Избранные теоремы геометрии тетраэдра
Решая задачу 2, мы доказали, что центр описанной около тетраэдра сферы проецируется на каждую грань в середину отрезка, концами которого является основание высоты, опущенной на эту грань, и точка пересечения высот этой грани. А поскольку расстояние от центра описанной около тетраэдра сферы до грани равно, где h — высота тетраэдра, центр описанной сферы удален от данных точек на расстояние, где… Читать ещё >
Избранные теоремы геометрии тетраэдра (реферат, курсовая, диплом, контрольная)
Выпускная квалификационная работа
Избранные теоремы геометрии тетраэдра
Специальность / направление подготовки Математика
Специализация / профиль Математика — информатика
Введение
Глава I. Виды тетраэдров и теоремы о тетраэдрах
1.1 Теоремы о тетраэдрах
§ 1. Теорема Менелая
§ 2. Теорема Чевы
§ 3. Свойства медиан и бимедиан тетраэдра
1.2 Различные виды тетраэдров.
§ 1. Пифагоровы тетраэдры
§ 2. Ортоцентрические тетраэдры
§ 3. Каркасные тетраэдры
§ 4. Равногранные тетраэдры
§ 5. Инцентрические тетраэдры
§ 6. Соразмерные тетраэдры
§ 7. Правильные тетраэдры Глава II. Тетраэдр в курсе математики средней школы
§ 1. Сравнительная характеристика изложения темы «тетраэдр» в школьных учебниках
§ 2. Тестирование уровня развития пространственного мышления у учеников средней школы
Интерес к изучению тетраэдра возник у человечества с древних времен и не угасает до сих пор. Это связано не только с его красотой, но и с большой практической ценностью.
Тетраэдр является одним из основных фигур стереометрии, однако его изучение в курсе средней школы недостаточно подробно. В некоторых учебниках авторы избегают самой терминологии, предпочитая называть фигуру «треугольной пирамидой» (и рассматривают её именно в таком ключе), а об изучении различных видов тетраэдров зачастую и говорить не приходится.
Роль задач о тетраэдрах в математическом развитии школьников трудно переоценить. Они стимулируют накопление конкретных геометрических представлений, способствуют развитию пространственного мышления, что особенно важно в процессе изучения стереометрии.
Изучению тетраэдра как школе, так и в вузах посвящено лишь небольшое количество занятий, поэтому целью дипломной работы является изучение различных видов тетраэдров, а также теорем, связанных с геометрией тетраэдра. В соответствии с целью сформулированы следующие задачи:
1. Собрать сведения о тетраэдре из различных источников и привести их в систему; разобрать доказательства теорем, связанных с тетраэдром;
2. Проанализировать методику изложения материала в различных школьных учебниках;
3. Разработать курс занятий о тетраэдре для средней школы.
В первой главе моей дипломной работы речь пойдёт о различных видах тетраэдра и некоторых теоремах, касающихся этой фигуры. Вторая глава посвящена анализу учебного материала для средней школы по заданной теме и разработке курса занятий.
Глава I. Виды тетраэдров и теоремы о тетраэдрах
1.1 Теоремы о тетраэдрах
§ 1. Теорема Менелая
Теорема Менелая для треугольника.
Пусть точки А1 и С1 лежат на сторонах ВC и АC треугольника АВС, точка В1 на продолжении стороны АС этого треугольника. Для того чтобы точки А1, В1, С1 лежали на одной прямой необходимо и достаточно, чтобы выполнялось равенство ===1.
Доказательство.
Сначала докажем необходимость. Пусть точки А1, В1, С1 лежат на прямой l и AA0=h1, CC0=h3 — перпендикуляры, опущенные соответственно из точек А, В, С на прямую l. Из подобия треугольников АА0С1 и ВВ0С1 получаем
. Аналогично, рассматривая другие пары подобных треугольников, получаем;. Перемножая полученные пропорции, приходим к требуемому равенству.
Теперь докажем достаточность. Пусть точки А1, В1, С1, лежащие на прямых ВС, АС, АВ таковы, что. Докажем, что точки А1, В1, С1 лежат на одной прямой.
Проведем прямую А1В1 и докажем, что точка С1 ей принадлежит. Предположим, что это не так. Сначала заметим, прямая А1В1 не параллельна прямой АВ. Пусть Т — точка пересечения А1В1 и АВ, тогда
. Из условия и равенства (1) следует, что. Так как точки Т и С1 лежат вне отрезка АВ, их совпадение вытекает из следующей леммы.
Лемма 1.
Пусть, А и В две различные точки, тогда для любого k>0, k?1 на прямой АВ существуют две точки U и V такие, что, причем одна из этих точек принадлежит отрезку АВ, а другая лежит вне отрезка.
Доказательство.
Введем на прямой АВ координаты, приняв точку А за начало координат. Пусть для определенности k>1, тогда координата искомой точки U, лежащей внутри отрезка АВ, удовлетворяет уравнению, откуда. Точка V находится вне отрезка AB, из уравнения, откуда. Случай 01 отличается от рассмотренного лишь тем, что точку V следует искать левее точки А.
Теорема Менелая допускает интересное стереометрическое обобщение.
Теорема Менелая для тетраэдра.
