Восстановление пространственно-временной структуры источников и стоков диоксида углерода по данным глобальных наблюдений
Диссертация
Результаты в виде двумерных полей приземных потоков СО2, полученные в эксперименте с использованием спутниковых данных наблюдений, показали, что в ходе расчётов удалось восстановить ожидаемый сезонный ход, а также получить лучшее согласие с наблюдениями при расчетах по апостериорным данным о потоках, что является хорошей характеристикой для разработанной системы усвоения данных. Построение… Читать ещё >
Список литературы
- Будыко, М.И. и П. Гройсман, Ожидаемые изменения климата к 2000 году // Метеорология и гидрология. 1991. № 7, 84−94.
- Arrhenius S., On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground // London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (fifth series), 1896, v. 41, p 237−275.
- Manabe, S., R.T. Wetherald, and R.J. Stouffer, Summer dryness due to an increase of atmospheric C02 concentration // Climatic Change, 1981, 3, 347 386
- Detecting natural influence on surface air temperature change in the early twentieth century / Nozawa, T. et al // Geophys. Res. Lett., 2005, 32, L20719,
- Interannual extremes in the rate of rise of atmospheric carbon dioxide /Keeling, C. D. et al //Nature, 1995, 375, 6533, 666−670
- Дымников В.П., Лыкосов B.H., Володин E.M. Проблемы моделирования климата и его изменений // Изв. РАН, ФАиО. 2006. т 42, № 5, 618−636.
- Carbon cycle, vegetation and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model / Brovkin V. et al // Global Biogeochem. Cycles. 2002. 16(4), 1139, doi: 10.1029/2001GB001662.
- Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle / Sokolov, A.P. et al // Journal of Climate, 2008,21(15): 3776−3796
- Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models / Orr, J. C. et al // Global Biogeochem. Cycles, 2001, 15, No. 1,43−60.
- Old-growth forests as global carbon sinks / Luyssaert S. et al // Nature, 2008,455(7210):213−5
- The carbon balance of terrestrial ecosystems in China / Piao S. et al // Nature, 2009, 458(7241):1009−1013.
- Impact of Wildfire in Russia between 1998−2010 on Ecosystems and the Global Carbon Budget / Shvidenko A. Z. et al // Doklady Earth Sciences, 2011, v. 441, p 2, pp. 1678−1682
- Zimov, S.A., E.A.G. Schuur, and F.S. Chapin, III., Permafrost and the Global Carbon Budget// Science, 2006, 312:1612−1613.
- Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate / Beer C. et al // Science. 2010. 329(5993):834−838.
- Towards robust regional estimates of C02 sources and sinks using atmospheric transport models / Gurney K. R. et al. // Nature, 2002, 415, 626- 630.
- Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge (UK), New York (USA), pp 996,2007.
- Rayner, P. J. and O’Brian, D. M.: The utility of remotely sensed C02 concentration data in surface inversions // Geophys. Res. Lett., 28,175−178,2001.
- SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography / Burrows, J. P. et al // Acta Astronautica, 35(7), 445 451, 1995.
- SCIAMACHY Mission Objectives and Measurement Modes / Bovensmann, H. et al // J. Atmos. Sci., 56, 127−150, 1999.
- Carbon monoxide, methane, and carbon dioxide retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set / Buchwitz, M. et al // Atmos. Chem. Phys., 5, 3313−3329, 2005b.
- Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models / Buchwitz, M., et al //Atmos. Chem. Phys., 5, 941−962, 2005a.
- Krijger, J. M., Aben, I., and Schrijver, H.: Distinction between clouds and ice/snow covered surfaces in the identification of cloud-free observations using SCIAMACHY PMDs // Atmos. Chem. Phys., 5, 2729−2738,2005.
- Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite Part 1: Carbon dioxide / Schneising, O., et al // Atmos. Chem. Phys., 8,3827−3853, 2008.
- Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite Part 2: Methane / Schneising, O., et al // Atmos. Chem. Phys., 9,443−465, 2009.
- First direct observation of the atmospheric C02 year-to-year increase from space /Buchvvitz, M., et al //Atmos. Chem. Phys., 7, 4249−4256, 2007.
- Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals / Bergamaschi, P., et al // J. Geophys. Res., 114, D22301, doi:10.1029/2009JD012287, 2009.
- Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring / Kuze, A., et al // Appl. Opt., 48, 6716, doi: 10.1364/A0.48.6 716, 2009.
- Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra / Morino, I., et al // Atmos. Meas. Tech., 4, 1061−1076, doi: 10.5194/amt-4−1061−2011,2011.
- Sasaki I. An objective analysis based on variational method // J. Met. Soc. Japan. 1958. Vol. 36, N3. P. 29−30.
