Помощь в написании студенческих работ
Антистрессовый сервис

Разработка новых методов синтеза, изучение строения и свойств гетерометаллических кластеров на основе [Fe2S2 (CO) 6]

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В свете последних тенденций поиска альтернативных источников энергии взамен углеводородов химики всего мира проявляют интерес к различным системам генерации диводорода. Применение водородных топливных элементов, основанных на Pt-катализаторах, в промышленных масштабах остается под сомнением из-за его достаточно высокой стоимости. Поэтому, создание железосульфидных абиологических моделей… Читать ещё >

Разработка новых методов синтеза, изучение строения и свойств гетерометаллических кластеров на основе [Fe2S2 (CO) 6] (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • СПИСОК ПОЛУЧЕННЫХ СОЕДИНЕНИЙ
  • 1. ВВЕДЕНИ Е
  • 2. ОБЗОР ЛИТЕРАТУРЫ Химия сульфидного кластера железа [Ее2(СО)6(1л-82)] и его производных
    • 2. 1. Введение
    • 2. 2. Методы синтеза кластеров с остовом {Ре2 $ 2}
      • 2. 2. 1. Реакции присоединения по связи 51−5 фрагментов, содержащих переходные металлы
      • 2. 2. 2. Реакции присоединения фрагментов, содержащих элементы 13-й, 14-й, 15-й, 16-й групп, по связи Б-Б
      • 2. 2. 3. Другие методы синтеза карбонильных кластеров с остовом {Ее2 $ 2}
    • 2. 3. Реакции с функционализированными кластерами

Химия кластерных комплексов привлекает все большее и большее внимание исследователей в последние десятилетия. Подтверждением этому являются возрастающее количество обзоров, появление разнообразных монографий и сборников трудов по отдельным ее разделам, появление новых специализированных журналов. Это связано с многообразием данной области химии, то есть с возможностью получения соединений, содержащих атомы в самых различных соотношениях, комбинациях и окружениях. Такие ее особенности позволяют разрабатывать материалы, обладающие самыми различными свойствами. Среди возможных применений кластеров и кластерных материалов называют, например, катализ (высокодисперсные катализаторы для различных промышленных процессов, исследование каталитических процессов на примере кластеров, моделирование ферментативных процессов [1−3]), материаловедение (получение материалов, содержащих как кластерные группировки, так и продукты их разложения, и, как следствие, применение в производстве покрытий, красок, материалов с заданным составом, строением, различными физико-химическими свойствами [1, 4−7]). Многочисленность и, часто, «необычность» кластерных соединений интересны также и для теоретической химии, так как дают почву для разработки и проверки новых теорий, объясняющих такие явления, как химическая связь, стабильность, реакционная способность и играют важную роль в развитии таких молодых областей современной науки, как нанотехнологии и супрамолекулярной химии.

В частности, более интенсивному в последние годы исследованию сульфидных кластерных соединений железа способствовало установление строения активных центров различных ферментов, например, таких как [FeFe]-и [NiFeJ-гидрогеназы. Оказалось, что их строение подобно строению FeS-кластеров, известных к этому времени (рис. 1). В 1998 году двумя независимыми группами было определено, что в различных микроорганизмах {Desulfa Vibrio desulfuricans (DdH) и Clostridium pasteurianum (Cpl)), ферменты которых участвуют в различных реакциях (для DdH поглощение Н2, и для Cpl выделение Н2), активный центр [FeFeJ-гидрогеназ имеет одинаковое строение и представляет собой комбинацию двух кластерных фрагментов {Ре484} кубанового ядра и связанного сним через мостиковый атом серы цистеинового остатка {Ре282} ядра (рис. 1.1.а) [8]. И установлено, что процессы окисления водорода и восстановления протонов происходят на атоме Бе {Ре282} ядра активного центра [ТеРе]-гидрогеназы. а) б).

Рис. /. Строение активных центров а) [FeFeJ-гидрогеназы, б) [NiFeJ-гидрогеназы.

В свете последних тенденций поиска альтернативных источников энергии взамен углеводородов химики всего мира проявляют интерес к различным системам генерации диводорода. Применение водородных топливных элементов, основанных на Pt-катализаторах, в промышленных масштабах остается под сомнением из-за его достаточно высокой стоимости. Поэтому, создание железосульфидных абиологических моделей гидрогеназ и каталитических систем, основанных на химии ферментативных систем, является перспективной задачей, как для фундаментальной науки, так и для практического применения, в том числе для решения задач водородной энергетики.

Актуальность темы

Созданию абиологических моделей [NiFe]- и [FeFe]-гидрогеназ и изучению их свойств за последние 15 лет с каждым годом уделяется всё больше и больше внимания. Если в 1997 году в этой области было опубликовано около 20 работ, то уже в 2011 году вышло более 160 публикаций.* На сегодняшний день известно множество кластеров, являющихся аналогами АЦ [FeFe]- и [NiFeJ-гидрогеназ. Такие соединения интересны не только как модели, позволяющие понять механизмы действия биологических объектов, но и тем, что сами проявляют каталитическую активность в реакциях восстано! ления протонов до диводорода. Перспективными с этой точки зрения считаются два’типа объектов: По данным сайта Web of Knowledge при запросе «NiFe hydrogenase or FeFe hydrogenase».

1) супрамолекулярные комплексы, в которых присутствуют кластеры с остовом {Ре282} и фотоактивный фрагмент — донор электронов, например, порфириновые или дииминовые комплексы Zn, Яи или 1 г [9, 11]- 2) системы, в которых {Ре282}-кластеры закреплены на фотоактивном источнике электронов — наночастицах полупроводника, например, 1пР [10], СсГГе [12] или ZnS [13, 14]. Основными проблемами, не решенными на данный момент, являются сложность и многостадийность синтеза прекурсоров эффективных каталитических систем, а также их многокомпонентность.

Таким образом, актуальной является задача поиска и разработки простых методов синтеза новых систем, в которых сочетаются фрагмент {Ре282} и фотоактивный источник электронов. Одним из вариантов решения этой задачи является создание гетерометаллических кластеров с остовом {Ре2(ц, 3−8)2М}, в которых к металлу М координирован редокс-активный лиганд. На сегодняшний день известно довольно много кластеров с остовом {Ре2(цз-8)2М}, однако синтез таких соединений с редокс-активными лигандами не осуществлялся, а список металлов М до начала данной работы не включал и /элементы, которые в комбинации с редокс-активными лигандами могут придать кластеру интересные свойства. Кроме того, до начала данного исследования не было известно кластеров с металлами 12 и 13 группы, моделирующими системы с фрагментами {Ре282}, закрепленными на полупроводниковых наночастицах. Данная работа посвящена разработке новых методов синтеза гетерометаллических сульфидных карбонильных кластеров на основе биядерного комплекса [Ре2(СО)6(ц-82)], содержащих металлы различной природы (5-, р-, с1- и /-элементы) и редокс-активные дииминовые лиганды.

Цель работы состояла в разработке новых методов направленного синтеза карбонильных гетерометаллических кластеров на основе фрагмента {Ре282}, содержащих металлы разной природы: 5-, р-, с1- и /-элементы, в рамках трех подходов: 1) нуклеофильное замещение галогенидных лигандов на [Ре2(СО)6(ц-8)2]2~, 2) переметаллирование [Ре2(СО)6(ц3−8)2ЕК2] (Е = 81, 8п) и 3) восстановительное внедрение металлов по связи 8−8 в [Ре2(СО)б (ц.-82)].

