid methanol // J. Phys. Chem. 1987. — Vol. 91. — P. 4394−4940.
- Palinkas G., Hawlicka E., Heinzinger K. A molecular dynamics study of liquid methanol with a flexible three site model // J. Phys. Chem. — 1987. — Vol. 91.-N. 16.-P. 4335−4341.
- Rahman A., Stilinger F. H. Molecular dynamics study of liquid water // J. Chem. Phys. 1971. — Vol. 55. — N. 7 — P. 3336−3359.
- Schulman E. M., Dwyer D. W., Doetschman S. C. Temperature and pressure of hydrogen bonding in liquid methanol studied by nuclear magnetic resonance // J. Phys. Chem. 1990. — Vol. 94. — N. 8. — P. 7308−7312.
- Jorgensen W. L. Structure and properties of liquid methanol // J. Am. Chem. Soc. 1980. — Vol. 102. — N. 2. — P. 543−549.
- Hawlicka E., Palinkas G., Heinzinger K. Molecular dynamics simulation of liquid methanol with a flexible six-site model // Chem. Phys. Lett. -1989.-Vol. 154.-P. 255−259.
- Matsumoto M., Gubbins К. E. Hydrogen bonding in liquid methanol // J. Chem. Phys. 1990. — Vol. 93.-N. 3. — P. 1981−1993.
- Kabeya Т., Tamai Y., Tanaka H. Structure and potential surface of liquid methanol in low temperature: comparison of the hydrogen bond network in methanol with water // J. Phys. Chem. B. 1998. — Vol. 102. -N. 5. — P. 899−905.
- Fonseca Т., Ladanyi В. M. Wave vector dependent static dielectric properties of associated liquids: Methanol // J. Chem. Phys. 1989. — Vol. 93. — N. 11. — P. 8148−8166.
- Bai S., Yonker C. R. Pressure and temperature effects on the hydrogen-bond structures of liquid and supercritical fluid. Methanol // J. Phys. Chem. A. -1998. Vol. 102. — N. 45. — P. 8641−8647.
- Narten A. H., Habenschuss A. Hydrogen bonding of liquid methanol and ethanol by X-ray diffraction // J. Chem. Phys. 1984. — V. 80. — N. 7. — P. 33 873 391.
- Sarkar S., Joarder R. N. Molecular clusters and correlation in liquid methanol at room temperature // J. Chem. Phys. 1993. — Vol. 99. — N. 1. — P. 20 322 039.
- Montague D. G., Dore J. C., Cummings S. Structural studies of liquid alcohols by neutron diffraction. III. CD3OH, CD3OD and CD3OH/D mixtures // Mol. Phys. 1984. — Vol. 53. — N. 5. — P. 1049−1060.
- Shilov Y. I., Rode В. M., Durov V. A. Long rang order and hydrogen bonding in liquid methanol: A Monte Carlo simulation // Chem. Phys. 1999. -Vol. 241.-N. l.-P. 75−82.
- Дуров В. А. Структурная поливариантность ассоциативных образований и ее проявления в макроскопических свойствах жидких систем // ЖФХ. 1992. — Т. 66. — № 1. — С. 211−224.
- Дуров В. А., Шилов И. Ю. Надмолекулярная организация и физико-химические свойства растворов. Система ацетон хлороформ // ЖФХ. — 1994. — Т. 68. — № 3. — С. 483−491.
- Yukhnevich С. V., Tarakanova E. G. Hydrogen bond CH. O in liquid methanol // J. Mol. Struct. 1998. — Vol. 447. — N. 3. — P. 257−261.
- Czeslik C., Jonas J. Pressure and temperature dependence of hydrogen-bond strength in methanol clusters // Chem. Phys. Lett. 1999. — Vol. 302. -N. 5/6. — P. 633−638.
- Wiengartner H., Sacco A., Trotta M. The effect of site-specific isotopic substitutions on transport coefficients of liquid methanol // J. Chem. Phys.- 1989.-Vol. 91.-N. 4-P. 2568−2573.
- Magini M., Paschina G., Piccaluda G. On the structure of methyl-alcohol at room temperature // J. Chem. Phys. 1982. — Vol. 77. — N. 4. — P. 20 512 056.
- Kapmakap A. K., Sarkar S., Joarder R. N. Molecular Clusters in liquid tert-Butyl Alcohol at Room Temperature // J. Phys. Chem. 1995. — Vol. 99. -N. 45.-P. 16 501−16 503.
- Jorgensen W. L. Transferable intermolecular potential functions for water, alcohol and ethers. Application to liquid water // J. Am. Chem. Soc. 1981. -Vol. 103.-N. 2. -P. 335−340.
- Jorgensen W. L., Madura J. D., Swenson C. J. Optimized intermolecular potential functions for liquid hydrocarbons // J. Am. Chem. Soc. -1984. Vol. 106. -N. 22. — P. 6638−6646.
- Jorgensen W. L. Theoretical Studies of medium effects on conformational equilibria // J. Phys. Chem. 1983. — Vol. 87. — N. 26. — P. 53 045 314.
- Ryckaert J.-P., Bellemans A. Molecular dynamics of liquid alkanes // Discuss. Faraday Soc. 1978. — Vol. 66. — P. 95−106.
- Edberg R., Evans D. J., Morris G. P. Constrained molecular dynamics: simulations of liquid alkanes with a new algorithm // J. Chem. Phys. -1986. Vol. 84. — N. 12. — P. 6933−6939.
- Toxvaerd S. Molecularc dynamic calculations of the equatioin of state of liquid propane // J. Chem. Phys. 1989. — Vol. 91. — N. 6. — P. 3716−3720.
- Toxvaerd S. Molecular dynamic calculations of the equation of state of alkanes // J. Chem. Phys. 1990. — Vol. 93. — N. 6. — P. 4290−4295.
- Padilla P., Toxvaerd S., Self-diffusion in n-alkane fluid models // J. Chem. Phys. 1991. — Vol. 94. — N. 6. — P. 5650−5654.
- Sung W., Steele G. Transport theory of binary mixture with one trace component of disparate mass // J. Chem. Phys. 1982. — Vol. 77. — N. 9. — P. 46 364 649.
- Harris J. G. Liquid Vapour interfaces of alkane oligomers structure and thermodynamics from molecular dynamics simulations of chemical realistic models // J. Phys. Chem. — 1992. — Vol. 96. — N. 12. — P. 5077−5086.
- Klatte S. J., Beck T. L. Molecular dynamics of tethered alkanes: Temperature dependent behaviour in a high density chromatographic system // J. Phys. Chem. 1993. — Vol. 97. — N. 21. — P. 5727−5734.
- Brown D., Clarke J. H. R. A molecular dynamics study of chain configurations in alkane like liquid // J. Chem. Phys. 1994. — Vol. 100. — N. 2. — P. 1684−1692.
- Travis K. P., Brown D., Clarke J. H. R. A molecular dynamic study of the coupling of torsional motions to self-diffusion in liquid n hexane // J. Chem. Phys. — 1995.-Vol. 102. — P. 2174−2180.
- Hoheisel C., Wurfinger A. Thermodynamic and transport properties of cyclohexane computed by molecular dynamics with use of a six-center Lennard- Jones potential //J. Chem. Phys. 1989. — Vol. 91. — N. 1. — P. 473−476.
- Hannongbua S., Ishida Т., Spohr E., Heinzinger K. Molecular dynamics study of a lithium ion in ammonia // Z. Naturforsch. -1988. Vol. 43a. -P. 572−582.
- Sprik M., Impey R. W., Klein M. L. Study of electron solvation in liquid ammonia using quantum path integral Monte Carlo calculations // J. Chem. Phys. -1985. Vol. 83. -N 11. -P. 5802−5814.
- Kerdcharoen Т., Liedl K. R., Rode В. M. // J. Chem. Phys. -1996. -Vol. 211.-P. 313−319.
- Hannongbua S. On the solvation of lithium ions in liquid ammonia: Monte Carlo simulations with a three-body potential // Chem. Phys. Letters -1998.- Vol. 288. N 5−6. — P. 663−668.
