Помощь в написании студенческих работ
Антистрессовый сервис

Происхождение химических элементов

РефератПомощь в написанииУзнать стоимостьмоей работы

В понятиях науки XVIII—XIX вв. материя была вечной, и вопрос о происхождении химических элементов был бы просто некорректен. Если материя вечна, то у нее нет и происхождения. В XX в. ситуация быстро изменялась. Была разработана теория относительности, открыто расширение Вселенной, разработана теория строения и эволюции звезд, открыто так называемое реликтовое излучение, тесно связанное… Читать ещё >

Происхождение химических элементов (реферат, курсовая, диплом, контрольная)

В понятиях науки XVIII—XIX вв. материя была вечной, и вопрос о происхождении химических элементов был бы просто некорректен. Если материя вечна, то у нее нет и происхождения. В XX в. ситуация быстро изменялась. Была разработана теория относительности, открыто расширение Вселенной, разработана теория строения и эволюции звезд, открыто так называемое реликтовое излучение, тесно связанное с расширением Вселенной. Все это привело к наиболее правдоподобной, хотя и трудно умещающейся в голове теории Большого взрыва. Предполагают, что Вселенная начала свое бытие с непостижимого (пока?) импульса, приведшего к продолжающемуся и поныне расширению гигантского сгустка материи из одной точки.

Изучая вещества и их химические превращения, вполне естественно задуматься над вопросом, откуда взялись все те виды атомов, из которых состоят вещества и которые сами при химических реакциях превращениям не подвержены? Постараемся коротко ответить на этот вопрос, насколько это возможно в настоящее время.

По разным данным, Большой взрыв произошел от 15 до 18 млрд лет тому назад. В неимоверно горячем и плотном, стремительно расширяющемся и охлаждающемся сгустке материи непрерывно возникали определенные «поколения» частиц, соответствующие изменяющимся условиям.

Через три минуты расширения и охлаждения плазмы возник набор частиц, который уже не изменялся до начала образования звезд. Важнейшие черты этого состава сводятся к тому, что во Вселенной создалось соотношение между протонами и фотонами, равное 1:109. Это поразительное множество фотонов (но сравнению с атомами) и в настоящее время заполняет пространство в виде реликтового излучения, не имеющего источника.

В течение нескольких минут расширения Вселенная остыла настолько, что скорость ядерных реакций между имеющимися частицами упала до нуля. Нейтроны соединились с протонами, образовав дейтерий, а ядра дейтерия быстро соединялись в ядра гелия (4Не). Начальные условия во Вселенной оказались таковы, что нейтронов хватило на образование приблизительно 10% гелия из общего числа ядер. Остальные протоны сохранились в свободном виде и вместе с электронами в дальнейшем составили химический элемент водород. Будь во Вселенной больше нейтронов, то в веществе мог бы преобладать гелий, что коренным образом отразилось бы на последующих процессах звездообразования. Гелий в звездах превращался бы в тяжелые элементы в несколько раз быстрее, чем водород, и продолжительность жизни звезд сильно сократилась. Это, очевидно, повлияло бы на возможность эволюции биологической жизни.

Еще один вид частиц, обладающих массой покоя и необходимых для образования атомов, — электроны — сохранились в количестве, приблизительно равном количеству протонов. Факт существования перечисленных частиц по-своему замечателен и не объяснен. Все три частицы — протоны, нейтроны и электроны — имеют свои античастицы: антипротоны (р~), антинейтроны (Я) и антиэлектроны (позитроны, е). При столкновении частицы и античастицы происходит их аннигиляция с превращением в конечном счете в фотоны. При температуре в миллиарды градусов фотоны непрерывно порождают пары электрон — позитрон (е~ — е+), которые вновь аннигилируют, превращаясь в фотоны. Таким образом, электроны, позитроны и фотоны находятся в равновесии. При понижении температуры по мере расширения Вселенной энергия фотонов становится недостаточной для рождения пар е~ — е+, все имеющиеся пары аннигилируют, и при этом обнаруживается небольшой избыток электронов, которые и сохранились на последующие времена. Небольшим этот избыток является в сравнении с числом имеющихся фотонов, как сказано выше. То же самое относится и к протонам, которых оказалось чуть больше, чем антипротонов. Следовательно, одной из предпосылок появления атомов оказался ничтожный дисбаланс частиц и античастиц.

Через миллион лет расширения и остывания Вселенной температура понизилась до -4000 К. Это температурная граница, ниже которой электроны захватываются притяжением ядер и образуются «укомплектованные» атомы. Нейтральный гелий возникает при несколько более высокой температуре, чем водород, так как его энергия ионизации больше.

