Основы физики.
Основы физики
Характерным является то, что какой спектр излучается данными атомами, такой же и поглощается, т. е. спектры излучения по набору излучаемых частот совпадают со спектрами поглощения. Поскольку атомам разных веществ соответствуют свойственные только им спектры, то существует способ определения химического состава вещества методом изучения его спектров. Этот способ называется спектральным анализом… Читать ещё >
Основы физики. Основы физики (реферат, курсовая, диплом, контрольная)
Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; гора Эльбрус находится в покое относительно Земли и движется вместе с Землей относительно Солнца.
Движение, при котором скорость тела не меняется, т. е. тело за любые равные промежутки времени перемещается на одну и ту же величину, называют равномерным прямолинейным движением.
Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при переходе из одной системы к другой, т. е. характер движения зависит от выбора системы отсчета, в этом и проявляется относительность движения.
Например, в воздухе происходит дозаправка самолета топливом. В системе отсчета, связанной с самолетом, другой самолет находится в покое, а в системе отсчета, связанной с Землей, оба самолета находятся в движении.
Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие ее витков. Или чем ближе два одноименных заряда, тем сильнее они будут притягиваться. В простейших случаях взаимодействия количественной характеристикой является сила. Сила — причина ускорения тел (в инерциальной системе отсчета). Сила — это векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимодействии. Сила характеризуется: а) модулем; б) точкой приложения; в) направлением.
Единица силы — ньютон (Н). 1 ньютон — это сила, которая телу массой 1 кг сообщает ускорение 1 м/с2 в направлении действия этой силы, если другие тела на него не действуют. Равнодействующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу:
Качественно по своим свойствам взаимодействия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием зарядов у частиц либо с движением заряженных частиц. Наиболее просто рассчитать силы в электродинамике: сила Ампера —, сила Лоренца —, кулоновская сила — и гравитационные силы: закон всемирного тяготения —. Такие механические силы, как сила упругости и сила трения, возникают в результате электромагнитного взаимодействия частиц вещества. Для их расчета необходимо использовать формулы: (закон Гука), — сила трения.
На основании обобщения огромного числа опытных фактов и наблюдений были сформулированы законы динамики. Такое обобщение было выполнено Исааком Ньютоном.
Первый закон Ньютона постулирует существование инерционных систем отсчета и дает признак, пользуясь которым такие системы можно выделить из всего разнообразия систем отсчета: существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсируются).
Второй закон Ньютона отражает фундаментальное свойство материального мира, в соответствии с которым относительно инерциальных систем отсчета ускорение тел возникает только под действием сил. Этот закон формулируется следующим образом.
Ускорение, с которым движется тело, прямо пропорционально равнодействующей всех сил, действующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействующая сила:
Часто основной закон динамики записывают в виде, что дает универсальный способ определения любых сил на основе кинематических методов измерения ускорения.
Третий закон Ньютона является обобщением громадного количества опытных фактов, показывающих, что силы — результат взаимодействия тел. Он формулируется следующим образом: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.
Импульсом тела называется векторная величина, равная произведению массы тела на его скорость.
Для системы тел, которые взаимодействуют только друг с другом, но не с другими телами (такая система тел называется замкнутой), выполняется закон импульса. Этот закон утверждает, что вектор импульса такой системы тел не изменяется.
Два любых тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорционально квадрату расстояния между ними.
.
Вес тела — это сила, с которой тело, вследствие его притяжения к Земле, действует на опору или подвес.
Невесоммость — состояние, при котором сила взаимодействия тела с опорой (вес тела), возникающая в связи с гравитационным притяжением, пренебрежимо мала.
Свободными называют колебания, которые совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на систему, совершающую колебания. Например, колебания груза на нити.
При свободных механических колебаниях неизбежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодической внешней силы, то такие колебания называют вынужденными. Например, родители раскачивают ребенка на качелях, поршень.
Механическими колебаниями называют движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени. Основными характеристиками механических колебаний являются: смещение, амплитуда, частота, период. Смещение — это отклонение тела от положения равновесия. Амплитуда — модуль максимального отклонения от положения равновесия. Частота — число полных колебаний, совершаемых в единицу времени. Период — время одного полного колебания, т. е. минимальный промежуток времени, через который происходит повторение процесса. движется в цилиндре двигателя автомобиля, колеблются нож электробритвы и игла швейной машины.