- Deng Z., Martyna G. J., Klein M. L. Quantum simulation studies of metal-ammonia solutions // J. Chem. Phys. -1994. Vol. 100. — N 10. — P. 75 907 601.
- Hannongbua S., Kokpol S., Gurskii Z. and Heizinger K. Cluster Formation in a Concentrated Lithium-Liquid Ammonia Solution. A Monte Carlo Study // Z. Naturforsch. 1997. — Vol. 52a. — P. 828−834.
- Sun S., Bernstein E. R. Aromatic van der Waals Clusters: Structure and Nonrigidity // J. Phys. Chem. 1996. — Vol. 100.-N32.-P. 13 348−13 366.
- Bernstein E. R. Dynamics and Photochemistry of Neutral van der Waals Clusters // Annu. Rev. Phys. Chem. 1995. — Vol. 46. — P. 197−222.
- Hobza P., Selzle H. L., Schlag E. W. Structure and Properties of Benzene-Containing Molecular Clusters: Nonempirical ab Initio Calculations and Experiments // Chem. Rev. 1994. — Vol. 94. — P. 1767−1785.
- Felker P. M., Maxton P. M., Schaeffer M. W. Nonlinear Raman Studies of Weakly Bound Complexes and Clusters in Molecular Beams // Chem. Rev.- 1994.-Vol. 94.-P. 1787−1805.
- Philip D., Robinson J.M.A. A computational investigation of cooperativity in weakly hydrogen-bonded assemblies // J. Chem. Soc., Perkin Trans. 2. 1998. -Vol. 2. -N 7. -P. 1643−1650.
- Maier G., Lautz Ch. Laser Irradiation of Monomelic Acetylene and the T-Shaped Acetylene Dimer in Xenon and Argon Matrices // Eur. J. Org. Chem. 1998.-N 5.-P. 769−776.
- Resende S. M., De Almeida, W. B. Ab initio study of the formation of molecular complexes between C12 and C2H2 // Mol. Phys. -1997. -Vol. 91. -N 4.-P. 635−641.
- Karpfen A. The Dimer of Acetylene and the Dimer of Diacetylene: A Floppy and a Very Floppy Molecule // J. Phys. Chem. A. 1999. — Vol. 103. — N 51.-P. 11 431−11 441.
- Cardelino В. H., Moore С. E., Frazier D. O., Musaev D. G., Morokuma K. Ab-initio calculations on the diacetylene dimer: HCCCC (H)C (H)CCCH" // Int. J. Quantum Chem. 1998. — Vol. 66. — P. 189−202.
- Ghosh A., Gassman P. G., Almloef J. Substituent effects in porphyrazines and phthalocyanines // J. Am. Chem. Soc. 1994. — Vol. 116. — P. 1932−1940.
- Lamoen D., Parrinello M. Geometry and electronic structure of porphyrines and porphyrazines // Chem. Phys. Letters. 1996. — Vol. 248. — P. 309−315.
- Hunter С. A., Sanders J. К. M. The nature of .pi.-.pi. interactions // J. Am. Chem. Soc. 1990. — Vol. 112. — P. 5525−5534.
- Tanford C. The Hydrophobic Effect. Formation of Micelles and Biological Membranes. New York: Willey, 1980.
- Butler J. A. // Trans. Faraday Soc. 1937. — Vol. 33. — P. 229−236.
- Eley D. D. // Trans. Faraday Soc. 1939. — Vol. 35. — P. 1421.
- Frank H. E., Evans H. W. Volume and entropy in condensed systems. Ill Entropy in binary liquid mixture: partial molar entropy in dilute solutions. Thermodynamics in aqueous electrolytes // J. Chem. Phys. 1945. — V. 13. — N.13. -P. 507−532.
- Frank H. S., Wen W. Y. // Disc. Faraday. Soc. 1957. — Vol. 24. — P. 133−140.
- Glew D. N., Moelwin-Hugnes E. A. // Disc. Faraday Soc. -1953. -Vol. 15.-P. 150.
- Glew D. N. // J. Phys. Chem. 1962. — Vol. 66. — P. 605−609.
- Ben-Naim A. Water and Aqueous Solutions. New York: Plenum Press, 1974.-352 S.
- Water: A Comprehensive Treatise/ Edited by. F. Franks. New York: Plenum Press, 1973−1975. — Vol. 1−5.
- Кесслер Ю. M., Зайцев A. JI. Сольвофобные эффекты. JI: Химия, 1989.-312 с.
- Eisenberg D. and Kauzman W. The Stucture and Properties of Water. Oxford: Clarendon, 1969.-296 S.
- Kessler Y. M., Puhovski Y. P., Kiselev M. G.- Vaisman I. I. // Chemistry of Nonaqueous Solutions: Current Progress/ Edited by A. I. Popov and G. Mamontov, New York: VCH Publishers, 1994. P. 307.
- Ben-Naim A. Hydrophobic Interactions. New York: Plenum Press. -1980.- 311 S.
- Кесслер Ю. М., Абакумова Н. А. Экспериментальное и теоретическое исследование гидрофобных эффектов // Изв. вузов. Сер. хим. и хим. технол. 1982. — Т. 25. — № 2. — С. 162−178.
- Самойлов О. Я. К основам кинетической теории гидрофобной гидратации в разбавленных водных растворах // ЖФХ. 1978. — Т. 52. — № 8. -С. 1857−1862.
- Михайлов В. А., Пономарева J1. И. Строение и термодинамические свойства водных растворов неэлектролитов // ЖСХ.1968.-Т. 9. № 1. — С. 12−20.
- Лященко А. К., Стунжас П. А. Структурирование воды молекулами неэлектролитов и растворимость неполярных газов // ЖСХ. -1980.-Т. 21.-№ 5.-С. 106−111.
- Маленков Г. Г. Геометрический аспект явления стабилизации структуры воды молекулами неэлектролитов // ЖСХ. 1966. — Т. 7. — № 3. — С. 331−336.
- Михайлов В. А. Строение и термодинамические свойства водных растворов неэлектролитов. II. Формулы для термодинамических функций и сопоставление модели с опытом К ЖСХ. 1968. — Т. 9, № 3. — С. 397−405.
- Anderson R. С., Symons М. С. R. NMR studies of aqueous tertial butyl alcohol in the in the presence of various solutes // Trans. Faraday Soc.1969. V. 65, N. 10. — P. 2550−2557.
- Шахпаронов M. И., Чекалин H. В. О механизмах диэлектрической релаксации в растворах вода ацетон // ЖСХ. — 1970. — Т. 11, № 5. -С. 599−603.
- Чекалин Н. В. Диэлектрическая релаксация в растворах вода -метанол. I Экспериментальные результаты // ЖФХ. 1970. — Т. 44, № 12. — С. 3090−3091.
- Чекалин Н. В. Шахпаронов М. И. Диэлектрическая релаксация в растворах вода метанол. II Механизм диэлектрической релаксации. // ЖФХ. — 1971.-Т. 45, № 2.-С. 452−455.
- Glew D. N., Мак Н. D., Rath N. S. Hydrogen-Bonded Solvent Systems. London, 1968.-364 p.
- Белоусов В. П., Панов М. Ю. Термодинамика водных растворов неэлектролитов. Л.: Химия, 1983. — 264 с.
- Колкер А. М., Клопов В. И., Крестов Г. А. Теплоемкость растворения галогенидов калия в смесях воды с одноатомными спиртами // ЖФХ. 1976. — Т. 50, № 9. — С. 2432−2433.
- Панов М. Ю., Белоусов В. П. Избыточные теплоемкости бинарных растворов неэлектролитов. Химия и термодинамика растворов. -Л.:ЛГУ, 1982. С. 56−58.
- Носков С. Ю., Киселев М. Г., Колкер А. М. Изучение аномального поведения теплоемкости в смеси метанол вода методом молекулярной динамики // ЖСХ. — 1999. — Т. 40, № 2. — С. 304−313.