- Kalman R.E. A new approach to linear filtering and prediction problems // Trans. AME. J. Basic Eng. 1960. Vol. 82. P. 34−35.
- Kalman R.E., Bucy R.S. New results in linear filtering and prediction theory // Trans. AME. Ser. D. J. Basic Eng. 1961. Vol. 83. P. 95−107.
- NIES/FRCGC global atmospheric tracer transport model: description, validation, and surface sources and sinks inversion / Maksyutov, S., et al // J. Earth Simulator 9, 3−18, 2008.
- Mass- conserving tracer transport modelling on a reduced latitude-longitude grid with NJES-TM / Belikov, D., et al // Geosci. Model Dev., 4, 207 222, 2011.
- Prather, M., Numerical advection by conservation of second-order moments//J. Geophys. Res., 91, 6671−6681, 1986.
- Rood, R. В., Numerical advection algorithms and their role in atmospheric transport and chemistry model // Reviews of Geophysics, Vol. 25, No. 1,71−100, 1987.
- B. Van Leer, Towards the ultimate conservative difference scheme. TIL Upstream-centered finite-difference schemes for ideal compressible flow // J. of Сотр. Phys., 23,263, 1977.
- G. L. Russell and J. A. Lerner, A new finite-differencing scheme for the tracer transport equation 11 J. Appl. Meteorol., 20,1483 1498, 1981.
- Stohl, A. and Wotawa, G. (1995), A method for computing single trajectories representing boundary layer transport // Atmospheric Environment 29, 3235−3239.
- Lukyanov A., Nakane H., Yushkov V., Lagrangian Estimation of Ozone Loss in the core and Edge Region of the Arctic Polar Vortex 1995/1996: Model Results and Observations // Journal of Atmospheric Chemistry, v 44, p.191−210,2003.
- Petterssen, S. (1940), Weather Analysis and Forecasting, pp.221−223, McGraw-Hill, New York.
- Оценки переноса водяного пара, озона в верхней тропосфере -нижней стратосфере и потоков через тропопаузу в полевой кампании на ст. Соданкюла (Финляндия) / Лукьянов А. Н., и др // Известия РАН. Физика атмосферы и океана, том 45, № 3, С. 316−324, 2009.
- Thomson, D. J. (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. Journal of Fluid Mechanics 180, 529 556.
- Stohl, A., M. Hittenberger, and G. Wotawa (1998): Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiments // Atmos. Environ. 32, 4245−4264.
- A global coupled Eulerian-Lagrangian model and 1 * 1 km C02 surface flux dataset for high-resolution atmospheric C02 transport simulations / Ganshin A., et al // Geosci. Model Dev. Discuss. 2011. V. 4. P. 2047−2080.
- What is the concentration footprint of a tall tower? / Gloor, M., et al // J. Geophys. Res., 106, 17 831−17 840, 2001.
- C. Gerbig, A. J. Dolman, and M. Heimann, On observational and modelling strategies targeted at regional carbon exchange over continents // Biogeosciences, 6,1949−1959, 2009.
- Фаддеев Д.К., B.H. Фаддеева. Вычислительные методы линейной алгебры, — Изд. 2-е, — М.: «Наука», 1963 656с
- Марчук Г. И. Методы вычислительной математики, М., 1977, 456с
- Марчук Г. И., Алоян А. Е., Глобальный перенос примеси в атмосфере // Известия РАН. Физика атмосферы и океана. 1995. Т. 31, № 5. С. 597−606.
- Пененко В. В., Алоян А. Е., Модели и методы для задач охраны окружающей среды //Новосибирск: Наука. Сиб. отд-ние, 1985.
- TransCom 3 Experimental Protocol / Gurney К., et al I I Department of Atmospheric Science, Colorado State University, USA, Paper No. 707, 2000.
- Role of biomass burning and climate anomalies on land-atmosphere carbon fluxes based on inverse modelling of atmospheric C02 / Patra, P.K., et al // Global Biogeochem. Cycles, v. 19, GB3005, doi:10.1029/2004GB002258,2005a.
- Interannual and decadal changes in the sea-air C02 flux from atmospheric C02 inverse modelling / Patra, P.K., et al // Global Biogeochem. Cycles, 19, GB4013, doi:10.1029/2004GB002257, 2005b.
- Comparison of C02 fluxes estimated using atmospheric and oceanic inversions, and role of fluxes and their interannual variability in simulating atmospheric C02 concentrations / Patra, P.K., et al // Atmos. Chem. Phys. Discuss., 6, 6801−6823,2006.
- Estimating surface C02 fluxes from space-borne C02 dry air mole fraction observations using an ensemble Kalman Filter / Feng, L., et al // Atmos. Chem. Phys. 2009. V. 9. P. 2619−2633.