Для достижения этой цели были поставлены следующие задачи:

1) изучение реакций анионных и нейтральных кластеров железа [Ре2(СО)б (ц-8)2]2~, [Ре2(СО)6(ц-82)] и [Те2(СС))б (|1з-8)2Е112] (ЕЯ2 = 81Ме2, 81Е12, 8пЕ12) с комплексами.

Са, Ва), р- (81, 8п, Оа), й- (Юг, 1 г, Мп, Аи, N1, Ъп) и/элементов (Оу, УЬ);

2) характеризация полученных в данной работе новых соединений различными современными методами (РСА, ЭА, ИК-спектроскопия, ЯМР, ЭПР, масс-спектрометрия, ЭСП, ЦВА).

Научная новизна работы. Разработаны оригинальные методы синтеза карбонильных сульфидных гетерометаллических кластеров на основе фрагмента {Ре282}, установлено их строение и изучен ряд свойств, что является существенным вкладом в фундаментальное знание координационной химии.

Разработаны методики синтеза карбонильных сульфидных гомо-и гетерометаллических кластеров р-, йи /элементов на основе |Те2(СС))6(ц-82)]. Получено 11 новых гетерометаллических кластеров, содержащих Са, Ва, ва, Мп, N1, Zn, Юг, 1 г, Аи, УЬ, строение которых установлено с помощью методов РСА, ЭА, МС, ЯМР-, ЭПРи ИК-спектроскопии.

Впервые показана возможность использования кластеров [Ре2(СО)6(цз-8)2Е112] (ЕЯ2 = 81Ме2, 81Е1:2, 8пЕ12) в качестве исходных реагентов для синтеза гетерометаллических производных на основе фрагмента {Ре282}.

Для 3-х известных ранее соединений |Те2(СО)6(цз-8)2ЕК2] (ЕЯ2 = 81Ме2, 81Е12, 8пЕ1:2) впервые установлено строение в кристаллической фазе, для ранее описанного кластера [Ре2(СО)6(|х3−8)2№(с1рре)] получена и охарактеризована новая кристаллическая фаза [Ре2(СО)6(|!з-8)2№(с1рре)]-(), 5С7Н8.

Разработаны методики синтеза кластеров [Ре3(СО)7(цз-С))2Ь] ((} = 8, ТеЬ = ёаЬ-шез, <1рр-В1АЫ) и установлено их строение методом РСА.

Изучены окислительно-восстановительные свойства впервые полученного кластера [Те2(СО)б (цз-$)2М (с1аЬ-те8)] методом ЦВА.

Практическая значимость. Данные о строении кристаллических фаз полученных соединений депонированы в Кембриджский банк структурных данных и доступны для научной общественности.

Информация о методах синтеза, строении и свойствах полученных кластеров важна для создания и понимания действия катализаторов восстановления протонов.

12 до водорода. Потенциальная возможность образования наноразмерных частиц сульфидов при разложении полученных гетерометаллических кластеров представляет практический интерес. Например, парамагнитные кластеры, содержащие фрагмент {Yb (dpp-BIAN)} и {Ga (dpp-BIAN)} могут служить прекурсорами магнитных материаловкластеры, содержащие родий, иридий, никель, золото могут служить прекурсорами гетерогенных и гомогенных катализаторов.

На защиту выносятся:

1. Результаты изучения реакций, установление состава продуктов и их строения:

— солей [Fe2(CO)6((i-S)2] с циклопентадиенильными комплексами [Cp" RhCl2]2, [Cp*Ir (CH3CN)3](CF3S03)2 и дииминовыми комплексами [(dab-mes)ZnCl2], [(dpp-BIAN)DyI2(dme)];

— [Fe2(CO)6(n3-S)2ER2] (ER2 = SiMe2, SiEt2, SnEt2) с комплексами [Cp" RhCl2]2, [(dppe)NiCl2], [(dab-mes)NiCl2], [Mn (CO)5Cl], [(PPh3)AuCl];

— [Fe2(CO)6(fi-S2)] с комплексами s-, p-, d-,элементов в низкой степени окисления [(dpp-BIAN)Ca (thf)3]-thf, [(dpp-BIAN)Ba (thf)3]-thf, [GaCp*], [Ga2(dpp-BIAN)2], [Zn2(dpp-BIAN)2], [(dpp-BIAN)Yb (dme)2].

2. Данные об исследовании строения и свойств полученных кластерных комплексов методами РСА, ЯМР (*Н, 13С, 31Р), ЭПР, ИК-спектроскопии, ЭСП, масс-спектрометрии, элементного анализа и ЦВА.

Личный вклад автора. Анализ литературных данных и вся экспериментальная часть работы выполнены лично автором. Постановка задач, характеризация комплексов, обсуждение результатов и подготовка публикаций проводились совместно с научным руководителем и соавторами работ.

Апробация работы. Результаты работы докладывались на российских и международных конференциях: Международных научных студенческих конференциях «Студент и научно-технический прогресс»: Химия (Новосибирск,.

2008 и 2009), International Conference on Organometallic and Coordination Chemistry.

N. Novgorod, 2008), XVII Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2010), Школе-конференции молодых ученых «Неорганические соединения и функциональные материалы».

Новосибирск, 2010), International conference «Topical Problems of Organometallic and Coordination Chemistry» (N. Novgorod, 2010), Конкурсе-конференции молодых ученых, посвященной 90-летию со дня рождения И. Г. Юделевича (Новосибирск, 2010), XVII Конкурсе-конференции имени А. В. Николаева (Новосибирск, 2011), V Всероссийской конференции студентов и аспирантов «Химия в современном мире», посвященной 300-летию со дня рождения М. В. Ломоносова (Санкт-Петербург, 2011), XXV Международной Чугаевской конференции по координационной химии (Суздаль, 2011), Молодёжной школе-конференции «Неорганическая химия современных материалов, катализаторов и наносистем» (Новосибирск, 2011), VI Всероссийской конференции молодых учёных, аспирантов и студентов с международным участием «Менделеев — 2012». Неорганическая химия (Санкт-Петербург, 2012), VII Всероссийской конференции по химии полиядерных соединений и кластеров «Кластер-2012» (Новосибирск, 2012), III International Workshop on Transition Metal Clusters (Benicassim, Spain, 2012).

Публикации. По теме диссертации опубликовано 3 статьи в рецензируемых журналах и тезисы 14-ти докладов на российских и международных конференциях.

Объем и структура работы. Диссертационная работа изложена на 123 страницах, содержит 36 рисунков и 2 таблицы. Работа состоит из введения, обзора литературы, экспериментальной части, обсуждения экспериментальных результатов, выводов и списка цитируемой литературы (212 наименований).

5. ВЫВОДЫ.

1. Разработаны новые методики получения K2[Fe2(CO)6(|i-S)2] в растворе, заключающиеся в восстановлении [Fe2(CO)6(M—S2)] сплавом K/Na или нафталидом калия. Установлено, что преимущество нафталида калия заключается в возможности проводить реакцию в гомогенном варианте даже при -80 °С, тогда как использование сплава K/Na целесообразно только в жидком состоянии при температуре не ниже 0 °C.