- Оводов Г. И. Экспериментальное исследование аномалии теплоемкости в водном растворе третичного бутанола: Дисс.. канд. хим. наук. Менделеево. 1978. 169 с.
- Михайлов В. А., Григорьева Э. Ф. Раствормость сулемы в водно -спиртовых растворах, энтропия и энтальпия ее переноса из воды в водно -спиртовые смеси и стабилизации структуры воды спиртами // ЖСХ. 1968. -Т. 9, № 5. — С. 788−797.
- Михайлов В. А., Григорьева Э. Ф., Семина И. Н. Растворимость йода в водно-спиртовых смесях. Сопоставление с моделью тройного раствора // ЖСХ. 1968. — Т. 9, № 3. — С. 958−967.
- Маленков Г. Г. Геометрия построек из молекул воды в структурах кристаллогидратов // ЖСХ. 1962. — Т. 3, № 2. — С. 220−243.
- Шуйский С. И., Наберухин Ю. И. Разделение сигналов воды и спирта и проявление стабилизации воды в спектрах ЯМР спиртово водных растворов // ЖСХ. — 1976. — Т. 17, № 1. — С. 182−184.
- Дакар Г. М., Хакимов П. А., Корикова М. JI. Исследование акустическим методом межмолекулярных взаимодействий в разбавленных водных растворов неэлектролитов // ЖФХ. 1992. -Т. 66, № 1. — С. 200−204.
- Колкер А. М. Теплоемкость растворов галогенидов калия в смесях волы с одноатомными спиртами при 25°С: Дисс.. канд. хим. наук. Иваново. 1974. 139 с.
- Гайгер А., Медведев Н. Н., Наберухин Ю. И. Структура стабильной и метастабильной воды. Анализ многогранников Вороного молекулярно-динамических моделей // ЖСХ. 1992. — Т. 33, № 2. — С. 79−87.
- Speedy R. J., Mezei М. Pentagon Pentagon Correlation in Water // J. Phys. Chem. — 1985.-Vol. 89, N. l.-P. 171−175.
- Nishikawa K., lijima T. Structural Study of tert-Butyl Alcohol and Water Mixtures by X-ray Diffraction II J. Phys. Chem. 1990. — Vol. 94, N. 16. — P. 6227−6231.
- Velo E., Pulgjaner L., Recasens F. Viscosities of Aqueous tert-Butyl Alcohol Solutions // J. Chem. Eng. Data. 1991. — Vol. 36. — P. 55−57.
- Koga Y., Siu W. W. Y., Wong T. Y. H. Excess Partial Molar Free Energies and Entropies in Aqueous tert-Butyl Alcohol Solutions at 25 °C // J. Phys. Chem. 1990. — Vol. 94, N. 19. — P. 7700−7706.
- Tamura K., Osaki A., Koga Y. Compressibilities of aqueous tert-butanol in the water-rich region at 25°C: Partial molar fluctuations and mixing schemes//Phys. Chem. Chem. Phys. 1999. — Vol. 1. -N. 1. — P. 121−126.
- Bender Т. M., Pecora R. A Dynamic light scattering study of the tert-Butyl alcohol-water system // J. Phys. Chem. 1986. — Vol. 90. — N. 8. — P. 17 001 706.
- Harris K. R., Newitt P. J., Back P. J., Woolf L. A. pVTx Property Measurements for 2-methyl-2-propanol + Water from the Freezing Surface to 75 °C // High Temp.-High Press. 1998. — Vol. 30, N. 1. — P. 51−62.
- Myrthy N. M., Jeevan В. K., Rajagopal E. // Indian J. Pure & Appl. Phys. -1997. Vol. 35. — N. 8. — P. 496−498.
- Harris K. R., Newitt P. J. Diffusion and Structure in Water-Alcohol Mixtures: Water + tert-Butyl Alcohol (2-Methyl-2-Propanol) // J. Phys. Chem. A. -1999. Vol. 103, N. 33. — P. 6508−6513.
- Koga Y. Excess partial molar enthalpies of tert-butanol in water-tert-butanol mixtures // Can. J. Chem. 1988. — Vol. 66, N. 5. — P. 1187−1193.
- Senanayake C., Gee N., Freeman G. R. Viscosity and density of isomeric butanol/water mixtures as functions of composition and temperature // Can. J. Chem. 1987. — Vol. 65. — P. 2441−2446.
- Akhtar S., Bhuiyan M. M. H., Uddin M. S., Sultana В., Nessa M., Saleh M. A. // Physics and Chemistry of Liq. 1999. -Vol. 37. -N. 3. — P. 215−227.
- Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители. М.: Изд-во иностр. лит., 1958. — 518 с.
- Bloomfield V. A., Dewan R. К. Viscosity of liquid mixtures // J. Phys. Chem. 1971. — Vol. 75. — P. 3113−3119.
- Ивлев Д. В., Киселев М. Г. Сольвофобные эффекты в смеси метанол гептан. Молекулярно — динамическое моделирование // ЖФХ. -2001.-Т. 75, № 1.-С. 74−77.
- Nagata I., Ohta Т., Nakaragava S. Excess Gibbs free energies and heats of mixing for binary alcoholic liquid mixtures // J. Chem. Eng. Jap. 1976. -Vol. 9, N. 4.-P. 276−281.
- Chevalier J. L. E., Petrino P. J., Gaston-Bonhome Y. M. Viscosity and density of some aliphatic, cyclic and aromatic hydpocarbones binary liquid mixtures // J. Chem. Eng. Data. 1990. — Vol. 35, N. 2 — P. 206−210.
- Stavely L., Taylor P. Solutions of alcohols in non-polar solvents. Part III. The viscosities of dilute solutionsof primary alcohols in benzene, heptane and cyclohexane // J. Chem. Soc. 1956. — Vol. 65, N. 1 — P. 200−209.
- Лукьянчикова И. А. Межмолекулярные взаимодействия в растворах неэлектролитов на основе спиртов, углеводородов и их галогензамещенных по данным вискозиметрии и ЯМР спектроскопии: Дисс.. канд.хим.наук, Иваново. — 1995. — 193 с.
- Castillo R., Cristina Garza С., Orozco J. The mutual diffusion coefficient of the methanol-n-hexane mixture around the coexistence line // Fluid Phase Equi. 1998. — Vol. 150−151. — P. 797−805.
- Orge В., Iglesias M., Rodriguez A., Canosa J.M., Tojo J. Mixing properties of (methanol, ethanol, or l-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15K // Fluid Phase Equil. 1997. — Vol. 133. — P. 213 217.
- Родникова M. H. Особенности растворителей с пространственной сеткой Н-связей // ЖФХ. -1993. Т. 67. — С. 275−280.
- Ахадов Я. Ю. Диэлектрические свойства чистых жидкостей. -М.: Издательство стандартов, 1972.
- Родникова М. Н., Ланшина Л. В., Чабан И. А. // Докл. АН СССР. 1990.-Т. 315.-С. 148−151.
- Gaiduk V., Rodnikova M. N. The lifetimeof a librational state as a measure of the elasticity of the spatial H-bond network // J. Mol. Liq. 1999. -Vol. 82.-P. 47−55.
- Rodnikova M. N., Val’kovskaya Т. M., Kartez V. N., Kayumova D. B. About elasticity of spatial H-bond network in liquids // J. Mol. Liq. 2003. -Vol. 106.-P. 219−222.
- Chandler D. Two faces of water // Nature. 2002. — Vol. 417. — P.491.
- Lum K., Chandler D., Weeks J. Hydrophobicity at small and large length scales // J. Phys. Chem. -1999. Vol. 103. — P. 4570−4577.
- Nakayama R., Shinoda K. // J. Chem. Thermodyn. 1971. — Vol. 3. -P. 401−412.
- Горбунов Б. 3., Наберухин Ю. И. // ЖСХ. 1972. — Т. 13. — С. 2031.
- Корсунский Н. В, Наберухин Ю. И. // ЖСХ. -1977. Т. 18. — С. 587−592.