Пока ничего не говорилось о существовании других химических элементов, кроме водорода с его изотопом дейтерием и гелия. На этапе эволюции до появления звезд их действительно не было. Звезды начали образовываться в результате гравитационной конденсации вещества после возникновения нейтральных атомов. Время появления галактик и составляющих их звезд недостаточно определенно. С точки зрения физики разработать теорию процессов, происходивших в течение первых минут после Большого взрыва, оказалось легче, чем «сценарий» дальнейших событий, связанных с фрагментацией вещества на отдельные галактики и звезды. Можно принять в качестве ориентировочной цифры, что первое поколение звезд возникло спустя миллиард лет после Большого взрыва.

При гравитационном сжатии сгустка водородно-гелиевой смеси потенциальная энергия переходила в кинетическую и соответственно повышалась температура. Когда она достигала 10—15 млн градусов, в центральной области протозвезды (ядре) начинались термоядерные реакции и звезда загоралась. В термоядерных реакциях участвуют как водород, так и гелий. Водород сначала превращается в гелий по цепочке реакций:

  • + = d++ е+ + v очень медленно; d+ + р+ = 3Не2+ + у быстро;
  • 23Не2+ = 4Не2+ + 2относительно медленно (здесь б/+ — дейтрон, е+ — позитрон, v — нейтрино, у — гамма-квант).

Можно спросить: почему водород не превратился в гелий по этим последовательным реакциям в первые минуты после Большого взрыва, но превращается в звездах? Причина очень простая. В первые минуты благоприятная температура для данного процесса длилась мгновения, так как шло расширение и охлаждение Вселенной, а в звездах этот процесс идет как бы в тлеющем режиме при стационарных условиях. Медленность первой стадии обусловлена слабым ядерным взаимодействием и является одним из условий длительного существования звезды. После выгорания водорода в ядре повышается температура, и при ~1 Ю8 градусов начинается «горение» гелия, представляющее собой последовательное слияние его ядер в ядра последующих элементов, сопровождающееся выделением огромной энергии. При столкновении двух ядер 4Не устойчивое ядро 8Ве не образуется. Этот изотоп бериллия вообще не существует. Но если за столкновением двух ядер быстро следует столкновение с третьим ядром гелия, то образуется ядро углерода 12С. Это ядро реагирует с гелием дальше, превращаясь в кислород 160. Удивительная удача (с точки зрения наличия материма для существования жизни) состоит в том, что реакция углерода с гелием идет достаточно медленно. Поэтому при образовании кислорода сохраняется и значительное количество необходимого для жизни углерода. На этом заканчивается этап горения гелия. При дальнейшем повышении температуры горят углерод и кислород. При реакциях между ядрами углерода или между ядрами кислорода образуются более тяжелые элементы магний, натрий, сера, фосфор, кремний и др. с одновременным вылетом протонов, нейтронов, а-частиц. Последние, последовательно присоединяясь к устойчивым ядрам, например 28Si, образуют химические элементы вплоть до железа.

Звезду можно назвать котлом, в котором варится сырье, превращаясь в набор химических элементов. Но готовый продукт из котла надо извлечь. Без этого образовавшиеся элементы в недрах звезды никак себя не проявляют. Здесь очень кстати обнаруживается способность звезд определенного типа взрываться. На соответствующем этапе эволюции звезды в слое на некотором расстоянии от центра лавинообразно нарастает мощность выделения энергии. Возникающее давление отметает в пространство всю внешнюю массу звезды и одновременно сжимает оставшуюся центральную часть. Это взрыв невообразимой мощности. Па короткое время светимость звезды возрастает до светимости целой галактики. При этом ядерные процессы приводят к образованию всех элементов тяжелее железа. Звезда сбрасывает оболочку, которая рассеивается в окружающем пространстве.

Теперь межзвездный газ обогащен всеми химическими элементами. Следует также подчеркнуть, что образовавшиеся в ядре звезды элементы в среднем составляют лишь 1—2% от всего количества вещества звезды. В межзвездном газе по-прежнему преобладают водород и гелий. Из материала взорвавшихся звезд образуются звезды следующего поколения, планеты, их спутники, кометы. В астрофизике рассматриваются и другие пути образования тяжелых элементов, в частности в ядрах галактик. Но это лишь дополняет основной факт, сводящийся к тому, что все тяжелые элементы образуются из первичных элементов — водорода и гелия.

Показать весь текст
Заполнить форму текущей работой