Если плоскость м пересекает ребра АВ, ВС, CD и DA тетраэдра АВСD в точках А1, В1, С1, D1, то (2).
Обратно, если для четырех точек А1, В1, С1, D1, лежащих соответственно на ребрах АВ, ВС, СD, DA тетраэдра, выполнено равенство (2), то эти четыре точки лежат в одной плоскости.
Доказательство.
Пусть h1, h2, h3, h4 — расстояния от точек А, В, С, D соответственно до плоскости м, тогда; ;; .
Осталось перемножить полученные отношения.
Для доказательства обратной теоремы построим плоскость А1, В1, С1. Пусть эта плоскость пересекает ребро DA в точке Т.
По доказанному, а по условию, поэтому (и по лемме) точки Т и D1 совпадают. Утверждение доказано.
§ 2. Теорема Чевы
Теорема Чевы для треугольника.
Пусть точки А1, В1, С1 лежат соответственно на сторонах ВС, АС и ВА треугольника АВС (см. рис). Для того чтобы отрезки АА1, ВВ1, СС1 пересекались в одной точке, необходимо и достаточно, чтобы выполнялось соотношение: (3) (отрезки АА1, ВВ1, СС1 иногда называют чевианами).
Доказательство.
Необходимость. Пусть отрезки АА1, ВВ1, СС1 пересекаются в точке М внутри треугольника АВС.
Обозначим через S1, S2, S3 площади треугольников АМС, СМВ, АМВ, а через h1, h2 — расстояния от точек А и В до прямой МС. Тогда аналогично,. Перемножив полученные пропорции, убеждаемся в справедливости теоремы.
Достаточность. Пусть точки А1, В1, С1 лежат на сторонах ВС, СА, АС треугольника, и выполнено соотношение (3), М — точка пересечения отрезков АА1и ВВ1, а отрезок СМ пересекает сторону АВ в точке Q. Тогда, по уже доказанному,. Из леммы снова следует совпадение точек Q=C1. Достаточность доказана.
Перейдем теперь к пространственному обобщению теоремы Чевы.
Теорема Чевы для тетраэдра.
Пусть М — точка внутри тетраэдра АВСD, а А1, В1, С1 и D1 — точки пересечения плоскостей СМD, AMD, АМВ и СМВ с ребрами АВ, ВC, СD и DA соответственно. Тогда (4). Обратно: если для точек, то плоскости АВС, ВСD1 и DAB1 проходят через одну точку.
Доказательство.
Необходимость легко получить, если заметить, что точки А1, В1, С1, D1 лежат в одной плоскости (эта плоскость проходит через прямые А1С1 и В1D1, пересекающиеся в точке М), и применить теорему Менелая. Обратная теорема доказывается так же, так и обратная теореме Менелая в пространстве: нужно провести плоскость через точки А1, В1, С1 и доказать с помощью леммы, что эта плоскость пересечет ребро DA в точке D1.
§ 3. Свойства медиан и бимедиан тетраэдра
Медианой тетраэдра называется отрезок, соединяющий вершину тетраэдра с центром тяжести противоположной грани (точкой пересечения медиан).
Теорема (Применение теоремы Менелая).
Медианы тетраэдра пересекаются в одной точке. Эта точка делит каждую медиану в отношении 3:1, считая от вершины.
Доказательство.
Проведем две медианы: DD1 и CC1 тетраэдра ABCD. Эти медианы пересекутся в точке F. CL — медиана грани ABC, DL — медиана грани ABD, а D1, C1 — центры тяжести грани ABC и ABD. По теореме Менелая: и. Запишем теорему для треугольника DLD1:; => Доказательство производится аналогично для любой другой пары медиан.
Теорема (Применение теоремы Чевы).
Для начала дадим определения некоторых элементов тетраэдра. Отрезок, соединяющий середины скрещивающихся ребер тетраэдра называется бимедианой. Бивысотами (по аналогии) называют общие перпендикуляры скрещивающихся ребер.
Теорема.
Бимедианы тетраэдра пересекаются в той же самой точке, что и медианы тетраэдра.
Доказательство.
В треугольнике LDC отрезки DC и LF пересекутся в точке K. По теореме Чевы для этого треугольника:, т. е., CK=KD, LK — бимедиана.
Замечание 1.
FL=FK. Теорема Менелая для треугольника DLK:, , отсюда LF=FK.
Замечание 2.
Точка F является центром тяжести тетраэдра., , значит .
1.2 Различные виды тетраэдров
§1. Пифагоровы тетраэдры
Треугольник называется пифагоровым, если у него один угол прямой, а отношение любых сторон рационально (т.е применяя подобие, можно из него получить прямоугольный треугольник с целыми длинами сторон).
По аналогии с этим, тетраэдр называют пифагоровым, если его плоские углы при одной из вершин прямые, а отношение любых двух ребер рационально (из него с помощью подобия можно получить тетраэдр с прямыми плоскими углами при одной из вершин и целыми длинами ребер).
Попробуем вывести «Уравнение пифагоровых тетраэдров», т. е. такое уравнение с тремя неизвестными о, з, ж, что любой пифагоров тетраэдр дает рациональное решение этого уравнения, и наоборот, любое рациональное решение уравнения дает пифагоров тетраэдр.