- On aggregation errors in atmospheric transport inversions / Kaminski, Т., et al // J.Geophys. Res., 106(D), 4703- 4715, 2001
- Kaminski, T., Heimann, M., and Giering, R., A coarse grid three-dimensional global inverse model of atmospheric transport: 2. Inversion of the transport of C02 in 1980s //J. Geophys. Res., 104(D15), 18, 555−18, 582.1999
- C02 flux history 1982−2001 inferred from atmospheric data using a global iversion of atmospheric transport / Rodenbeck, C., et al // Atmos. Chem. Phys., 3,1919−1964, 2003.
- Michalak, A. M., Bruhwiler, L. and Tans P. P., A geostatistical approach to surface flux estimation of atmospheric trace gases // J. Geophys. Res., 109, D14109, doi: 10.1029/2003JD004422,2004.
- Technical Note: A novel approach to estimation of time-variable surface sources and sinks of carbon dioxide using empirical orthogonal functions and the Kalman filter / Zhuravlev R., et al // Atmos. Chem. Phys. 2011. V. 20. P. 10 305−10 315
- Wikle, C. K. and Cressie N. A dimension reduced approach to spacetime Kalman filtering // Biometrika, 86:815−829, 1999.
- Hansen, P. C., The truncated SVD as a method for regularization, BIT, 27, 534−553,1987.
- Hansen, P.C., Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion // SLAM Monogr. on Math. Modeling and Computation 4,247 pp, 1998.
- An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker / Peters et al // PNAS, November 27, 2007, vol. 104, no. 48,18 925−18 930,2007.
- Marland G., Fossil fuels C02 emissions: Three countries account for 50% in 1986 In: CDIAC Communications, Winter 1989, pp. l^t, 1989.
- Simulations of terrestrial carbon metabolism and atmsopheric C02 in a general circulation model, Part 2: Simulated C02 concentrations / Denning A. S., et al // Tellus, vol.48B, pp.8543−8567, 1996.
- The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide / Randerson, et al // Global Biogeochemical Cycles, 11, 535−560,1997
- Global sea-air C02 flux based on climatological surface ocean pC02, and seasonal biological and temperature effects / Takahashi T., et al // Deep-Sea Research Part II, vol.49, pp.1601−1622, 2002.
- Examination of model- estimated ecosystem respiration by use of flux measurement data from a cool-temperate deciduous broad-leaved forest in central Japan / Ito, A., et al // Tellus B, 59,616−624,2007.
- Monsi, M. and Saeki, T.: Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutungf’ur die Stoffproduktion, Jpn. J. Bot., 14,22−52, 1953.
- Global land cover mapping from MODIS: Algorithms and early results / Friedl, M. A., et al // Remote Sens. Environ., 83, 287−302, 2002.
- Evaluation of biases in JRA-25/JCDAS precipitation and their Impact on the Global Terrestrial Carbon Balance / Saito, M., et al // J. Climate, 21, 41 094 125, 2Oil.
- Saito, M., Ito, A., and Maksyutov, S.: Synthesis modeling of atmospheric C02 variability and terrestrial biomass with inversion scheme, Global Biogeochem. Cycles, submitted, 2012
- Valsala, K. V. and Maksyutov, S.: Simulation and assimilation of global ocean pC02 and air-sea C02 fluxes using ship ob servations of surface ocean pC02 in a simplified biogeochem- ical offline model // Tellus, 62B, 821— 840, 2010.
- Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997−2009) / van der Werf G. R., et al // Atmos. Chem. Phys. 2010. V. 10. P. 11 707−11 735
- Vermote, EF, El Saleous, NZ, Justice, CO (2002). Atmospheric correction of MODIS data in the visible to middle infrared: first results. REMOTE SENSING OF ENVIRONMENT, 83(2-Jan), 97−111
- Justice, CO, Townshend, JRG, Vermote, EF, Masuoka, E, Wolfe, RE, Saleous, N, Roy, DP, Morisette, JT (2002). An overview of MODIS Land data processing and product status. REMOTE SENSING OF ENVIRONMENT, 83(2-Jan), 3−15.
- Oda Т., Maksyutov S. A very high-resolution (Ikmxl kin) global fossil fuel C02 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys., 11, 543−556, 2011
- Andres, R. J.- Marland, G.- Fung, I.- A 1° *1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 19 501 990, Global Biogeochem. Cy., 10,419129, 1996.
- Panofsky H., Objective weather-map analysis // J. Appl. Meteor. 1949. V. 6. P. 386−392
- Gilchrist В., Cressman G., An experiment in objective analysis // Tellus. 1954. V. 6. P. 309−318.