2. Показано, что взаимодействие K2[Fe2(CO)6(|i-S)2] с электрофильными металлоорганическими соединениями родия, иридия и олова является удобным методом синтеза кластеров типа [Fe2(CO)6(|i3-S)2MLn], однако для кремнийсодержащих кластеров следует использовать Li2[Fe2(CO)6(|J.-S)2].

3: Установлено, что продуктами реакций K2[Fe2(CO)6(p,-S)2] с дииминовыми галогенидными комплексами Zn и Dy являются не гетерометаллические, а гомометаллические кластеры [Fe3(CO)7(|i3-S)2L] (L = dab-mes, dpp-BIAN). Эти же соединения получены замещением СО в [Fe3(CO)9(fj, 3-S)2] на дииминовый лиганд.

4. Разработан новый подход к гетерометаллическим кластерам на основе фрагмента {Fe2S2}, заключающийся во взаимодействии кластеров [Fe2(CO)6(^i3-S)2ER2] (Е = Si, Sn) с хлоридными комплексами металлов [LnMCl] и [ЬПМХ2]. Реакции протекают по типу переметаллирования, либо, в случае олова, присоединения [LmMCl] по связи S-Sn.

5. Изучены реакции [Fe2(CO)6(|i-S2)] с дииминовыми комплексами M (II) (М = Ca, Ва, Ga, Yb) и Zn (I), а также с [GaCp*]. Установлено, что во всех реакциях происходит восстановление [Fe2(CO)6(|^-S2)] с разрывом связи S-S и образованием кластеров типа [Fe2(CO)6(|x3-S)2MLn]. Источниками электронов при этом выступают металл М и/или редокс-активный лиганд.

6. На основании геометрических параметров, полученных методом РСА и спектров ЭПР, сделан вывод о том, что в соединениях [Ре2(СО)6(ц3−8)2Оа (с1рр-В1АК)] и [Ре2(СО)6(ц3−8)2УЬ (с1рр-В1АК)(с!те)] дииминовый лиганд находится в анион-радикальном состоянии.

7. Методом ЦВА изучены окислительно-восстановительные свойства [Ре2(СО)6(цз-$)2№(с1аЬ-те8)] в ацетонитриле. Показано, что кластер как окисляется, так и восстанавливается в две одноэлектронные стадии, из которых первые стадии являются обратимыми. Установлено, что добавление источника Н+ в раствор кластера приводит к образованию протонированной формы, которая восстанавливается при более положительных значениях потенциалов.