Сначала дадим способ описания всех пифагоровых треугольников.
На рисунке треугольник ОАВ — прямоугольный, длины его катетов обозначены через а и b, а дина гипотенузы — через р. Число (1) условимся называть параметром прямоугольного треугольника ОАВ (или точнее, параметром «относительно катета а»). Используя соотношение р2=а2+b2, имеем:
Из этих уравнений непосредственно получим формулы, выражающие отношения сторон прямоугольного треугольника через его параметр:
и (2).
Из формул (1) и (2) непосредственно вытекает следующее утверждение: для того, чтобы прямоугольный треугольник был пифагоровым, необходимо и достаточно, чтобы число о было рациональным. В самом деле, если треугольник пифагоров, то из (1) следует, что о рационально. Обратно, если о рационально, то согласно (2) отношения сторон рациональны, то есть треугольник пифагоров.
Пусть теперь ОАВС — тетраэдр, у которого плоские углы при вершине О прямые. Длины ребер, исходящих из вершины О, обозначим через a, b, с, а длины оставшихся ребер через р, q, r.
Рассмотрим параметры трех прямоугольных треугольников ОАВ, ОВС, ОСА:
(3)
Тогда по формулам (2) можно выразить отношения сторон этих прямоугольных треугольников через их параметры:
(4),
(5).
Из (4) непосредственно вытекает, что параметры о, з, ж, удовлетворяют соотношению (6). Это и есть общее уравнение пифагоровых тетраэдров.
Из формул (3) — (5) непосредственно вытекает следующее утверждение: для того чтобы тетраэдр ОАВС с прямыми плоскими углами при вершине О был пифагоровым, необходимо и достаточно, чтобы параметры о, з, ж (удовлетворяющие уравнению (6)) были рациональными.
Продолжая аналогию пифагорова треугольника с пифагоровым тетраэдром, попробуем сформулировать и доказать пространственное обобщение теоремы Пифагора для прямоугольных тетраэдров, которая, очевидно, будет верна и для пифагоровых тетраэдров. В этом нам поможет следующая лемма.
Лемма 1.
Если площадь многоугольника равна S, то площадь его проекции на плоскость р равна, где ц — угол между плоскостью р и плоскостью многоугольника.
Доказательство.
Утверждение леммы очевидно для треугольника, одна сторона которого параллельна линии пересечения плоскости р с плоскостью многоугольника. В самом деле, длина этой стороны при проекции не изменяется, а длина высоты, опущенной на нее при проекции, изменяется в cosц раз.
Докажем теперь, что любой многогранник можно разделить на треугольники указанного вида.
Проведем для этого через все вершины многоугольника прямые, параллельные линии пересечения плоскостей, многоугольник разрежется при этом на треугольники и трапеции. Остается разрезать каждую трапецию по любой из ее диагоналей.
Теорема 1 (пространственная теорема Пифагора).
В прямоугольном тетраэдре АВСD, с плоскими углами при вершине D, сумма квадратов площадей трех его прямоугольных граней равна квадрату площади грани АВС.
Доказательство.
Пусть б — угол между плоскостями АВС и DВС, D' — проекция точки D на плоскость АВС. Тогда SДDBC=СоsбSДАBC и SДD’BC=cоsбSДDBC (по лемме 1), поэтому cоsб = . SДD'BC = .
Аналогичные равенства можно получить и для треугольников D’АВ и D’АС. Складывая их и учитывая, что сумма площадей треугольников D’ВС, D’АС и D’АВ равна площади треугольника АВС, получаем требуемое.
Задача.
Пусть все плоские углы при вершине D прямые; a,b,c — длины ребер, выходящих из вершины D на плоскость ABC. Тогда
Доказательство.
По теореме Пифагора для прямоугольного тетраэдра
;
.
С другой стороны
(:
1=) => .
§2. Ортоцентрические тетраэдры
В отличие от треугольника, высоты которого всегда пересекаются в одной точке — ортоцентре, не всякий тетраэдр обладает аналогичным свойством. Тетраэдр, высоты которого пересекаются в одной точке, называется ортоцентрическим. мы начнем изучение ортоцентрических тетраэдров с необходимых и достаточных условий ортоцентричности, каждое из которых можно принять за определение ортоцентрического тетраэдра.
(1) Высоты тетраэдра пересекаются в одной точке.
(2) Основания высот тетраэдра являются ортоцентрами граней.
(3) Каждые два противоположных ребра тетраэдра перпендикулярны.
(4) Суммы квадратов противоположных ребер тетраэдра равны.
(5) Отрезки, соединяющие середины противоположных ребер тетраэдра, равны.
(6) Произведения косинусов противоположных двугранных углов равны.
(7) Сумма квадратов площадей граней вчетверо меньше суммы квадратов произведений противоположных ребер.
Докажем некоторые из них.
Доказательство (3).
Пусть каждые два противоположных ребра тетраэдра перпендикулярны.
Следовательно, высоты тетраэдра попарно пересекаются. Если несколько прямых попарно пересекаются, то они лежат в одной плоскости или проходят через одну точку. В одной плоскости высоты тетраэдра лежать не могут, так как иначе в одной плоскости лежали бы и его вершины, поэтому они пересекаются в одной точке.