- De Tar, De Los F. Theoretical ab-initio Calculation of Entropy, Heat Capacity, and Heat Content // J. Phys. Chem. 1998. — Vol. 102, N. 26. — P. 51 285 136.
- Dranchuk P. M., Abdoul-Kassem J. H. Computer calculation of heat capacity, and natural gases over a wide range of pressure and temperature // Can. J. Chem. Eng. 1992. — Vol. 70, N. 2. — P. 350−354.
- Barreau A., Mogensen J. Isobaric heat capacity calculation by means of equation of state // Revue de l’lnstitut francais du petrole. 1993. — Vol. 48, N. 5. -P. 515−529.
- Alper H. E., Politzer P. Molecular dynamics simulation of the temperature-dependent behavior of solid copper // J. Mol. Str. 1999. — Vol. 487. -P. 117−125.
- Kawaizumi F., Ohba M., Fukuyama Т., Nomura H. Pressure and temperature dependence of excess thermodynamic quantities of Lennard Jones binary mixtures // Fluid Phase Equil. — 1997. — Vol. 136. — P. 37−47.
- McQuarrie D. A. Statistical Mechanics. N.Y.: Harper&Row, 1972. -455 S.
- Benson G. C., D’Arcy P. J. Excess isobaric heat capacities of water-n-alcohol mixtures // J. Chem. Eng. Data. 1982. — Vol. 27. — P. 439−442.
- Battistel E. et al. Geometric relaxation in water: Its role in hydrophobic hydration // Faraday Symp. Chem. Soc. 1982. — Vol. 17. — P. 93 108.
- Kiselev M., Heinzinger K. Molecular dynamics simulations of a chloride ion in water under the influence of an external electric field // J. Chem. Phys. 1996. — Vol. 105. — P. 650−658.
- Vaisman I. I., Berkowitz M. L. Local structural order and molecular associations in water-DMSO mixtures. Molecular dynamics study // J. Amer. Chem. Soc. 1992.-Vol. 114.-P. 7889−7896.
- Sciortino F., Geiger A., Stanley H. E. Effect of defects on molecular mobility in liquid water // Nature. 1991. — Vol. 354. — P. 218−221.
- Киселев M. Г., Вайсман И. И., Пуховский Ю. П., Кесслер Ю. М.// Термодинамика растворов неэлектролитов / Под. ред. Г. А. Крестова. -Иваново: ИХНР РАН, 1989.- С. 79−85.
- Marcus Y., Ben-Naim A. A study of the structure of water and its dependence on solutes, based on the isotope effects on solvation thermodynamics in water // J. Chem. Phys. 1985. — Vol. 83. — P. 4744−4759.
- Keyes T. Neighborship structure and dynamics in supercooled liquids // J. Chem. Phys. 1999. -Vol. 110. — P. 1097−1105.
- Lee J. H., Foster N. R. // J. of Ind. And Eng. Chem. 1999. — Vol. 5. -P. 116−122.
- Anitescu G., Zhang Z, Tavlarides L.L. A kinetic study of methanol oxidation in supercritical water // Ind. Eng. Chem. Res. 1999. — Vol. 38, N 6. — P. 2231−2237.
- Gao J. Supercritical Hydration of Organic Compounds. The Potential of mean Force for Benzene Dimer in Supercritical Water // J. Amer. Chem. Soc. -1993.-Vol. 115.-P. 6893−6895.
- Noskov S., Kiselev M., Kolker A. Anomalous heat capacity behaviour in the methanol-water mixtures. Molecular Dynamics study // Internet Journal of Chemistry. 1998. — Vol. 1. — article 16. — P. 6269. http: //www.ijc.com/articles/ 1998vl/16.
- Noskov S., Kiselev M., Kolker A., Rode B. Structure of methanol-methanol associates in dilute methanol-water mixtures from molecular dynamics simulation//J. Mol. Liq. 2001. — Vol. 91. — P. 157−165.
- Kalinichev A. G., Churakov S. V. Size and topology of molecular clusters in supercritical water: a molecular dynamics simulation // Chem. Phys. Lett. 1999. — Vol. 302. — P. 411 -417.
- Yoshii N, Yoshie H, Miura S, Okazaki S. Density fluctuation and hydrogen-bonded clusters in supercritical water. A molecular dynamics analysis // J. Chem. Phys. 1998. — Vol. 109. — P. 4873−4884.
- Mountain R. D. Voids and clusters in expanded water // J. Chem. Phys. -1999. Vol. 110. — P. 2109−2115.
- Sato H, Hirata F. Ab initio study of water. II. Liquid structure, electronic and thermodynamic properties over a wide range of temperature and density // J. Chem. Phys. 1999. — Vol. 111. — P. 8545−8555.
- Bursulaya B. D., Kim H. J. Molecular dynamics simulation study of water near critical conditions. I. Structure and solvation free energetics // J. Chem. Phys. 1999. — Vol. 110. — P. 9646−9655.
- Ebukuro Т., Takami A., Oshima Y., Koda S. Raman spectroscopic studies on hydrogen bonding in methanol and methanol/water mixtures under high temperature and pressure // J. Sup. Fluids. 1999. — Vol. 15. — P. 73−78.
- Abdulagatov I. M., Dvoryanchikov V. I., Aliev M. M., and Kamalov A. N. / Proc. of the 13th Int. Conference on the Properties of Water and Steam, Sep. 12−16. Toronto, Canada, 1999.
- Dixit S., Soper A. K., Finney J. L. and Crain J. Water structure and solute association in dilute aqueous methanol // Europhys. Lett. 2002. — Vol. 59, N3.-P. 377−383.
- Ben-Naim A. Preferential solvation in two-component systems // J. Phys. Chem. 1989. — Vol. 93. — P. 3809−3813.
- Shulgin I., Ruckenstein E. Range and Energy of Interaction at Infinite Dilution in Aqueous Solutions of Alcohols and Hydrocarbons // J. Phys. Chem. B. 1999. — Vol. 103, N 23. — P. 4900−4905.
- Fisher I. Z. Statistical Theory of Liquids / University of Chicago Press, Chicago, 1964.
- Брук-Левинсон Э. Т., Вихренко В. С., Немцов В. Б., Ротт Л. А. Сдвиговая вязкость бинарной смеси простых жидкостей // Изв. вузов. Физика. 1970. — № 2. — С. 70−75.
- Sato Т., Chiba A., Nozaki R. Dielectric relexation mechanism and dynamical structures of the alcohol/water mixtures // J. Mol. Liq. 2002. — Vol. 101.-P. 99−111.
- Marechal G., Ryckert J.-P., Bellemans A. The shear viscosity of butane by equilibrium and non-equilibrium molecular dynamics // Mol.Phys. -1987.-Vol. 61,-N. 1.-P. 33−49.
- Harris К. R. The self-diffusion coefficient and viscosity of hard sphere fluid revisited a comparison with experimental data for xenon, methane, ethane and triclormethane // Mol. Phys. 1992. — Vol. 77. — N. 6. — P. 1153−1167.
- Cherne III F. J., Deymier P. A. Calculation of viscosity of liquid nickel by molecular dynamics methods // Scr. Mat. 1998. — Vol. 39. — N. 11. — P. 1613−1616.
- Stadler R., Alfe D., Kresse G., de Wijs G. A., Gillan M. J. Transport coefficients of liquid from first principles // J. Non-Cryst. Solids. 1999. — Vol. 250−252. — P. 82−90.
- Schoen M., Hoheisel C. The shear viscosity of a Lennard Jones fluid calculated by equilibrium molecular dynamics // Mol. Phys. — 1985. — Vol. 56. — N. 7. — P. 653−672.
- Ferrario M., Fiorino A., Ciccotti G. Long-time tails in two-dimensional fluids by molecular dynamics // Physica A. 1997. — Vol. 240. — P. 268−276.
- Kataoka Y. Anomalies in the concentration fluctuations and the mutial diffusion coefficient of 2-demensional Lennard-Jones mixture in the supercritical region // Fluid Phase Equil. 1998. — Vol. 144. — N. 1−2. — P. 257−267.