Показать весь текст

Список литературы

  1. С.П. Химия кластеров / Москва: Наука, 1987
  2. Schriver D.F., Whitmire K.H. Iron compounds without hydrocarbon ligands / Comprehensive organometallic chemistry, Ed. by F. G. A. Stone and G. Wilkinson, Oxford: Pergamon Press 1982. — V. 4. — P. 243−329.
  3. Shieh M., Lai Y.-W. Chalcogen-bridging iron carbonyl complexes: cluster growth and reactivity comparison // J. Chin. Chem. Soc. 2002. — V. 49. — P. 851−859.
  4. Shieh M. Recent development of tellutium- and selenium-containing iron carbonyl clusters // J. Clust. Sci. 1999. — V. 10. — P. 3−35.
  5. Roof L.C., Kolis J.W. New developments in the coordination chemistry of inorganic selenide and telluride ligands // Chem. Rev. 1993. — V. 93. — P. 10 371 080.
  6. Whitmire K.H. The interface of main group and transition metal cluster chemistry // J. Coord. Chem. 1988. — V. 17. — P. 95−204.
  7. Tard C., Pickett C.J. Structural and Functional Analogues of the Active Sites of the Feb [NiFe.-, and [FeFe]-Hydrogenases // Chem. Rev. 2009. -V. 109. — P. 22 452 274.
  8. Song L.-C., Tang M.-Y., Mei S.-Z., Huang J.-H., Hu Q.-M. The Active Site Model for Iron-Only Hydrogenases Coordinatively Bonded to a Metalloporphyrin Photosensitizer// Organometallics -2007. -V. 26. P. 1575−1577.
  9. Nann Т., Ibrahim S.K., Woi P.-M., Xu S., Ziegler J., Pickett C.J. Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production // Angew. Chem. Int. Ed. -2010. -V. 49. -P. 1574−1577.
  10. Zhang P., Wang M., Na Y., Li X., Jiang Y., Sun L. Homogeneous photocatalytic production of hydrogen from water by a bioinspired Fe2S2. catalyst with high turnover numbers // Dalton Trans. 2010. — V. 39. — P. 1204−1206.
  11. Wang F., Wang W.-G., Wang X.-J., Wang H.-Y., Tung C.-H., Wu L.-Z. A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution //Angew. Chem. Int. Ed. -2011. V. 50. — P. 31 933 197.
  12. Wen F., Wang X., Huang L., Ma G., Yang J., Li C. A Hybrid Photocatalytic System Comprising ZnS as Light Harvester and an Fe2S2. Hydrogenase Mimic as Hydrogen Evolution Catalyst // Chem. Sus.Chem. 2012. — V. 5. — P. 849−853.
  13. Wang F., Wang W.-G., Wang H.-Y., Si G" Tung C.-H., Wu L.-Z. Artificial Photosynthetic Systems Based on FeFe.-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution // ACS Catal. 2012. — V. 2. — P. 407−416.
  14. Hieber W., Beck J. Uber Tricarbonyleisenverbindungen // Z. Anorg. Allg. Chem. -1958.-B. 296.-S. 91−103.
  15. Seyferth D., Henderson R.S., Song L. Chemistry of fx-Dithio-bis (tricarbonyliron), a Mimic of Inorganic Disulfides. 1. Formation of Di-p.-thiolato- bis (tricarbonyliron) Dianion // Organometallics 1982. — V. 1.-P. 125−133.
  16. Shyu S.-G., Wu J.-S., Wu C.-C., Chuang S.-H., Chi K.-M. Iron sulfide films via Fe2(CO)6(n-S2) as a MOCVD single source precursor // Inorg. Chim. Acta 2002. -V. 334.-P. 276−282.
  17. А.А., Еременко И.JI. Гетерометаллические сульфидмостиковые кластеры переходных элементов // Успехи химии 1989. — Т. 58. — Вып. 2. -С. 303−333.
  18. Cp (CO)2Nb (^3-S)2L и CpVO (n3-S)2L, где L = Fe2(CO)6 // Журн. неорган, химии 1992. — Т. 37. — Вып. 3. — С. 563−573.
  19. Adams R.D., Huang M., Wu W. Synthesis and X-Ray Crystal Structure Analysis of Fe2(CO)6(n3-S)2Pd (bipy) // J. Cluster Sci. 1997. — V. 8. — N 8. — P. 115−122.
  20. Auvray N., Braubstein P., Mathur S., Veith M. s Shen H., HUfner S. Thin films by metal organic deposition of Fe-Mo-S molecular clusters: synthesis and crystal structure of Cp2MoFe2(fi3-S)2(CO)6. // New J. Chem. 2003. — V. 27. — P. 155 160.
  21. Veith M., Auvray N., Huch V., Braunstein P. An iron-sulfur-tin cluster with amino-ligands and its reactions with thiols // C. R. Chimie 2005. — V. 8. — P. 5764.
  22. Adams R.D., Babin J.E., Wang J.-G., Wu W. Cluster Synthesis. 24. Synthesis and Characterization of New Sulfur-Containing Tungsten-Iron Carbonyl Cluster Complexes//Inorg. Chem. 1989.-V. 28.-P. 103−109.
  23. Seyferth D., Henderson R.S., Fackler J.P., Mazany A.M. The reaction of ц-dithiobis (tricarbonyliron) with dimanganese decacarbonyl: a novel product and an interesting structural problem // J. Organomet. Chem. 1981. — V. 213. — P. C21-C25.
  24. И.JI., Оразсахатов Б., Абдуллаев A.C., Кацер С. Б., ШкловерВ.Е. Синтез и строение гетерометаллических производных Fe2S2(CO)6, содержащих атомы Pd и V // Журн. Всесоюз. хим. о-ва им. Д. И. Менделеева -1987. Т. 32. — N 1.-С. 109−110.
  25. Braunstein P., Tiripicchio А., Tiripicchio-Camellini М., Sappa Е. Synthesis and Structural Characterization of a New Chromium-Iron-Sulfur Cluster, (r|5-C5H5)2Cr2Fe2(|i3-CO)2(|i3-S)2(CO)6 // Inorg. Chem. 1981. — V. 20. — P. 35 863 589.
  26. Braunstein P., Jud J.-M., Tiripicchio A., Tiripicchio-Camellini M., Sappa E. A. New Type of Iron-Molybdenum-Sulfur Cluster: Synthesis and Structure of Fe2Mo2(ri5-C5H5)2(^3-S)2(n3-CO)2(CO)6. // Angew. Chem. Int. Ed. Engl. 1982. -V. 21.-P. 307−308.
  27. Vahrenkamp H., Wuchere E.J. Cluster-Construction: Synthesis and Structure of Fe2Co2(CO)ii (PC6H5)2 and Fe2Co2(CO)iiS2 // Angew. Chem. Int. Ed. Engl. 1981. -V. 20. P. 680−681.
  28. Konchenko S.N., Sanden T., Pushkarevsky N.A., Koppe R., Roesky P.W. Wheel-Shaped Lanthanide Iron Sulfide Clusters // Chem. Eur. J. 2010. — V. 16. — P. 14 278−14 280.
  29. Pagni R.M., Smith R.J. Novel Bridging Sulfide Anion Complexes of the Hexacarbonyldiiron Unit: a New Route to Alkylthio Complexes of Iron // J. Am. Chem. Soc. 1979. -V. 101. — P. 508−509.
  30. Seyferth D., Henderson R.S., Song L.-C. The Dithiobis (tricarbonyliron) Dianion: Improved Preparation and New Chemistry // J. Organomet. Chem. 1980. — V. 192. -P. C1-C5.
  31. Lozano A.A., Santana M.D., Garcia G., Barclay J.E., Davies S.C., Evans D.J. Heteronuclear Nickel-Iron Complexes and the Crystal Structure of Fe2(CO)6(|i3-S)2{Ni (dppe)}. // Z. Anorg. Allg. Chem. 2005. -V. 631. — P. 2062−2066.