Вообще говоря, для того чтобы высоты тетраэдра пересекались в одной точке, необходимо и достаточно потребовать перпендикулярность только двух пар противоположных ребер. Доказательство этого предложения напрямую следует из следующей задачи.
Задача 1.
Дан произвольный тетраэдр ABCD. Докажите, что .
Решение.
Пусть а=, b=, с=. Тогда , и, складывая эти равенства, получаем требуемое.
Далее докажем свойство (4).
Пусть а=, b= и с=. Равенство 2+2=2+2, что, т. е. (а, с)=0. Применяя данный алгоритм к другим парам противоположных ребер, очевидно, получим искомое утверждение.
Приведем оказательство свойства (6).
Для доказательства используем следующие теоремы:
§ Теорема синусов. «Произведение длин двух противоположных ребер тетраэдра, деленное на произведение синусов двугранных углов при этих ребрах, одно и то же для всех трех пар противоположных ребер тетраэдра».
§ Теорема Бертшнейдера. «Если a и b — длины двух скрещивающихся ребер тетраэдра, а — двугранные углы при этих ребрах, то величина не зависит от выбора пары скрещивающихся ребер.
Воспользовавшись теоремой синусов для тетраэдра и теоремой Бертшнейдера, получаем, что произведения косинусов противоположных двугранных углов равны тогда и только тогда, когда равны суммы квадратов противоположных ребер, из чего и следует справедливость свойства (6) ортоцентрического тетраэдра.
В заключение пункта об ортоцентрическом тетраэдре решим несколько задач на эту тему.
Задача 2.
Докажите, что в ортоцентрическом тетраэдре выполняется соотношение ОН2=4R2-3d2, где О — центр описанной сферы, H — точка пересечения высот, R — радиус описанной сферы, d — расстояние между серединами противоположных ребер.
Решение.
Пусть К и L — середины ребер АВ и СD соответственно. Точка Н лежитт в плоскости, проходящей через СD перепендикулярно АВ, а точка О — в плоскости, проходящей черех К перпендикулярно АВ.
Эти плоскости симметричны относительно центра масс тетраэдра — середины отрезка KL. Рассматривая такие плоскости для всех ребер, получаем, что точки Н и О симметричны относительно М, а значит КLМО — параллелограмм. Квадраты его сторон равны и, поэтому. Рассматривая сечение, проходящее через точку М параллельно АВ и СD, получаем что АВ2+CD2=4d2.
Здесь можно добавить, что прямую, на которой лежат точки О, М и Н, называют прямой Эйлера ортоцентрического тетраэдра.
Замечание.
Наряду с прямой Эйлера можно отметить существование сфер Эйлера для ортоцентрического тераэдра, о которых и пойдет речь в следующих задачах.
Задача 3.
Доказать, что для ортоцентрического тетраэдра окружности 9 точек каждой грани принадлежат одной сфере (сфере 24 точек). Для решения этой задачи необходимо доказать условие следующей задачи.
Задача 4.
Доказать, что середины сторон треугольника, основания высот и середины отрезков высот от вершин до точки их пересечения лежат на одной окружности — окружности 9 точек (Эйлер).
Доказательство.
Пусть АВС — данный треугольник, Н — точка пересечения его высот, А1, В1, С1 — середины отрезков АН, ВН, СН; АА2 — высоты, А3 — середина ВС. Будем считать для удобства, что АВС — остроугольный треугольник. Поскольку В1А1С1=ВАС и ДВ1А2С1=ДВ1НС1, то В1А2С1=В1НС=180° — В1А1С1, т. е. точки А1, В1, А2, С1 лежат на одной окружности. Также легко увидеть, что В1А3С1=В1НС=180° - В1А1С1, т. е. точки А1, В1, А3, С1 тоже лежат на одной (а значит на той же) окружности. Отсюда следует, что все 9 точек, о которых говорится в условии, лежат на одной окружности. Случай тупоугольного треугольника АВС рассматривается аналогично.
Заметим, что окружность 9 точек гомотетична описанной окружности с центром в Н и коэффициентом (именно так расположены треугольники АВС и А1В1С1). С другой стороны, окружность 9 точек гомотетична описанной окружности с центром в точке пересечения медиан треугольника АВС и коэффициентом (именно так расположены треугольники АВС и треугольник с вершинами в серединах его сторон).
Теперь, после определения окружности 9 точек, можно перейти к доказательству условия задачи 3.
Доказательство.
Сечение ортоцентрического тетраэдра любой плоскостью, параллельной противоположным ребрам и проходящей на равном расстоянии от этих ребер, есть прямоугольник, диагонали которого равны расстоянию между серединами противоположных ребер тетраэдра (все эти расстояния равны между собой, см. необходимое и достаточное условие ортоцентричности (5). Отсюда следует, что середины всех ребер ортоцентрического тетраэдра лежат на поверхности сферы, центр которой совпадает с центром тяжести данного тетраэдра, а диаметр равен расстоянию между серединами противоположных ребер тетраэдра. Значит, все четыре окружности 9 точек лежат на поверхности этой сферы.
Задача 5.