- Heyes D. M. Molecular dynamic simulations of liquid binary mixtures: Partial properties of mixing and transport coefficients // J. Chem. Phys. -1992. Vol. 96. — N. 3. — P. 2217−2227.
- Allen M. P., Tildesley D. J. Computer Simulation of Liquids. Clarendon Press. Oxford, 1987. 244 p.
- Krishtal S., Kiselev M., Puhovski P., Kerdcharoen Т., Hannongbua S., Heizinger K. Study of the hydrogen bond network in sub- and supercritical water by molecular dynamics simulations // Z. Naturforsch. 2001. — Vol. 56a. — P. 579 584.
- Groot S. R., Mazur P. Non-equilibrium thermodynamics. North-Holland Publishing. — Amsterdam, 1969. — 362 p.
- Simon J.-D., Dysthe D. K., Fuchs A. H., Rouseau B. Thermal diffusion in alkane binary mixtures. A molecular dynamics approach // Fluiq Phase Equil. 1998. -Vol. 150−151.-P. 151−159.
- Lishchuk S. V., Malomuzh N. P. Cluster approach to the problem of diffusion and viscosity in supercooled states of glycol-like liquids // Chem. Phys. Lett. 1999. — N. 3−4. — P. 307−313.
- Stilinger F. H. A topographic view of supercooled liquids and glass formation // Science. 1995. — Vol. 267. — P. 1935−1939.
- Vergeles M., Szamel G. A theory for self-diffusion in liqids // J. Chem. Phys. 1999. — Vol. 110. — N. 6. — P. 3009−3022.
- Evans D. J., Coen E. G. D., Morris G. P. Viscosity of a simple fluid from its maximal Lyapunov exponents // Phys. Rev. A. 1990. — Vol. 42. — N. 10. -P. 5990−5997.
- Narasimham A. V. Bulk viscosity coefficient of a liquid and its relation to absorption and dispersion of ultrasonic waves // Ind. J. Pure & Applied Physics. 1993. — Vol. 31. — P. 281 -291.
- Garland G. E., Dufty J. M. Bound state contribution to transport coefficients // J. Chem. Phys. 1991. — Vol. 95. — N. 4. — P. 2702−2716.
- Stassen H., Steele W. A. Simulation studies of shear viscosity time -correlation functions // J. Chem. Phys. — 1995. — Vol. 102. — N. 2. — P. 932−938.
- Tang S., Evans G. Т., Mason C. P., Allen M. P. Shear viscosity of hard ellipsoid: A kinetic theory and molecular dynamic study // J. Chem. Phys. -1995. Vol. 102. — N. 9. — P. 3794−3811.
- Hansen J. P., McDonald I. R. Theory of simple Liquids. 2nd ed. Academic, New York, 1986. — 431 p.
- Bereolos P., Talbot J., Allen M. P., Evans G. T. Transport properties hard ellipsoid fluid // J. Chem. Phys. 1993. — Vol. 99. — N. 8. — P. 6087−6097.
- Gravina D., Ciccotti G., Holian B. L. Linear and nonlinear viscous flow in two-dimensional fluids // Phys. Rev. E. 1995. — Vol. 52. — N. 6. — P. 61 236 128.
- Heyes D. M., Powles J. G., Montero J.C.G. Information theory applied to the transport coefficients of Lennard Jones fluids // Mol. Phys. — 1993. -Vol. 78.-N. l.-P. 229−234.
- Espanol P., Zumga I. Force autocorrelation functions of Brownian motion theory // J. Chem. Phys. 1993. — Vol. 98. — N. 1. — P. 574−580.
- Kirkwood J. The statistical mechanical theory of transport processes. I. General theory//J. Chem. Phys. 1946.-Vol. 14.-N. 3.-P. 180−201.
- Лагарьков A. H., Сергеев В. M. Вычисление коэффициентов переноса плотных газов и жидкостей методом молекулярной динамики // ТВТ. 1973.- Т.П.-№.6. — С. 1162−1168.
- Brey J. J, Ordonez J. G. Computer studies of brownian motion a Lennard — Jones fluid — the Stokes law // J. Chem. Phys. — 1982. — Vol. 76. — N. 6. -P. 3260−3263.
- Batchelor G. K. Brownian diffusion of particles with hydrodynamic interaction // J. Fluid. Mech. 1976. — Vol. 74. — N. 1. — P. 1−29.
- Felderhof B. U. Derivation of fluctuation-dissipation theorem. // J. Phys. A. 1978. — Vol. 11. — N. 5. — P. 921−927.
- Nebelenchuk V. F., Mazur V. A. Transport properties of dense fluids via spherical models of the interaction potential // Physica A. 1991. — Vol. 178. -N. l.-P. 123−148.
- Cichoski В., Felderhof B. U. Diffusion coefficients and effective viscosity of suspensions of sticky hard spheres with hydrodynamic interactions. // J. Chem. Phys. 1990. — Vol. 93. — N. 6 — P. 4427−4432.
- Tironi I. G., Brunne R. M., van Gunsteren W. F. On the relative merits of flexible versus rigid models for use in computer simulations of molecular liquids // Chem. Phys. Lett. 1996. — Vol. 250. — P .19−24.
- Yu Y.-X., Gao G.-H. Lennard Jones chain model for self-diffusion of n — alkanes // Int. J. Thermophys. — 2000. — Vol. 21. — N. 1. — P. 57−70.
- Wang D., Mauritz K.A. Molecular shape dependent of self-diffusion in, and the viscosity of large molecule liquid systems: viscosity, relationships for model liquid hydrocarbons // J. Am. Chem. Soc. 1992. — Vol. 114. — N. 17. — P. 6785−6790.
- Fuller N. G., Rowley R. L. The effect of model internal flexibility upon NEMD simulations of viscosity // Int. J. Thermophys. 2000. — Vol. 21. — N. 1. — P. 45−55.
- Borgelt P., Hoheisel C., Stell G. Exact molecular dynamic and kinetic theory results for thermal transport coefficients of the Lennard Jones argon fluid in a wide region of states // Phys. Rev A. — 1990. — Vol. 42. — P. 789−794.
- Jolly D. L., Bearman R. J. Molecular-dynamics simulation of the mutual and self-diffusion coefficients in Lennard-Jones Liquid mixtures // Mol. Phys. 1980.-Vol. 41.-N. l.-P. 137−147.
- Marcus Y. On the relationships between transport and thermodynamic properties of organic liquids at ambient properties // Fluid Phase Equil. 1999. -Vol. 154.-P. 311−321.
- Marcus Y. On transport properties of hot liquid and supercritical water and their relationship to the hydrogen bonding // Fluid Phas Equil. 1999. -Vol. 164. — P. 131−142.
- Marcus Y. The structuredness of water at elevated temperatures along the saturation line // J. Mol. Liq. 1999. — Vol. 79. — N. 2. — P. 151−165.
- Marcus Y. The structuredness of supercritical water up to 600 degrees С and 100 MPa as obtained from relative permittivity data // J. Mol. Liq. 1999. -Vol. 81. — N. 2. — P. 101−113.
- McGowan J. С. Estimates of properties of liquids // J. Appl. Chem. Biotechol. 1978. — Vol. 28. — N. 9. — P. 599−607.
- McGowan J. C. The stimation of solubility parameters and related properties of liquids // J. Chem. Technol. and Biotechol. 1984. — Vol. 34A. — P. 38−42.
- Abraham M. H. McGowan J. C. The use of characteristic volumes to measure cavity terms in reversed phase liquid // Chromotographia. 1987. — Vol. 23.-N. 4.-P. 243−246.
- Карцев В. H., Цепулин В. В., Штыкова JI. С. Экстраполяционные уравнения для расчета объемных свойств жидких н алканов и н — спиртов // ЖФХ. — 2000. — №. 12. — С. 2158−2161.
- Qunfang L., Yu-Chun Н. Correlation of binary liquid mixtures // Fluid Phase Equil. 1999. — Vol. 154. — P. 153−163.
- Lei Q., Hou Y. C., Lin R. Correlations of viscosities of pure liquids in a wide temperature range // Fluid Phase Equil. 1997. — Vol. 140. — P. 221−231.