  32. Song L.-C. Investigations on Butterfly Fe/S Cluster S-Centered Anions (|i-S")2Fe2(CO)6, OS~)(|i-RS)Fe2(CO)6, and Related Species // Acc. Chem. Res. -2005.-V. 38.-P. 21−28.
  33. Chieh C., Seyferth D., Song L.-C. Structures of Two ^-(Alkylthio)-^-(alkylmercurithio)-bis (tricarbonyliron) Complexes, (|i-RS)(|i-RHgS)Fe2(CO)6 (R = CH3 and C2H5) // Organometallics 1982. -V. 1. -P. 473−476.
  34. Watson W.H., Nagl A., Don M., Richmond M.G. Synthesis, redox chemistry, and X-ray structure of the mixed metal cluster Fe2(CO)6(fx3-S)2Ni (dppf) // J. Chem. Crystallogr. 1999. — V. 29. — N 8. — P. 871−876.
  35. Barber D.E., Bryan R.F., Sabat M., Bose K.S., Averiii B.A. Synthesis, Structure, and Reactivity of Clusters Containing the Mo202(ji-E)2.2+ (E = O, S) Core and Coordinated [Fe2S2(CO)6]2 Units // Inorg. Chem. 1996. — V. 35. — P. 4635−4642.
  36. Holliday R.L., Roof L.C., Hargus B., Smith D.M., Wood P.T. The Chemistry of Iron Carbonyl Sulfide and Selenide Anions // Inorg. Chem. 1995. — V. 34. — P. 4392−4401.
  37. Barber D.E., Sabat M., Sinn E., Averill B.A. Synthesis, Structure, and Characterization of the Fe5S4(CO)i2.2' Ions and Studies on the Oxidative Conversion of the Dianion to [Fe6S6(CO)12]2~ // Organometallics 1995. — V. 14. -P. 3229−3237.
  38. Kovacs J.A., Bashkin J.K., Holm R.H. Persulfide-Bridged Iron-Molybdenum-Sulfur Clusters of Biological Relevance: Two Synthetic Routes and the Structures of Intermediate and Product Clusters // J. Am. Chem. Soc. 1985. — V. 107. — P. 1784−1786.
  39. Bow K.S., Sinn E., Averill B.A. Synthesis and X-ray Structure of the Fe4S4(C0)i2.2- Ion: An Example of Intermolecular Disulfide Formation by the (jj-S)2Fe2(CO)6 Unit // Organometallics 1984. — V. 3. — P. 1126−1128.
  40. Noth H., Rattay W. Beitrage zur chemie des bors. CLXXII. Darstellung, struktur und reaktionen von ^-(borandithiolato)bis (tricarbonyleisen)-verbindungen, XBS2Fe (CO)3.2//J. Organomet. Chem. 1986. — V. 308.-P. 131−152.
  41. Glass R.S., Gruhn N.E., Lorance E., Singh M.S., Stessman N.Y.T., Zakai U.I. Synthesis, Gas-Phase Photoelectron Spectroscopic, and Theoretical Studies of Stannylated Dinuclear Iron Dithiolates // Inorg. Chem. 2005. — V. 44. — P. 57 285 737.
  42. Tang Y., Wei Z., Zhong W., Liu X. Diiron Complexes with Pendant Phenol Group (s) as Mimics of the Diiron Subunit of FeFe.-Hydrogenase: Synthesis, Characterisation, and Electrochemical Investigation // Eur. J. Inorg. Chem. -2011. -P. 1112−1120.
  43. Gao S., Peng X.-J. Bis (^-9-anthrylmethylthiolato)-bistricarbonyliron (I).(Fe-Fe) // Acta Cryst. 2007. — V. E63. — P. ml996.
  44. Gao S., Jiang D.-Y., Liang Q.-C., Duan Q. Bis{|i-4-(l, 3-benzothiazol-2-yl)phenyl.-methanethiolato-K4S, S':S, S'}bis[tricarbonyliron (I)](Fe-Fe) // Acta Cryst. -2012.-V. E68.-P. m330.
  45. Vijaikanth V., Capon J.-F., Gloaguen F., Petillon F.Y., Schollhammer P., Talarmin J. Carboxy-functionalized dithiolate di-iron complexes related to the active site of Fe-only hydrogenase // J. Organomet. Chem. 2007. — 692. — P. 4177−4181.
  46. Li H., Rauchfuss T.B. Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases // J. Am. Chem. Soc. 2002. — V. 124. — N 5. — P. 726−727.
  47. Ott S., Kritikos M., Akermark B., Sun L. Synthesis and Structure of a Biomimetic Model of the Iron Hydrogenase Active Site Covalently Linked to a Ruthenium Photosensitizer // Angew. Chem. Int. Ed. 2003. — V. 42. — P. 3285−3288.
  48. Song L., Tang M., Su F., Hu Q. A Biomimetic Model for the Active Site of Iron-Only Hydrogenases Covalently Bonded to a Porphyrin Photosensitizer // Angew. Chem. Int. Ed. 2006. — V. 45. — P. 1130−1133.
  49. Song L., Ge J., Zhang X., Liu Y., Hu Q. Methoxyphenyl-Functionalized Diiron Azadithiolates as Models for the Active Site of Fe-Only Hydrogenases: Synthesis, Structures, and Biomimetic H2 Evolution // Eur. J. Inorg. Chem. 2006. — P. 32 043 210.
  50. Gao W., Liu J., Weng L., Akermark B., Sun L. Synthesis, structures and electrochemical properties of amino-derivatives of diiron azadithiolates as active site models of Fe-only hydrogenase // Inorg. Chim. Acta 2006. — V. 359. — P. 1071−1080.
  51. Song L., Ge J., Liu X., Zhao L., Hu Q. Synthesis, structure and electrochemical properties of N-substituted diiron azadithiolates as active site models of Fe-only hydrogenases // J. Organomet. Chem. 2006. — V. 691. — P. 5701−5709.
  52. Lawrence J.D., Li H., Rauchfuss T.B. // Beyond Fe-only hydrogenases: N-functionalized 2-aza-l, 3-dithiolates Fe2(SCH2)2NR.(CO)x (x = 5, 6) // Chem. Commun. -2001.-P. 1482−1483.
  53. Lawrence J.D., Li H., Rauchfuss T.B., Benard M., Rohmer M.-M. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics // Angew. Chem. Int. Ed. 2001. — V. 40. — P. 1768−1771.
  54. Song L.-C., Yang Z.-Y., Bian H.-Z., Hu Q.-M. Novel Single and Double Diiron Oxadithiolates as Models for the Active Site of Fe.-Only Hydrogenases // Organometallics 2004. — V. 23. — P. 3082−3084.
  55. Song L.-C., Li Q.-S., Yang Z.-Y., Hua Y.-J., Bian H.-Z., Hu Q.-M. Synthesis and Characterization of Diiron Thiadithiolate Complexes Related to the Active Site of FeFe.-Hydrogenases // Eur. J. Inorg. Chem. 2010. — P. 1119−1128.
  56. Jiang S., Liu J., Sun L. A furan-containing diiron azadithiolate hexacarbonyl complex with unusual lower catalytic proton reduction potential // Inorg. Chem. Commun. 2006. — V. 9. — P. 290−292.
  57. Cui H., Wang M., Dong W., Duan L., Li P., Sun L. Synthesis, structures and electrochemical properties of hydroxyl- and pyridyl-fiinctionalized diiron azadithiolate complexes // Polyhedron 2007. — V. 26. — P. 904−910.
  58. Seyferth D., Henderson R.S. Di-^-Thiolbis (tricarbonyliron), (ji-HS)2Fe2(CO)6: an Inorganic Mimic of Organic Thiols // J. Organomet. Chem. 1981. — V. 218. — P. C34-C36.
  59. Seyferth D., Womack G.B., Henderson R.S., Cowie M., Hames B.W. Michael-Type Addition Reactions of Bis (|i-mercapto)bis (tricarbonyliron): Proximity- Induced
  60. Formation of Bidentate Organosulfur Ligands // Organometallics 1986. — V. 5. -P. 1568−1575.