Доказать, что для ортоцентрического тетраэдра центры тяжести и точки пересечения высот граней, а также точки, делящие отрезки каждой высоты тетраэдра от вершины до точки пересечения высот в отношении 2:1, лежат на одной сфере (сфере 12 точек).
Доказательство.
Пусть точки О, М и Н — соответственно центр описанного шара, ценетр тяжести и ортоцентр ортоцентрического тетраэдра; М — середина отрезка ОН (см. задачу 2). Центры тяжести граней тетраэдра служат вершинами тетраэдра, гомотетичного, с центром гомотетиии в точке М и коэффициентом, при этой гомотетии точка О перейдет в точку О1, расположенную на отрезке МН так, что, О1 будет центром сферы проходящей через центры тяжестей граней.
С другой стороны, точки, делящие отрезки высот тетраэдра от вершин до ортоцентра в отношении 2:1, служат вершинами тетраэдра, гомотетичного данному с центром гомотетии в Н и коэффициентом. При этой гомотетии точка О, как легко видеть, перейдет в ту же точку О1. Таким образом, восемь из двенадцати точек лежат на поверхности сферы с центром в О1 и радиусом, втрое меньшим, чем радиус сферы, описанной около тетраэдра.
Докажем, что точки пересечения высот каждой грани лежат на поверхности той же сферы.
Пусть О`, Н` и М` — центр описанной окружности, точка пересечения высот и центр тяжести какой-либо грани. О` и Н` являются проекциями точек О и Н на плоскость этой грани, а отрезок М` делит отрезок О`Н` в отношении 1:2, считая от О`(известный планиметрический факт). Теперь легко убедиться (см. рис), что проекция О1 на плоскость этой грани — точка О`1 совпадает с серединой отрезка М`Н`, т. е. О1 равноудалена от М` и Н`, что и требовалось.
§3. Каркасные тетраэдры
Каркасным называется тетраэдр, для которого существует сфера, касающаяся всех шести ребер тетраэдра. Не всякий тетраэдр каркасный. Например, легко понять, что нельзя построить сферу, касающуюся всех ребер равногранного тетраэдра, если его описанный параллелепипед «длинный» .
Перечислим свойства каркасного тетраэдра.
(1) Существует сфера, касающаяся всех ребер тетраэдра.
(2) Суммы длин скрещивающихся ребер равны.
(3) Суммы двугранных углов при противоположных ребрах равны.
(4) Окружности, вписанные в грани, попарно касаются.
(5) Все четырехугольники, получающиеся на развертке тетраэдра, — описанные.
(6) Перпендикуляры, восстановленные к граням из центров вписанных в них окружностей, пересекаются в одной точке.
Докажем несколько свойств каркасного тераэдра.
Доказательство (2).
Пусть О — центр сферы, касающейся четырех ребер во внутренних точках. заметим теперь, что если из точки Х провести касательные ХР и ХQ к сфере с центром О, то точки Р и Q симметричны относительно плоскости, проходящей прямую ХО и середину отрезка PQ, а значит плоскости РОХ и QОХ образуют с плоскостью ХРQ равные углы.
Проведем 4 плоскости, проходящие через точку О и рассматриваемые ребра тетраэдра. Они разбивают каждый из рассматриваемых двугранных углов на два двугранных угла. Выше было показано, что полученные двугранные углы, прилегающие к одной грани тетраэдра, равны. Как в одну, так и в другую рассматриваемую сумму двугранных углов входит по одному полученному углу для каждой грани тетраэдра. Проводя аналогичные рассуждения для других пар скрещивающихся ребер, получим справедливость свойства (2).
Вспомним некоторые свойства описанного четырехугольника:
a) Плоский четырехугольник будет описанным тогда и только тогда, когда суммы его противоположных сторон равны;
b) Если описанный четырехугольник разбить диагональю на два треугольника, то вписанные в треугольники окружности касаются Учитывая эти свойства, легко доказать остальные свойства каркасного тетраэдра. Свойство (3) тетраэдра напрямую следует из свойства (b), а свойство (4) из свойства (a) и свойства (1) тетраэдра. Свойство (5) из свойства (3). Действительно, ведь окружности вписанные в грани тетраэдра, являются пересечениями его граней со сферой, касающейся ребер, откуда очевидно, что перпендикуляры, восстановленные в центрах вписанных в грани окружностей неминуемо пересекутся в центре этой сферы.
Задача 1.
Сфера касается ребер АВ, ВС, СD и DA тетраэдра АВСD в точках L, M, N, K, являющихся вершинами квадрата. Докажите, что если эта сфера касается ребра АС, то она касается и ребра BD.
Решение.