- Liu H., Wang W., Chang С. H. Model with temperature-independent parameters for the viscosities of liquid-mixtures // Ind. Eng. Chem. Res. 1991. -Vol. 30.-N. 7.-P. 1617−1624.
- Pomes R., McCommon J. A. Mass and step length optimization for the calculation of equilibrium properties by molecular dynamics simulation // Chem. Phys. Lett. 1990. — Vol. 166. — N. 4. — P. 425−428.
- Economou I. G., Donohue M. D. Chemical, quasi-chemical and perturbation theories for associating fluids // AICHE Journal. 1991. — Vol. 37. -N. 12.-P. 1875−1894.
- Cao W., Fredenslund A., Rasmussen R. Statistical thermodynamic model for viscosity of pure liquids and liquid mixtures // Ind. Eng. Chem. Res. -1992. Vol. 31. -N. 11. — P. 2603−2619.
- Dufty J. W., Mo К. C., Gubbins К. E. Models for self-diffusion in the square well fluid // J. Chem. Phys. 1991. — Vol. 95, N. 4. — P. 3132−3140.
- Joslen С. G., Gray С. G., Michels J. P. J., Karkheck J. The bulk viscosity of a square well fluids // Mol. Phys. — 1990. — Vol. 69, N. 3. — P. 535−547.
- Davis H. Т., Rice S., Sengers J. V. On the kinetic theory of dense fluid//J. Chem. Phys. 1961. — Vol. 35, N. 6. — P. 2210−2233.
- Liu H., Silva С. M., Macedo E. A. New equations for tracer diffusion coefficients of solutes in supercritical and liquid solvents based on the Lennard-Jones fluid model // Ind. Eng. Chem. Res. 1997. — Vol. 36, N. 1. — P. 246−252.
- Silva С. M., Liu H., Macedo E. A. Models for self-diffusion coefficients of dense fluids, including hydrogen-bonding substances // Chem. Eng. Sci. 1998. — Vol. 53. — N. 13. — P. 2423−2429.
- Lee H., Thodos G. Self-diffusivity: a generalized correlation over the complete fluid region including the compressed liquid state // Ind. Eng. Chem. Res.- 1988. Vol. 27. — N. 6. — P. 992−997.
- Носков С. Ю. Влияние коллективных эффектов на процессы селективной сольватации в системах вода метанол — электролит. Компьютерное моделирование.: Дисс.. канд.хим.наук, Иваново. — 1999. -123 с.
- Наберухин Ю. И., Рогов В. А. // Успехи химии. 1971. — Т. 40. -N. 3.- С. 369.
- Shimizu S., Chan Н. S. Temperature dependence of hydrophobic interactions: A mean force perspective, effects of water density, and nonadditivity of thermodynamic signatures // J. Chem. Phys. 2000. — Vol. 113. — N. 11. — P. 4683−4700.
- Белоусов В. П., Морачевский А. Г. Теплоты смещения жидкостей. Справочник. Л.: Химия. — 1970. — С. 256 с.
- Pangali С., Rao М., Berne В. J. // J. Phys. Chem. 1979. — Vol. 71. -N. 7. — P. 2982.
- Franks F., Ives D. J. G. // Quart Rev. 1966. -Vol. 20. -N. 1. — P. I
- Naberukhin Y. I., Voloshin V. P., Medvedev N. N. // Mol. Phys. -1991,-Vol. 73.-P. 917
- Клопов В. И., Колкер А. М., Крестов Г. А. Теплоемкостные характеристики сольватации (К+, Вг") в смесях воды с изопропиловым спиртом и их составляющие при 25 °C // ЖФХ. 1975. — Т. 49, № 5. — С. 12 061 209.
- Chandrasekhar J., Jorgensen W. L. The nature of dilute solutions of sodium ion in water, methanol, and tetrahydrofuran // J. Chem. Phys. -1982. Vol. 77.-N. 10.-P. 5080−5089.
- Covington A. K., Dunn M. // J. Chem. Soc. Faraday Trans. 1989. -Vol. 85. — P. 2827
- Бондарев H. В., Керн А. П., Цурко E. H. // Укр. Хим. Журн. -1996.-В.63. -№ 2.-С. 13
- Marcus Y. Preferential solvation in mixed solvents. Part 5. Binary mixtures of water and organic solvent // J. Chem. Soc., Faraday Trans. 1990. -Vol. 86, N. 12. — P. 2215−2224
- Raghunath B. On the calculation of thermodynamic properties of electrolyte solutions from Kirkwood-Buff theory // J. Chem. Phys. 1998. -Vol. 108.-N. 8. — P. 3373−3374.
- Marcus Y. Preferential solvation in mixed solvents Part 8. Aqueous methanol from sub-ambient to elevated temperatures // Phys. Chem. Chem. Phys. -1999. Vol. 1. -N. 12. — P. 2975−2985.
- Hawlicka E., Swiatla-Wojcik D. // J. Chem. Phys. -1995. Vol. 195. -P. 221.
- Hawlicka E., Swiatla-Wojcik D. MD Simulation of a NaCl solution in equimolar methanol-water mixture // Computers & chemistry. -1998. Vol. 22. -P. 43−47.
- Puhovski Y. P., Rode В. M. Solvated ion dynamics in the water-formamide mixtures using molecular dynamics simulations // J. Chem. Phys. -1997.-Vol. 107.-N. 17.-P. 6908−6916.
- Palinkas G., Hawlicka E., Heinzinger K. // J. Chem. Phys. -1991. -Vol. 158. N.I. — P. 65
- SoperA. K., Neilson G. W. et al. // J. Phys. Chem. 1977. — Vol. 10. -P. 1793
- Neilson G. W. // Pure & Appl. Chem. 1993. — Vol. 64. — P. 2583
- Covington A. K., Newman К. E., Lilley Т. H. // J. Chem. Soc. Faraday Trans. 1973. -Vol. 69. — P. 973
- Covington A. K., Newman К. E. // Adv. Chem. Ser. 1976. — Vol. 155. -P. 153
- Krestov G. A., Kolker A. M., Korolev V. P. Peculiar properties of sodium iodides in alcohols, acetone and alcohol water mixtures at lower temperatures // J. Solut. Chem. — 1982. — Vol. 11. -N. 9. — P. 593.
- Ansari M. S., Ludwig R., Zeidler M. D., Poschl M., Hertz G. H. Nuclear Magnetic Relaxation Study of the System Methanol/Water/Lithium Chloride //Z. Phys. Chem. 1997. — Vol. 199. — P. 99−121.
- Liu R., Li Z. Partial molal volume of acetonitrile in mixtures of water and f-butyl alcohol at 278.15, 288.15 and 298.15 К// Thermochimica Acta. 1990. -Vol. 169. — P. 185−191.
- Wasse J. C., Hayama S., Skipper N. Т., Fischer H. E. Structure of a metallic solution of lithium in ammonia // Phys. Rev. 2000. — Vol. В 61. — N 18. -P. 11 993−11 997.
- Hayama S., Skipper N. Т., Wasse J. C., Thompson H. X-ray diffraction studies of solutions of lithium in ammonia: The structure of the metal-nonmetal transition // J. Chem. Phys. 2002. — Vol. 116. — N 7. — P. 2991−2996.
- Thompson H., Wasse J. C., Skipper N. Т., Hayama S., Bowron D. Т., Soper A. K. Structural Studies of Ammonia and Metallic Lithium-Ammonia Solutions//J. Am. Chem. Soc. 2003. — Vol. 125. — N9.-P. 2572−2581.
- Gurskii Z., Hannongbua S. and Heinzinger K. // Mol. Phys. 1993. -Vol. 78.-P. 461-.
- Benedict W. S. and Plyler E. K. // Canad. J. Phys. 1985. — Vol. 35. -P. 890-.
- StillingerF.H.//Israel J. Chem.-1975.-Vol. 14.-P. 130-.