  61. A.A., Семенова Н. И., Торубаев Ю. В., Лысенко К. А. Необычное связывание железо-платина в кластере (л-дициклопентадиен)-платина-дижелезогексакарбонилдисульфид // Журн. неорган, химии 2001. — Т. 46. -N 12. — С. 1981−1983.
  62. Scheer М., Umbarkar S.B., Chatterjee S., Trivedi R., Mathur P. Novel Approach to Mixed Group 15/16 Element Ligands Formation of Unusual Trichalcogenophosphonato Ligands in Mixed Fe/Cr Clusters // Angew. Chem. Int. Ed. — 2001. — V. 40. — P. 376−378.
  63. Egold H., Schwarze D., Schraa M., Florke U. The syntheses of novel sulfur centred spirocyclic cluster complexes starting from Re2(|i-H)(|i-SH)(CO)8. // J. Chem. Soc., Dalton Trans. 2000. — P. 4385−4389.
  64. Chalbot M.-C., Mills A.M., Spek A.L., Long G.J., Bouwman E. Structure and Electronic Properties of Ni (dsdm){Fe (CO)3}2., an Unusual, Triangular Nickel Diiron Compound // Eur. J. Inorg. Chem. 2003. — P. 453−457.
  65. Shi Y.-C., Cheng H.-R., Yuan L.-M., Li Q.-K. j^-Orthothiocarbonato-tetrakistricarbonyliron (I).(2 Fe—Fe) // Acta Cryst. 2011. — V. E67. — P. ml 534.
  66. Salyi S., Kritikos M., Akermark B., Sun L. Synthesis of an Amino-Functionalized Model of the Fe-Only Hydrogenase Active Site // Chem. Eur. J. 2003. — V. 9. — N 2.-P. 557−560.
  67. Volkers P.I., Rauchfuss T.B., Wilson S.R. Coordination Chemistry of 3-Mercapto-2-(mercaptomethyl)propanoic Acid (Dihydroasparagusic Acid) with Iron and Nickel // Eur. J. Inorg. Chem. 2006. — P. 4793−4799.
  68. Song L., Yang Z., Hua Y., Wang H., Liu Y., Hu Q. Diiron Thiadithiolates as Active Site Models for the Iron-Only Hydrogenases: Synthesis, Structures, and Catalytic H2 Production // Organometallics 2007. — V. 26. — P. 2106−2110.
  69. Samuel A.P.S., Co D.T., Stern C.L., Wasielewski M.R. Ultrafast Photodriven Intramolecular Electron Transfer from a Zinc Porphyrin to a Readily Reduced Diiron Hydrogenase Model Complex // J. Am. Chem. Soc. 2010. — V. 132. — P. 8813−8815.
  70. Sun L., Akermark B., Ott S. Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production // Coord. Chem. Rev. 2005. -V. 249.-V. 1653−1663.
  71. Schwartz L., Eriksson L., Lomoth R., Teixidor F., Vinas C., Ott S. Influence of an electron-deficient bridging o-carborane on the electronic properties of an FeFe. hydrogenase active site model // Dalton Trans. 2008. — P. 2379−2381.
  72. Roy S., Shinde S., Hamilton G.A., Hartnett H.E., Jones A.K. Artificial FeFe.-Hydrogenase: On Resin Modification of an Amino Acid to Anchor a Hexacarbonyldiiron Cluster in a Peptide Framework // Eur. J. Inorg. Chem. 2011. -P. 1050−1055.
  73. Tard C., Liu X., Ibrahim S.K., Bruschi M., De Gioia L., Davies S.C., Yang X., Wang L.-S., Sawers G., Pickett C.J. Synthesis of the H-cluster framework of iron-only hydrogenase // Nature 2005. — V. 433. — P. 610−613.
  74. Liu J.-T., Du Y.-C., Zhang L., Mao Y.-J., Wu Y.-L. Bis (|i-methyl mercaptoacetato-k2S:S)bis-tricarbonyliron (I). // Acta Cryst. 2006. — E62. — P. m237-m238.
  75. Shi Y.-C., Lai L., Shen W.-B., Yuan L.-M. Undecacarbonyl-(i2-methanethiolato-^2-(pyridin-2-yl)methanethiolato.-(i4-sulfido-tetrairon (II)(2 Fe—Fe) // Acta Cryst. -2011.-V. E67.-P. ml763.
  76. M., Davies S.C., Hughes D.L., Pickett C.J. {2Fe3S} clusters related to the di-iron sub-site of the H-centre of all-iron hydrogenases // Chem. Commun. 2001. -P. 847−848.
  77. Wright R.J., Lim C., Tilley T.D. Diiron Proton Reduction Catalysts Possessing Electron-Rich and Electron-Poor Naphthalene-1,8-dithiolate Ligands // Chem. Eur. J.-2009.-V. 15.-P. 8518−8525.
  78. Apfel U.-P., Halpin Y., Gorls H., Vos J.G., Schweizer B., Linti G., Weigand W. Synthesis and Characterization of Hydroxy-Functionalized Models for the Active Site in Fe-Only-Hydrogenases // Chem. Biodivers. 2007. — V. 4. — P. 2138−2148.
  79. Singleton M.L., Jenkins R.M., Klemashevich C.L., Darensbourg M.Y. The effect of bridgehead steric bulk on the ground state and intramolecular exchange processes of (H-SCH2CR2CH2S)Fe (CO)3. Fe (CO)2L] complexes // C. R. Chimie 2008. — V. 11.-P. 861−874.
  80. Apfel U.-P., Halpin Y., Gottschaldt M" Gorls H., Vos J.G., Weigand W. Functionalized Sugars as Ligands towards Water-Soluble Fe-only. Hydrogenase Models // Eur. J. Inorg. Chem. -2008. P. 5112−5118.
  81. Kuckmann T., Schodel F., Sanger I., Bolte M., Wagner M., Lerner H.-W. The Tricarbonyliron Chalcogenolates (OC)3Fe (|i-ESiiBu3).2 (E = S, Se, Te) // Eur. J. Inorg. Chem. 2010. — P. 468−475.
  82. Daraosheh A.Q., Apfel U.-P., Gorls H., Friebe C., Schubert U.S., El-khateeb M., Mioston G., Weigand W. New Approach to FeFe.-Hydrogenase Models Using Aromatic Thioketones // Eur. J. Inorg. Chem. 2012. — P. 318−326.
  83. Gloaguen F., Lawrence J.D., Rauchfuss T.B., Benard M., Rohmer M.-M. Bimetallic Carbonyl Thiolates as Functional Models for Fe-Only Hydrogenases // Inorg. Chem. 2002. — V. 41. — P. 6573−6582.
  84. Chiang M.-H., Liu Y.-C., Yang S.-T., Lee G.-H. Biomimetic Model Featuring the NH Proton and Bridging Hydride Related to a Proposed Intermediate in Enzymatic H2 Production by Fe-Only Hydrogenase // Inorg. Chem. 2009. — V. 48. — P. 76 047 612.
  85. Shaver A., Fitzpatrick P.J., Steliou K., Butler I.S. Reductive Decyclization of Organosulfiir Compounds. Preparation and Crystal Structure of fi,(i'-Dithiolato-methanehexacarbonyldiiron (I) // J. Am. Chem. Soc. 1979. — V. 101. — P. 13 131 315.
  86. Apfel U.-P., Kowol C.R., Kloss F., Gorls H., Keppler B.K., Weigand W. Hydroxy and ether functionalized dithiolanes: Models for the active site of the FeFe. hydrogenase // J. Organomet. Chem. 2011. — V. 696. — P. 1084−1088.
  87. Thomas C.M., Rudiger O., Liu T., Carson C.E., Hall M.B., Darensbourg M.Y. Synthesis of Carboxylic Acid-Modified FeFe.-Hydrogenase Model Complexes Amenable to Surface Immobilization // Organometallics 2007. — V. 26. — P. 39 763 984.
  88. Daraosheh A.Q., Harb M.K., Windhager J., Gorls H., El-khateeb M., Weigand W. Substitution Reactions at FeFe. Hydrogenase Models Containing [2Fe3S] Assembly by Phosphine or Phosphite Ligands // Organometallics 2009. — V. 28. -P. 6275−6280.