По условия КLMN — квадрат. Проведем через точки К, L, M, N плоскости, касающиеся сферы. Т. к все эти плоскости одинаково наклонены к плоскости КLMN, то они пересекаются в одной точке S, расположенной на прямой ОО1, где — центр сферы, а О1 — центр квадрата. Эти плоскости пересекают поверхность квадрата KLMN по квадрату TUVW, серединами сторон которого являются точки К, L, M, N. В четырехгранном угле STUVW с вершиной S все плоские углы равны, а точки К, L, M, N лежат на биссектрисах его плоских углов, причем SK=SL=SM=SN. Следовательно,
SA=SC и SD=SB, а значит АК=АL=CM=CN и ВL=BM=DN=DK. По условию АС тоже касается шара, поэтому АC=АК+CN=2АК. А так как SK — биссектриса угла DSA, то DK:КА=DS:SA=DВ:АС. Из равенства АС=2АК следует теперь, что DВ=2DK. Пусть Р — середина отрезка DВ, тогда Р лежит на прямой SO. Треугольники DOK и DOP равны, т.к. DK=DP и DКO=DPO=90°. Поэтому ОР=ОК=R, где R — радиус сферы, а значит, DB тоже касается сферы.
§4. Равногранные тетраэдры
Равногранным называется тетраэдр, все грани которого равны. Чтобы представить себе равногранный тетраэдр, возьмем произвольный остроугольный треугольник из бумаги, и будем сгибать его по средним линиям. Тогда три вершины сойдутся в одну точку, а половинки сторон сомкнутся, образуя боковые ребра тетраэдра.
(0) Грани конгруэнтны.
(1) Скрещивающиеся ребра попарно равны.
(2) Трехгранные углы равны.
(3) Противолежащие двугранные углы равны.
(4) Два плоских угла, опирающихся на одно ребро, равны.
(5) Сумма плоских углов при каждой вершине равна 180°.
(6) Развертка тетраэдра — треугольник или параллелограмм.
(7) Описанный параллелепипед прямоугольный.
(8) Тетраэдр имеет три оси симметрии.
(9) Общие перпендикуляры скрещивающихся ребер попарно перпендикулярны.
(10) Средние линии попарно перпендикулярны.
(11) Периметры граней равны.
(12) Площади граней равны.
(13) Высоты тетраэдра равны.
(14) Отрезки, соединяющие вершины с центрами тяжести противоположных граней, равны.
(15) Радиусы описанных около граней окружностей равны.
(16) Центр тяжести тетраэдра совпадает с центром описанной сферы.
(17) Центр тяжести совпадает с центром вписанной сферы.
(18) Центр описанной сферы совпадает с центром вписанной.
(19) Вписанная сфера касается граней в центрах описанных около этих граней окружностей.
(20) Сумма внешних единичных нормалей (единичных векторов, перпендикулярных к граням), равна нулю.
(21) Сумма всех двугранных углов равна нулю.
Практически все свойства равногранного тетраэдра следуют из его определения, поэтому докажем только некоторые из них.
Доказательство (16).
Т.к. тетраэдр ABCD равногранный, то по свойству (1) AB=CD. Пусть точка К отрезка АВ, а точка L середина отрезка DC, отсюда отрезок KL бимедиана тетраэдра ABCD, откуда по свойствам медиан тетраэдра следует, что точка О — середина отрезка KL, является центром тяжести тетраэдра ABCD.
К тому же медианы тетраэдра пересекаются в центре тяжести, точке О, и делятся этой точкой в отношении 3:1, считая от вершины. Далее, учитывая вышесказанное и свойство (14) равногранного тетраэдра, получаем следующее равенство отрезков АО=ВО=СО=DО, из которого и следует, что точка О является центром описанной сферы (по определению описанной около многогранника сферы).
Обратно. Пусть К и L — середины ребер АВ и СD соответственно, точка О — центр описанной сферы тетраэдра, т. е. середина отрезка KL. Т.к. О — центр описанной сферы тетраэдра, то треугольники AOB и COD — равнобедренные с равными боковыми сторонами и равными медианами OK и OL. Поэтому ДAOB=ДCOD. А значит AB=CD. Аналогично доказывается равенство других пар противоположных ребер, из чего по свойству (1) равногранного тетраэдра и будет следовать искомое.
Доказательство (17).
Рассмотрим биссектор двугранного угла при ребре AB, он разделит отрезок DC в отношении площадей граней ABD и ABC.
Т.к. тетраэдр ABCD равногранный, то по свойству (12) SДABD=SДABD=>DL=LС, откуда следует, что биссектор ABL содержит бимедиану KL. Применяя аналогичные рассуждения для остальных двугранных углов, и принимая во внимание тот факт, что биссекторы тетраэдра пересекаются в одной точке, которая является центром вписанной сферы, получаем, что эта точка неминуемо будет центром тяжести данного равногранного тетраэдра.
Обратно. Из того, что центр тяжести и центр вписанной сферы совпадают имеем следующее: DL=LC=>SABD=SADC. Доказывая подобным образом равновеликость всех граней и, применяя свойство (12) равногранного тетраэдра, получаем искомое.
Теперь докажем свойство (20). Для этого сначала нужно доказать одно из свойств произвольного тетраэдра.
тетраэдр теорема школьный учебник
Лемма 1.
Если длины векторов перпендикулярных к граням тетраэдра численно равны площадям соответствующих граней, то сумма этих векторов равна нулю.
Доказательство.
Пусть Х — точка внутр и многогранника, hi (i=1,2,3,4) — расстояние от нее до плоскости i-ой грани.