- Hannongbua S. The best structural data of liquid ammonia based on the pair approximation: First-principles Monte Carlo simulation // J. Chem. Phys. -2000.-Vol. 113. -N 11. P. 4707−4712.
- Probst M. M., Spohr E., Heinzinger K. On the hydration of the beryllium ion // Chem. Phys. Letters. 1989. — Vol. 161. — N 4−5. — P. 405−408.
- Marx D., Sprik M., Parrinello M. Ab initio molecular dynamics of iona Isolvation. The case of Be in water // Chem. Phys. Letters. 1997. — Vol. 273. -N5−6.-P. 360−366.
- Suresh S. J., Nik V. M. Hydrogen bond thermodynamic properties of water from dielectric constant data // J. Chem. Phys. 2000. — Vol. 113. — P. 97 279 732.
- Skaf M. S, Laria D. Dielectric relaxation of supercritical water: Computer simulations // J. Chem. Phys. 2000. — Vol. 113. — P. 3499−3502.
- Rice S. F., Wickham J. J. Hydrogen Raman linewidths in supercritical water and carbon dioxide // J. Raman Spect. 2000. Vol. 31. P. 619−624.
- Marti J. Dynamic properties of hydrogen-bonded networks in supercritical water // Phys. Rev. 2000. — Vol. 61. — P. 449−467.
- Seewald J. S. Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions // Nature. 1994. — Vol. 370. P. -285−291.
- Nakahara M., Yamaguchi Т., Ohtaki H. The structure of water and aqueous electrolyte solutions under extreme conditions // Recent. Res. Dev. Phys. Chem. 1997.-Vol. l.-P. 17−49.
- Bursulaya B. D., Kim H. J. Molecular dynamics simulation study of water near critical conditions. II. Dynamics and spectroscopy // J. Chem. Phys. -1999. Vol. 110. — P. 9656−9665.
- Supercritical Fluid Engineering Science: Fundamentals and Applications / Ed. by E. Kiran and J. F. Brennecke. New York: Amer. Chem. Soc. 1993. -358 p.
- Matubayasi N., Wakai C., Nakahara M. Structural study of supercritical water. II. Computer simulations // J. Chem. Phys. 1999. — Vol. 110.-P. 8000−8011.
- Marti J. Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations // J. Chem. Phys. -1999. Vol. 110. — P. 6876−6886.
- Postorino P., Tromp R. H., Ricci M. A., Soper A. K., Neilson G. W. The interatomic structure of water at supercritical temperatures // Nature. 1993. -Vol. 366. — P. 668−672.
- Tromp R. H., Postorino P., Neilson G. W., Ricci M. A., Soper A. K. Neutron diffraction studies of H2O/D2O at supercritical temperatures. A direct determination of £НнО)> ЯонО), and gooO) // J. Chem. Phys. 1994. — Vol. 101. — P. 6210−6215.
- Gorbaty Y. E., Kalinichev A. G. Hydrogen bonding in supercritical water. 1. Experimental results // J. Phys. Chem. 1995. — Vol. 99. — P. 5336−5340.
- Bennet G. E., Johnston K. P. UV-visible absorbance spectroscopy of organic probes in supercritical water // J. Phys. Chem. 1994. — Vol. 98. — P. 441 447.
- Yoshii N., Miura S., Okazaki S. Density fluctuation and hydrogen-bonded clusters in supercritical water. A molecular dynamics analysis using a polarizable potential model // Bull. Chem. Soc. Japan. 1999. — Vol. 72. — P. 151 162.
- Soper A. K. Orientational correlation function for molecular liquids: The case of liquid water// J. Chem. Phys. 1994. — Vol. 101. — P. 6888−6901.
- Soper A. K. Bridge over troubled water: the apparent discrepancy between simulated and experimental non-ambient water structure // J. Phys.: Condens. Matter. 1996. — Vol. 8. P. 9263−9267.
- Soper A. K., Bruni F., Ricci M. A. Site-site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data // J. Chem. Phys. 1997. — Vol. 106. — P. 247−254.
- Botti A., Bruni F., Ricci M. A., Soper A. K. Neutron diffraction study of high density supercritical water // J. Chem. Phys. 1998. — Vol. 109. — P. 31 803 184.
- Hoffmann M. M., Conradi M. S. Are there hydrogen bonds in supercritical water? // J. Am. Chem. Soc. 1997. Vol. 119.-N16. P. 3811−3817.
- Lamb W. J., Hoffman G.A., Jonas J. Self-diffusion in compressed supercritical water // J. Chem. Phys. 1981. — Vol. 74. — P. 6875−6880.
- Cummings P. Т., Chialvo A. A. Molecular simulation of supercritical water and aqueous solutions // J. Phys.: Condens. Matter. 1996. — Vol. 8. — P. 9281−9287.
- Chialvo A. A., Cummings P. Т., Simonson J. M., Mesmer R. E. Molecular simulation study of speciation in supercritical aqueous NaCl solutions // J. Molec. Liquids. 1997. — Vol. 73. — P. 361−372.
- De Pablo J. J., Prausnitz J. M., Strauch H. J., Cummings P. T. Molecular simulation of water along the liquid-vapor coexistence curve from 25 °C to the critical point // J. Chem Phys. 1990. — Vol. 93. — P. 7355−7359.
- Yao M., Okada K. Dynamics in supercritical fluid water // J. Phys.: > Condens. Matter. 1998. — Vol. 10. — P. 11 459−11 568.
- Chialvo A. A., Cummings P. T. Hydrogen bonding in supercritical water//J. Chem. Phys. 1994. — Vol. 101. — P. 4466−4469.
- Matubayasi N., Nakahara M. Super- and subcritical hydration of nonpolar solutes. I. Thermodynamics of hydration // J. Chem. Phys. 2000. — Vol. 112. — P. 8089−8109.
- Kalinichev A. G., Bass J. D. Hydrogen bonding in supercritical water. 2. Computer simulations // J. Phys. Chem. 1997. — Vol. 101. — N 50. — P. 97 209 727.
- Kalinichev A. G. Monte Carlo simulation of water under supercritical ^ condition. I. Thermodynamic and structural properties // Z. Naturforsch. 1991.1. Vol. 46a. P. 433−444.
- Yoshii N., Yoshie H., Miura S., Okazaki S. A molecular dynamics study of sub- and supercritical water using a polarizable potential model // J. Chem. Phys. 1998. — Vol. 109. — P. 4873−4884.
- Heinzinger K. // Frontiers of electrochemistry / Ed. by J. Lipkowski and P. P.N. Ross, New York: VCH Publishers 1993. — Vol. II. — P. 239 -275.
- Yeh I.-C., Berkowitz M. L. Dielectric constant of water at high electric fields: Molecular dynamics study // J. Chem. Phys. 1999. — Vol. 110. — P.7935−7942.
- Vegiri A., Schevkunov S.V. A molecular dynamics study of structural transitions in small water clusters in the presence of an external electric field // J. Chem. Phys. 2001. — Vol. 115. — P. 4175−4185.
- Svishchev I. M., Kusalik P.G. Crystallization of liquid water in a molecular dynamics simulation // Phys. Rev. Lett. 1994. — Vol. 73. — P. 975−988.
- Zhu S.-B., Zhu J.-B., Robinson G. W. Molecular-dynamics study of liquid water in strong laser fields // Phys. Rev. 1991. — Vol. A44. — P. 2602−2616.
- Zhu S.-B., Singh S., Robinson G. W. Field-perturbed water // Adv. w
- Chem. Phys. 1993. — Vol. 85. — N 3. — P. 627−635.
- Hausser R., Maier G., Noack F. // Z. Naturforsch. 1966. — Vol. 21a. -P. 1410−1415.
- Lamanna R., Delmelle M., Cannistraro S. Role of hydrogen-bond cooperativity and free-volume fluctuations in the non-Arrhenius behavior of water self-diffusion: A continuity-of-states model // Phys. Rev. 1994. — Vol. E49. — P. 2841−2849.
- Hoffmann M. M., Conradi M. S. Are there hydrogen bonds in supercritical methanol and ethanol? // J. Phys. Chem. B. 1998. — V. 102. — N1. -P. 263−271.