  89. Mebi C.A., Noll B.C., Gao R., Karr D. Binuclear Iron (I) Complex Containing Bridging Phenanthrene-4,5-dithiolate Ligand: Preparation, Spectroscopy, Crystal Structure, and Electrochemistry // Z. Anorg. Allg. Chem. 2010. — V. 636. — P. 2550−2554.
  90. Gao W., Liu J., Akermark B., Sun L. Facile and highly efficient light-induced PR3/CO ligand exchange: A novel approach to the synthesis of (|i-SCH2N"PrCH2S)Fe2(CO)4(PR3)2. // J- Organomet. Chem. 2007. — V. 692. — P. 1579−1583.
  91. Wang Z., Liu J.-H., Sun L.-C. Pentacarbonyl-lK2C, 2K3C-(diphenylphosphine-lKP)(fx-2-propyl-2-azapropane-l, 3-dithiolato-lK2S, S':2K2S, S')-diiron (Fe—Fe) // Acta Cryst. -2007. V. E63. — P. ml959-ml960.
  92. Gao S., An C.-A., Duan Q., Jiang D.-Y. Pentacarbonyl-lK2C, 2K3C-(^i-pyrazine-2,3-dithiolato-l:2K4S, S':S, S')(trimethylphosphane-lKP)diiron (I) (Fe—Fe) // Acta Cryst. -2011.-V. E67. P. ml750.
  93. Yin B.-S., Li T.-B., Yang M.-S.-Propane-l, 3-dithiolato-K4S, S':S, S'-bis-dicarbonyl (triphenylphosphane-KP)-iron (II).(Fe—Fe) // Acta Cryst. 2011. — V. E67.-P. ml502.
  94. Gao W.-M., Li J.-M. Decacarbonyl4-(ethane-l, 2-diyldinitrilo)tetrakis (metha-nethiolato).bis-(triphenylphosphane)tetrairon (2 Fe-Fe) // Acta Cryst. 2012. — V. E68.-P. ml 18.
  95. Lyon E.J., Georgakaki I.P., Reibenspies J.H., Darensbourg M.Y. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase // Angew. Chem. Int. Ed. 1999. — V. 38. — P. 3178−3180.
  96. Singleton M.L., Bhuvanesh N., Reibenspies J.H., Darensbourg M.Y. Synthetic Support of De Novo Design: Sterically Bulky FeFe.-Hydrogenase Models // Angew. Chem. Int. Ed. 2008. -V. 47. — P. 9492−9495.
  97. Dong W., Wang M., Liu X., Jin K., Li G., Wang F., Sun L. An insight into the protonation property of a diiron azadithiolate complex pertinent to the active site of Fe-only hydrogenases // Chem. Commun. 2006. — P. 305−307.
  98. Schwartz L., Eilers G., Eriksson L., Gogoll A., Lomoth R., Ott S. Iron hydrogenase active site mimic holding a proton and a hydride // Chem. Commun. 2006. — P. 520−522.
  99. Xu F., Tard C., Wang X., Ibrahim S.K., Hughes D.L., Zhong W., Zeng X., Luo Q., Liu X., Pickett C.J. Controlling carbon monoxide binding at di-iron units related to the iron-only hydrogenase sub-site // Chem. Commun. 2008. — P. 606−608.
  100. Li P., Wang M., Chen L., Wang N., Zhang T., Sun L. Supramolecular self-assembly of a 2Fe2S. complex with a hydrophilic phosphine ligand // Cryst. Eng. Comm. -2008.-V. 10.-P. 267−269.
  101. Yan Q.-Y., Hu M.-Q., Wen H.-M., Chen H., Ma C.-B., Chen C.-N. Syntheses and Characterization of Two Diiron Dithiolate Complexes Containing 4-Dimethylaminopyridine // Chinese J. Struct. Chem. 2011. — V. 30. — P. 13 411 347.
  102. Liu X.-F., Xiao X.-W., Liu X.-H. Synthesis and Crystal Structure of the Diiron Azadithiolate Complex OSO^NPh^CCOMPhzPCHzPPt^) // Chinese J. Struct. Chem.-2011.-V. 30.-P. 1437−1441.
  103. Orain P.-Y., Capon J.-F., Kervarec N., Gloaguen F., Petillon F., Pichon R., Schollhammer P., Talarmin J. Use of 1,10-phenanthroline in diiron dithiolate derivatives related to the Fe-Fe. hydrogenase active site // Dalton Trans. 2007. -P. 3754−3756.
  104. Hu M.-Q., Wen H" Ma C.-B., Li N., Yan Q.-Y., Chen H., Chen C.-N. Synthesis, structures and electrochemistry studies of 2Fe2S-Fe (II)(S-2N)2 models for H-cluster of FeFe.-hydrogenase // Dalton Trans. 2010. — V. 39. — P. 9484−9486.
  105. Liu Y.-C., Tu L.-K., Yen T.-H., Leeb G.-H., Chiang M.-H. Influences on the rotated structure of diiron dithiolate complexes: electronic asymmetry vs. secondary coordination sphere interaction // Dalton Trans. 2011. — V. 40. — P. 2528−2541.
  106. Wang W.-G., Wang F., Wang H.-Y., Tung C.-H. Wu L.-Z. Electron transfer and hydrogen generation from a molecular dyad: platinum (II) alkynyl complex anchored to FeFe. hydrogenase subsite mimic // Dalton Trans. 2012. — V. 41. -P. 2420−2426.
  107. Jablonskyte A., Wright J.A., Pickett C.J. FeFe.-Hydrogenase Models: Unexpected Variation in Protonation Rate between Dithiolate Bridge Analogues // Eur. J. Inorg. Chem.-2011.-P. 1033−1037.
  108. Charreteur K., Capon J.-F., Gloaguen F., Petillon F.Y., Schollhammer P., Talarmin J. Diiron Complexes with a 2Fe3S. Core Related to the Active Site of [FeFe]H2ases // Eur. J. Inorg. Chem. 2011. — P. 1038−1042.
  109. Liu Y.-C., Lee C.-H., Lee G.-H., Chiang M.-H. Influence of a Redox-Active Phosphane Ligand on the Oxidations of a Diiron Core Related to the Active Site of Fe-Only Hydrogenase // Eur. J. Inorg. Chem. 2011. — P. 1155−1162.
  110. Gao W., Liu J., Akermark B., Sun L. Bidentate Phosphine Ligand Based Fe2S2-Containing Macromolecules: Synthesis, Characterization, and Catalytic Electrochemical Hydrogen Production // Inorg. Chem. 2006. — V. 45. — P. 91 699 171.
  111. Na Y., Wang M., Pan J., Zhang P., Akermark B., Sun L. Visible Light-Driven Electron Transfer and Hydrogen Generation Catalyzed by Bioinspired 2Fe2S. Complexes // Inorg. Chem. 2008. — V. 47. — P. 2805−2810.
  112. Liu X.-F. Ligand rearrangement and oxidation during preparation of diiron hydrogenase active site models (p-SCH2)2NCH2C02Me.-Fe2(C0)5(Ph2PNHPy-4) and [(^-SCH2)2NCH2C02Me]Fe2(C0)5[Ph2PP (0)Ph2] // Inorg. Chim. Acta 2011. -V. 378.-P. 338−341.
  113. Yin B.-S., Li T.-B., Yang M.-S. Synthesis and structural characterization of diiron azadithiolate complexes relevant to the active site of FeFe. hydrogenases // J. Coord. Chem. 2011. — V. 64. — P. 2066−2074.
  114. Song L.-C., Luo X., Wang Y.-Z., Gai B., Hu Q.-M. Synthesis, characterization and electrochemical behavior of some N-heterocyclic carbene-containing active site models of FeFe.-hydrogenases // J. Organomet. Chem. 2009. — V. 694. — P. 103 112.
  115. Liu X.-F., Xiao X.-W. Diiron propanedithiolate complex bearing the pyridyl-functionalized phosphine ligand axially coordinated to a photosensitizer zinc tetraphenylporphyrin // J. Organomet. Chem. 2011. — V. 696. — P. 2767−2771.