Разрежем многогранник на пирамиды с вершиной Х, основаниями которых служат его грани. Объем тетраэдра V равен сумме объемов этих пирамид, т. е. 3 V=?hiSi, где Si площадь i-ой грани. Пусть далее, ni — единичный вектор внешней нормали к i-ой грани, Mi — произвольная точка этой грани. Тогда hi =(ХMi, Sini), поэтому 3V=?hiSi=?(ХMi, Sini)=(ХО, Sini)+(ОMi, Sini)=(ХО, ?Sini)+3V, где О — некоторая фиксированная точка тетраэдра, следовательно, ?Sini=0.
Далее очевидно, что свойство (20) равногранного тетраэдра является частным случаем вышеуказанной леммы, где S1= S2= S3= S4=>n1=n2=n3=n4, и так как площади граней не равны нулю, получаем верное равенство n1+n2+n3+n4=0.
В заключение рассказа о равногранном тетраэдре приведем несколько задач на эту тему.
Задача 1.
Прямая, проходящая через центр масс тетраэдра и центр описанной около него сферы, пересекает ребра AB и CD. Докажите, что AC=BD и AD=BC.
Решение.
Центр масс тетраэдра лежит на прямой, соединяющей середины ребер АВ и СD.
Следовательно, на этой прямой лежит центр описанной сферы тетраэдра, а значит, указанная прямая перпендикулярна ребрам АВ и СD. Пусть С` и D` — проекции точек C и D на плоскость, проходящую через прямую АВ параллельно СD. Т.к. AC`BD` — параллелограмм (по построению), то АС=ВD и АD=ВС.
Задача 2.
Пусть h — высота равногранного тетраэдра, h1 и h2 — отрезки, на которые одна из высот грани делится точкой пересечения высот этой грани. Доказать, что h2=4h1h2; доказать также, что основание высоты тетраэдра и точка пересечения высот грани, на которую эта высота опущена, симметричны относительно центра окружности, описанной около этой грани.
Доказательство.
Пусть АВСD — данный тетраэдр, DH — его высота, DA1, DВ1, DС1 — высоты граней, опущенные из вершины D на стороны ВС, СА и АВ.
Разрежем поверхность тетраэдра вдоль ребер DA, DB, DC, и сделаем развертку. Очевидно, что Н есть точка пересечения высот треугольника D1D2D3. Пусть F — точка пересечения высот треугольника ABC, АК — высота этого треугольника, АF=h1, FК=h2. Тогда D1Н=2h1, D1A1=h1-h2.
Значит, поскольку h — высота нашего тетраэдра, h2=DН2=DA2 — НA12= (h1+ h2)2 — (h1— h2)2=4h1h2. Пусть теперь М — центр тяжести треугольника ABC (он же центр тяжести треугольника D1D2D3), О — центр описанной около него окружности. Известно, что F, М и О лежат на одной прямой (прямая Эйлера), причем М — между F и О, FM=2МО, С другой стороны, треугольник D1D2D3 гомотетичен треугольнику АВС с центром в М и коэффициентом (-2), значит МН=2FM. Из этого следует, что ОН=FO.
Задача 3.
Доказать, что в равногранном тетраэдре основания высот, середины высот и точки пересечения высот граней лежат на поверхности одной сферы (сферы 12 точек).
Доказательство.
Решая задачу 2, мы доказали, что центр описанной около тетраэдра сферы проецируется на каждую грань в середину отрезка, концами которого является основание высоты, опущенной на эту грань, и точка пересечения высот этой грани. А поскольку расстояние от центра описанной около тетраэдра сферы до грани равно, где h — высота тетраэдра, центр описанной сферы удален от данных точек на расстояние, где а — расстояние между точкой пересечения высот и центром описанной около грани окружности.
§5. Инцентрические тетраэдры
Отрезки, соединяющие центры тяжести граней тетраэдра с противоположными вершинами (медианы тетраэдра), всегда пересекаются в одной точке, эта точка — центр тяжести тетраэдра. Если в этом условии заменить центры тяжести граней на ортоцентры граней, то оно превратится в новое определение ортоцентрического тетраэдра. Если же заменить их на центры вписанных в грани окружностей, называемых иногда инцентрами, мы получим определение нового класса тетраэдров — инцентрических.
Признаки класса инцентрических тетраэдров тоже довольно интересны.
(1) Отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке.
(2) Биссектрисы углов двух граней, проведенному к общему ребру этих граней, имеют общее основание.
(3) Произведения длин противоположных ребер равны.
(4) Треугольник, образованный вторыми точками пересечения трех ребер, выходящих из одной вершины, с любой сферой, проходящей через три конца этих ребер, является равносторонним.
Доказательство (2).
По свойству (1), если DF, BE, CF, AM — биссектрисы соответственных углов в треугольниках АВС и FBD, то отрезки КС и LD будут иметь общую точку I (см. рис). Если же прямые DK и СL не пересекаются в точке F, то, очевидно, КС и DL не пересекаются, чего быть не может (по определению инцентрического тетраэдра).
Доказательство (3).
Учитывая свойство (2) и свойство биссектрисы, получаем соотношения:
; .
§6. Соразмерные тетраэдры
Соразмерными называются тетраэдры, у которых
(1) Бивысоты равны.
(2) Проекция тетраэдра на плоскость, перпендикулярную любой бимедиане, есть ромб.