- Yamaguchi Т., Benmore C. J., Soper A. K. The structure of subcritical and supercritical methanol by neutron diffraction, empirical potential structure refinement, and spherical harmonic analysis // J. Chem. Phys. 2000. — V. 112. — P. 8976−8987.
- Barlow S. J., Bondarenko G. V., Gorbaty Y. E., Poliakoff M. 4th International Symposium on High Pressure Process Technology and Chemical Engineering. Venice, Italy. 2002.
- Kiselev M., Noskov S., Puhovski Y., Kerdcharoen Т., Hannongbua S. ^ The study of hydrophobic hydration insupercritical water-methanol mixtures // J.
- Mol. Graph. And Modell. 2001. — Vol. 19, N. 3 — P. 412−416.
- Bulgarevich D. S., Otake K., Sako Т., Sugeta Т., Takebayashi Y., Kamizawa C., Shintani D., Tsturumi C. Hydrogen bonding in supercritical methanol studied by infrared spectroscopy// J. Chem. Phys. 2002. — Vol. 116. — P. 1995.
- Narten H. Liquid ammonia: Molecular correlation functions from x-ray diffraction // J. Chem. Phys. 1977. — Vol. 66. — P. 3117−3120.
- McDonald I. R., Klein M. L. Simulation of liquid ammonia // J. Chem. Phys. 1976. — Vol. 64. — P. 4790−4791.
- Klein M. L., McDonald I. R., Righini R. Structure and dynamics of associated molecular systems. II. Atom-atom potentials and the properties of ammonia // J. Chem. Phys. 1979. — Vol. 71. — P. 3673−3682.
- Jorgensen W. L., Ibrahim M. Structure and properties of liquid ammonia//J. Am. Chem. Soc. 1980. — Vol. 102.-P. 3309−3315.
- Klein M. L., McDonald I. R. Comment on the structure of liquid ammonia // J. Chem. Phys. -1981.- Vol. 74. P. 4214−4215.
- Hinchliffe A., Bounds D. G., Klein M. L., McDonald I. R., Righini R. Intermolecular potentials for ammonia based on SCF-MO calculations // J. Chem. Phys. 1981. — Vol. 74. -P. 1211−1216.
- Impey R. W., Klein M. L. A simple intermolecular potential for liquid ammonia // Chem. Phys. Lett. 1984. — Vol. 104. — P. 579−582.
- Sagarik P., Ahlrich P., Brode S. Intermolecular potentials for ammonia based on the test-particle model and coupled pair functional methods // Mol. Phys. 1986.-Vol. 57.-P. 1247.
- Caillol M., Levesque D., Weiss J. J., Perkyns J. S., Patey G. N. // Mol. Phys. 1987. — Vol. 62. — P. 1225.
- Sarkar S., Karmakar A. K., Joarder R. N. Molecular clusters and correlations in liquid ammonia // J. Phys. Chem. A. 1997. — Vol. 101. — N 20. -P. 3702−3706.
- Diraison M., Martyna G. J., Tuckerman M. E. Simulation studies of liquid ammonia by classical ab initio, classical and path integral molecular dynamics // J. Chem. Phys. 1999. — Vol. 111. — P. 1096.
- Львов Ю. M., Ерохин В. В., Зайцев С. Ю. Белковые пленки Ленгмюра-Блоджетт // Биологии, мембраны. 1990. — Т. 7. — N. 9. — С. 917−937.
- Lecomte С., Baudin С., Berleur F., Ruaudel-Teixier A., Barraud А., Momenteau М. An example of molecular building: Alternate Langmuir-Blodgett films of cobalto-zw^yo-porphyrins designed to bind dioxygen // Thin Solid Films. -1985.-Vol. 133.-P. 103.
- Baker S., Petty M. C., Roberts G. G., Twigg M. V. The preparation and properties of stable metal-free phthalocyanine Langmuir-Blodgett films // Thin Solid Films. 1983. — Vol. 99. — P. 53−59.
- Valkova L., Borovkov N., Pisani M., Rustichelli F. Three-dimensional structure of the copper porphyrazine layers at the air-water interface // Thin Solid Films. 2001. — Vol. 401. — P. 267−272.
- Karaborni S., Toxvaerd S., Olsen O.H. Phase transitions in Langmuir monolayers: a molecular dynamics study // J. Phys. Chem. 1992. — Vol. 96. — P. 4965−4973.
- Haas F. M., Hilfer R., Binder K. Phase Transitions in Dense Lipid Monolayers Grafted to a Surface: Monte Carlo Investigation of a Coarse-Grained Off-Lattice Model // J. Phys. Chem. 1996. — Vol. 100. — P. 15 290−15 300.
- Moller M. A., Tildesley D. J., Kim K. S., Quirke N. Molecular dynamics simulation of a Langmuir-Blodgett film // J. Chem. Phys. 1991. — Vol. 94.-N 12.-P. 8390−8401.
- Becke A. D. Density-functional thermochemistry. III. The role of exact exchange I I J. Chem. Phys. 1993. — Vol. 98. — P. 5648−5652.
- Ghosh A. First-principles quantum chemical studies of porphyrins // Acc. Chem. Res. 1998. — Vol. 31.-P. 189−198.
- Dauter Z., Lamzin V. S., Wilson K. S. The benefits of atomic resolution // Curr. Opin. Struct. Biol. 1997. — Vol. 7, N. 5. — P. 681−688.
- Jhoti H. High-throughput structural proteomics using x-rays // Trends Biotechnol. -2001. Vol. 19 (10 Suppl). — P. 67−71.
- Lamzin V. S, Perrakis A. Current state of automated crystallographic data analysis // Nat. Struct. Biol. 2000. — 7 Suppl. — P. 978−981.
- Lacy D. В., Stevens R. C. Unraveling the structures and modes of action of bacterial toxins // Curr. Opin. Struct. Biol. 1998. — Vol. 8, N. 6. — P. 778−784.
- Saier M. H. J. Families of proteins forming transmembrane channels // J. Membr. Biol. 2000. — Vol. 175, N. 3.-P. 165−180.
- Delcour A. H. Structure and function of pore-forming beta-barrels from bacteria // J. Mol. Microbiol. Biotechnol. 2002. — Vol. 4, N. 1. — P. 1 -10.
- Grochulski P., Masson L., Borisova S., Pusztai-Carey M., Schwartz J. L., Brousseau R., Cygler M. Bacillus thuringiensis CrylA (a) insecticidal toxin: crystal structure and channel formation // J. Mol. Biol. 1995. — Vol. 254, N. 3. -P. 447−464.
- Li J. D., Carroll J., Ellar D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution // Nature. 1991. — Vol. 353.-P. 815−821.
- Chungjatupornchai W., Hofte H., Seurinck J., Angsuthanasombat C., Vaeck M. Common features of Bacillus thuringiensis toxins specific for Diptera and Lepidoptera//Eur. J. Biochem. 1988. — Vol. 173, N. 1,-P. 9−16.
- Morse R.J., Yamamoto Т., Stroud R. M. Structure of Cry2Aa suggests ^ an unexpected receptor binding epitope // Structure (Camb). 2001. — Vol. 9, N.5.-P. 409−417.
- Galitsky N., Cody V., Wojtczak A., Ghosh D., Luft J. R., Pangborn W., English L. Structure of the insecticidal bacterial delta-endotoxin Cry3Bbl of Bacillus thuringiensis II Acta Crystallogr. D Biol. Crystallogr. 2001. — Vol. 57. -P. 1101−1109.
- Hodgman Т. C., Ellar D. J. Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis // DNA Seq. 1990. — Vol. 1, N. 2. — P. 97−106.
- Tigue N. J., Jacoby J., Ellar D. J. The alpha-helix 4 residue, Asnl35, a is involved in the oligomerization of Cry 1 Ac 1 and CrylAb5 Bacillus thuringiensistoxins // Appl. Environ Microbiol. 2001. — Vol. 67, N. 12. — P. 5715−5720.