  116. Liu X.-F., Jiang Z.-Q., Jia Z.-J. Synthesis, characterization and crystal structures of tetrairon ethanedithiolate complexes containing bridging bidentate phosphine ligands//Polyhedron-2012.-V. 33.-P. 166−170.
  117. Liu X.-F., Xiao X.-W., Shen L.-J. Synthesis, characterization, and electrochemical properties of diiron azadithiolate complexes related to the active site of FeFe.-hydrogenases // Transition Met. Chem. 2011. — V. 36. — P. 465−469.
  118. Vijaikanth V., Capon J.-F., Gloaguen F., Schollhammer P., Talarmin J. Chemically modified electrode based on an organometallic model of the FeFe. hydrogenase active center // Electrochem. Comm. 2005. — V. 7. — P. 427−430.
  119. Singleton M.L., Reibenspies J.H., Darensbourg M.Y. A Cyclodextrin Host/Guest Approach to a Hydrogenase Active Site Biomimetic Cavity // J. Am. Chem. Soc.2010.-V. 132.-P. 8870−8871.
  120. Westmeyer M.D., Galloway C.P., Rauchfuss T.B. Photoaddition of Fe2S2(CO)6 to C60//Inorg. Chem. 1994. -V. 33.-P. 4615−4616.
  121. А., Форд P. Спутник химика: пер. с англ. -М.: Мир, 1976, 541с.
  122. Fedushkin I.L., Skatova A.A., Chudakova V.A., Fukin G.K., Dechert S., Schumann H. Monomeric Magnesium and Calcium Complexes Containing the Bidentate,
  123. Dianionic l, 2-Bis (2,6-diisopropylphenyl)imino.acenaphthene Ligand // Eur. J. Inorg. Chem. 2003. — P. 3336−3346.
  124. Fedushkin I.L., Morozov A.G., Rassadin O.V., Fukin G.K. Addition of Nitriles to Alkaline Earth Metal Complexes of l, 2-Bis (phenyl)imino.acenaphthenes // Chem. Eur. J. -2005. V. 11.-P. 5749−5757.
  125. Fedushkin I.L., Lukoyanov A.N., Tishkina A.N., Fukin G.K., Lyssenko K.A., Hummert M. Reduction of Digallane (dpp-bian)Ga-Ga (dpp-bian). with Group 1 and 2 Metals // Chem. Eur. J. 2010. — V. 16. — P. 7563−7571.
  126. I.L., Skatova A.A., Ketkov S.Y., Eremenko O.V., Piskunov A.V., Fukin G.K. (dpp-bian)ZnZn(dpp-bian).: A Zinc-Zinc-Bonded Compound Supported by Radical-Anionic Ligands // Angew. Chem. Int. Ed. 2007. — V. 46. — P. 4302−4305.
  127. Fedushkin I.L., Maslova O.V., Baranov E.V., Shavyrin A.S. Redox Isomerism in the Lanthanide Complex (dpp-Bian)Yb (DME)(>Br).2 (dpp-Bian 1,2-Bis[(2,6-diisopropylphenyl)imino]acenaphthene) // Inorg. Chem. — 2009. — V.48. — P. 23 552 357.
  128. O’Donnell J.T., Ayres J.T., Mann C.K. Preparation of high purity acetonitrile // Anal. Chem. 1965. — V. 37. — № 9. — P. 1161−1162.
  129. Wakatsuki Y., Yamazaki H., Cheng G. Structural determination of a trinuclear iron-cobalt mixed cluster complex bicapped with sulfur // J. Organomet. Chem. 1988. -V. 347.-P. 151−156.
  130. Lesch D.A., Rauchfuss T.B. Synthesis, reactivity, and 125Te NMR studies of (C5H5)RhFe2Te2(CO)x (x = 6, 7) // Inorg. Chem. 1983. — V. 22. — P. 1854−1857.
  131. Adams R.D., Babin J.E. Ligand Substitution vs. Ligand Addition. 1. Differences in Reactivity between First- and Third-Row Transition-Metal Clusters. Reactions of Dimethylamine with the Sulfidometal Carbonyl Clusters M3(CO)9(|i3-S)2 (M = Fe,
  132. Os)//Inorg. Chem. 1986.-V. 25.-P. 3418−3422.121
  133. Schaub Т., Radius U. A Diazabutadiene stabilized Nickel (O) Cyclooctadiene Complex: Synthesis, Characterization and the Reaction with Diphenylacetylene // Z. Anorg. Allg. Chem. 2006. -V. 632. — P. 807−813.
  134. Baker R.J., Jones C., Mills D.P., Pierce G.A., Waugh M. Investigations into the preparation of groups 13−15 N-heterocyclic carbene analogues // Inorg. Chim. Acta -2008.-V. 361.-P. 427−435.
  135. Dehnen S., Eichhofer A., Fenske D. Chalcogen-Bridged Copper Clusters // Eur. J. Inorg. Chem. 2002. — P. 279−317.
  136. Tran D.T.T., Kowalchuk C.M., Taylor N.J., Corrigan J.F. Ternary Nanoclusters of CuHgS, CuHgSe, and CuInS // Inorg. Chem. 2002. — V. 41. — P. 5693−5698.
  137. Komuro Т., Matsuo Т., Kawaguchi H., Tatsumi K. Copper and Silver Complexes Containing the S (SiMe2S)22- Ligand: Efficient Entries into Heterometallic Sulfido Clusters // Angew. Chem. -2003. -V. 115. -N 4. P. 481−484.
  138. H.A., Огиенко M.A., Куратьева H.B., Конченко С. Н. Синтез и строение новых гетерометаллических кластеров Fe2(MCp*)(CO)6(|i3-S)2. (М = Rh, Ir- Срх Ср*, С5Н3Ви12) // Изв. АН, Сер. Хим. — 2008. — N 1. — С. 35−38.
  139. Reina R., Rossell О., Seco М., Ros J., Yanez R., Perales A. Synthesis and X-ray Crystal Structure of Ре2(СО)6(ц-СО)(ц-РЬС=СРЬН)(ц-АиРРЬ3).: First Example of a Highly Asymmetric Triangular Fe2Au System // Inorg. Chem. 1991. — V. 30. -P. 3973−3976.
  140. Leung W., Chim J., Wong W. N- versus S-Metalation of Nitridobis (3,4-toluenedithiolato)osmium (VI) // Inorg. Chem. 1998. — V. 37. — P. 6382−6384.
  141. Delgado E., Hernandez E., Rossell O., Seco M., Puebla E. G., Ruiz С. A comparative study of the use of triethylammonium salts of the Ре2(СО)б (ц-СО)(ц-S'Pr)(|i-AuPPh3). anion in the synthesis of iron-gold clusters. Crystal structures of
  142. Ре2(СО)6(ц-СО)(ц-8'Рг)(ц-АиРРЬ3). and Fe2(CO)5(PPh3)(^-SEt)2] // J. Organomet. Chem. 1993. — V. 455. — P. 177−184.
  143. П.А., Сухих Т. С., Пирязев Д. А., Вировец А. В., Конченко С. Н. Синтез и строение комплексов Со, Ni и Zn с 1,4-диаза-1,3-бутадиеновыми лигандами //Коорд. хим.-2013.-Т. 39,-N. 1.-С. 14−25.
  144. Chen С.-Т., Liao S.-Y., Lin K.-J., Chen C.-H., Lin T.-Y. J. Structural Effects on Molecular Dipoles and Solvatochromism of Nickel (diimine)(dithiolate) Complexes // Inorg. Chem. 1999. -V. 38. — P. 2734−2741.
  145. Fedushkin I.L., Nikipelov A.S., Skatova A.A., Maslova O.V., Lukoyanov A.N., Fukin G.K., Cherkasov A.V. Reduction of Disulfides with Magnesium (II) and Gallium (II) Complexes of a Redox-Active Diimine Ligand // Eur. J. Inorg. Chem. -2009.-P. 3742−3749.
  146. Ogienko M.A., Naumov D.Yu., Konchenko S.N., Hexacarbonyl-2K3C, 3K3C-di-fi3-sulfidotetrakis (tetrahydrofuran-lko)calciumdiiron (II)(Fe-Fe) // Acta Cryst. 2012. -V. E68.-P. ml559-ml560.
Заполнить форму текущей работой