(3) Грани описанного параллелепипеда равновелики.
(4) 4а2а12— (b2+b12-c2-c12)2=4b2b12— (c2+c12-a2-a12)2=4c2c12— (a2+a12-b2-b12)2, где а и а1, b и b1, с и с1 — длины противоположных ребер.
Для доказательства эквивалентности определений (1) — (4) достаточно заметить, что бивысоты тетраэдра равны высотам параллелограмма, являющегося его проекцией, упоминавшейся в свойстве (2), и высотам описанного параллелепипеда, и что квадрат площади параллелепипеда, содержащей, скажем, ребро с, равен, а скалярное произведение выражается через ребра тетраэдра по формуле (4).
Добавим сюда ещё два условия соразмерности:
(5) Для каждой пары противоположных ребер тетраэдра плоскости, проведенные через одно из них и середину второго, перпендикулярны.
(6) В описанный параллелепипед соразмерного тетраэдра можно вписать сферу.
§ 7. Правильные тетраэдры
Если ребра тетраэдра равны между собой, то равны между собой будут и трехгранные, и двугранные, и плоские углы. В таком случае тетраэдр называется правильным. Заметим также, что такой тетраэдр является и ортоцентрическим, и каркасным, и равногранным, и инцентрическим, и соразмерным.
Замечание 1.
Если тетраэдр является равногранным и принадлежит к одному из следующих видов тетраэдров: ортоцентрический, каркасный, инцентрический, соразмерный, то он будет и правильным.
Замечание 2.
Тетраэдр является правильным, если он принадлежит к двум любым видам тетраэдров из перечисленных: ортоцентрический, каркасный, инцентрический, соразмерный, равногранный.
Свойства правильного тетраэдра:
Каждая его вершина является вершиной трех треугольников. А значит, сумма плоских углов при каждой вершине будет равна 180є
(0) В правильный тетраэдр можно вписать октаэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
(1) Правильный тетраэдр состоит из одного вписанного октаэдра (в центре) и четырёх тетраэдров (по вершинам), причем ребра этих тетраэдров и октаэдра вдвое меньше ребер правильного тетраэдра
(2) Правильный тетраэдр можно вписать в куб двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба.
(3) Правильный тетраэдр можно вписать в икосаэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
Задача 1.
Доказать, что скрещивающиеся ребра правильного тетраэдра взаимно перпендикулярны.
Решение:
Пусть DH — высота правильного тетраэдра, точка H — центр правильного ДABC. Тогда проекцией отрезка AD на плоскость основания ABC будет отрезок BH. Т.к. BH?AC, то по теореме о трех перпендикулярах наклонная BD? AC.
Задача 2.
Дан правильный тетраэдр МАВС с ребром 1. найдите расстояние между прямыми AL и МО, где L-середина ребра МС, О-центр грани АВС.
Решение:
1. Расстояние между двумя скрещивающимися прямыми — это длина перпендикуляра, опущенного из одной прямой, к плоскости, параллельной этой прямой и содержащей вторую прямую.
2. Строим проекцию AK отрезка AL на плоскость ABC. Плоскость AKL перпендикулярна плоскости ABC, параллельна прямой MO и содержит прямую AL. Значит, искомая длина — это длина перпендикуляра ON, опущенного из точки O к AK.
3. Найдем SДKHA двумя способами.
SД=.
С другой стороны: SДKHA=
поэтому с .
Найдём ON: с= .
Задача 3.
Каждое ребро треугольной пирамиды PABC равно 1; BD — высота треугольника ABC . Равносторонний треугольник BDE лежит в плоскости, образующей угол ? с ребром AC , причём точки P и E лежат по одну сторону от плоскости ABC . Найдите расстояние между точками P и E .
Решение. Поскольку все рёбра пирамиды PABC равны, это правильный тетраэдр. Пусть M — центр основания ABC , N — ортогональная проекция вершины E равностороннего треугольника BDE на плоскость ABC , K — середина BD , F — основание перпендикуляра, опущенного из точки E на высоту PM тетраэдра PABC . Так как EK BD , то по теореме о трёх перпендикулярах NK BD , поэтому EKN — линейный угол двугранного угла, образованного плоскостями ABC и BDE , а т.к. NK || AC , то EKN = ? . Далее имеем:
BD = , MD = , KD = , BD = , PM = ,
KM = KD - MD = - = , EK = BD· = , EN = EK sin ? = sin ?,
NK = EK cos ? = cos ?, MN2 = NK2 + KM2 = cos 2? + ,
PE2 = EF2 + PF2 = MN2 + (PM — MF)2 = MN2 + (PM — EN)2 =
= cos 2? + + ( — sin ?)2 = cos 2? + + — sin ? + sin 2? == + + — sin ? = — sin ? = — sin ?.
Следовательно,
PE = =.
Задача 4.
Найди углы между скрещивающимися высотами соседних граней тетраэдра.
Решение.
Случай № 1.
Пусть BK и DF — высоты граней ABC и BCD. BK, FD = б. Обозначим длину ребра тетраэдра как a. Проведем FL || BK, тогда б =DFL., KL=LC.
Запишем теорему косинусов для ДDLF:
;;; .
Случай № 2 (высота расположена иначе).