- Bergthorsson P., Doos В., Numerical weather map analysis // Tellus. 1955. V. 7. P. 329−340
- Cressman G., An operational objective analysis system // Mon. Wea. Rev. 1959. V. 87. P. 367−374
- Гандин Л., Объективный анализ гидрометеорологических полей. Л.: Гидрометиздат, 1963. 287с
- Lorenc А. С. A global three-dimensional multivariate statistical analysis scheme //Mon. Wea. Rev. 1986. V. 109. P. 701−721.
- Lorenc A. C. Analysis methods for numerical weather prediction // Quart. J. R. Meteorol. Soc. 1986. V. 112. P. 1177−1194
- Evensen G., Data assimilation: The ensemble Kalman filter. Berlin: Springer. 2007. 307p
- Sasaki Y., Some basic formalisms in numerical variational analysis // Mon. Wea. Rev. 1970. V. 98. P. 875−883
- Provost C., Salmon R., A variational methods for inverting hydrographic data//J. Mar. Res. 1986. V. 44. P. 1−34
- Пененко В. В., Образцов Н. В., Вариационный метод для полей метеорологических элементов // Метеорология и гидрология. 1976. № 11. С, 1−11
- Le Dimet F.-X., Talagrand О., Variational algorithms for analysis and assimilation of meteorological observations: Theoretical Aspects // Tellus. 1986. V.38A. P. 97−110
- Brennet A. F., Inverse modeling of the ocean and atmosphere. Cambridge University Press, 2002, 234p
- Daley R., Atmospheric Data Analysis. Cambridge: Cambridge University Press, 1991,457p
- Kalnay E., Atmospheric Modeling. Data Assimilation and Predictibility. Cambridge: Cambridge University Press, 2003,457p
- Zhang F.Q., Zhang M., Hansen J.A., Coupling Ensemble Kalman filter with four dimensional variational data assimilation // Adv. Atmos. Sci. 2009. V. 26. № l.p. 1−8
- Caya A., Sun J., Snyder C., A Comparison between the 4DVAR and the ensemble Kalman filter techniques for radar assimilation // Mon. Wea. Rev. 2005. V. 133. № 11. P. 3081−3094
- Tian X., Xie J., Dai A., An ensemble-based explicit 4D-Var assimilation method // J. Geophys. Res. 2008. V. 113
- Navon I.M., A review of variational and optimization methods in meteorology // Ed. Sasaki Y.K. (ed.) Variational Methods in Geosciences. New York: Elsevier, 1986. P. 29−34
- Estimation of global C02 fluxes at regional scale using the maximum likelihood ensemble filter / Lokupitiya, R. S., et al // J. Geophys. Res., 2008, V. 113, D20110
- Evidence of systematic errors in SCIAMACHY-observed C02 due to aerosols / Houweling, S., et al // Atmos. Chem. Phys. 2005. V. 5. P. 3003−3013.
- Carbon source/sink information provided by column C02 measurements from the Orbiting Carbon Observatory / Baker, D. F., et al // Atmos. Chem. Phys. 2010. V. 10. P. 4145−4165
- Role of simulated GOSAT total column CO2 observations in surface C02 flux uncertainty reduction / Kadygrov, N., etal // J. Geophys. Res. 2009. 114
- Projected impact of the GOSAT observations in regional C02 fluxes estimations as a function of total retrieval error / Maksyutov, S., et al // J. Remote Sens. Soc. Jpn., 2008, 28(2), 190−197.
- Detection of optical path in spectroscopic space-based observations of greenhouse gases: Application to GOSAT data processing / Oshchepkov S., et al //J. Geophys. Res. 2010. V. 116
- An evaluation of C02 observations with Solar Occultation FTS for Inclined-Orbit Satellite sensor for surface source inversion / Patra, P. K., et al // J. Geophys. Res., 2003, 108(D24), 4759
- Retrieval algorithm for C02 and CII4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite / Yoshida, Y., et al // Atmos. Meas. Tech. Discuss., 3, 47 914 833,2010.
- Evidence for interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network / Conway, T.J., et al // J. Geophys. Res. 1994. V. 99. P. 22 831−22 855.
- An improved Kalman Smoother for atmospheric inversions / Bruhwiler L. M. P., et al // Atmos. Chem. Phys. 2005. V. 5. P. 2691−2702
- The JRA-25 Reanalysis / Onogi K., et al // J. Meteor. Soc. Japan. 2007. V. 85. P. 369−432.
- Global Concentrations of C02 and CH4 Retrieved from GOSAT: First Preliminary Results / Yokota, T., et al // SOLA, Vol. 5, pp.160−163 (2009).
- Continuous measurements of methane from a tower network over Siberia / Sasakawa, M., et al // Tellus, 2010, 62B, 403−416.