При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает. Такое явление называют механическим резонансом.
Молекулярно-кинетическая теория — это раздел физики, изучающий свойства различных состояний вещества, основывающийся на представлениях о существовании молекул и атомов как мельчайших частиц вещества. В основе МКТ лежат три основных положения:
- 1. Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.
- 2. Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества.
- 3. Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними.
Любое вещество состоит из частиц, поэтому количество вещества v принято считать пропорциональным числу частиц, т. е. структурных элементов, содержащихся в теле.
Единицей количества вещества является моль. Моль — это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С12. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро:
Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества. Молярная масса — масса одного моля вещества, равная отношению массы вещества к количеству вещества:
М = m/v.
Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа. Идеальным принято считать газ, если:
- а) между молекулами отсутствуют силы притяжения, т. е. молекулы ведут себя как абсолютно упругие тела;
- б) газ очень разряжен, т. е. расстояние между молекулами намного больше размеров самих молекул;
- в) тепловое равновесие по всему объему достигается мгновенно.
Основное уравнение МКТ идеального газа:
.
где р — давление идеального газа,.
m0 — масса молекулы,.
среднее значение Единица температуры по абсолютной шкале называется Кельвином и выбрана равной одному градусу по шкале Цельсия 1 К = 1 °C. В шкале Кельвина за ноль принят абсолютный ноль температур, т. е. температура, при которой давление идеального газа при постоянном объеме равно нулю. Вычисления дают результат, что абсолютный нуль температуры равен -273 °С. Таким образом, между абсолютной шкалой температур и шкалой Цельсия существует связь Т = t °C + 273.
Абсолютный нуль температур недостижим, так как любое охлаждение основано на испарении молекул с поверхности, а при приближении к абсолютному нулю скорость поступательного движения молекул настолько замедляется, что испарение практически прекращается. Теоретически при абсолютном нуле скорость поступательного движения молекул равна нулю, т. е. прекращается тепловое движение молекул.
Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.
Для произвольной массы газа состояние газа описывается уравнением Менделеева-Клапейрона:
pV = mRT/M, где р — давление.
V — объем.
m — масса М — молярная масса.
R — универсальная газовая постоянная Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.
Изотермическим называют процесс, протекающий при постоянной температуре. Т = const. Он описывается законом Бойля-Мариотта:
pV = const.
Изохорным называют процесс, протекающий при постоянном объеме. Для него справедлив закон Шарля:
V = const, p/T = const.
Испарение — парообразование, происходящее при любой температуре со свободной поверхности жидкости. Неравномерное распределение кинетической энергии молекул при тепловом движении приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с другими молекулами. Большей кинетической энергией обладают молекулы, имеющие большую скорость, а температура тела зависит от скорости движения его молекул, следовательно, испарение сопровождается охлаждением жидкости. Скорость испарения зависит: от площади открытой поверхности, температуры, концентрации молекул вблизи жидкости.
Конденсация — процесс перехода вещества из газообразного состояния в жидкое.
Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называют насыщенным паром Пар, находящийся при давлении ниже насыщенного, называют ненасыщенным.
Наиболее благоприятной для человека в средних климатических широтах является относительная влажность 40 -60%. Относительной влажностью называют отношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах, т. е.
Кристаллические тела — это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое расположение атомов или ионов в кристалле называют кристаллической решеткой. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.
Кристаллические тела бывают монокристаллами и поликристаллами. Монокристалл обладает единой кристаллической решеткой во всем объеме.
Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от порядка расположения атомов, т. е. от типа кристаллической решетки. импульс механический колебание изотермический Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кристаллических веществ аморфные вещества изотропны.
Упругость — свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших деформацию тел. Для упругих деформаций справедлив закон Гука, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям.
а = Е|с|,.
где, а — механическое напряжение, е — относительное удлинение, Е — модуль Юнга (модуль упругости). Упругость обусловлена взаимодействием и тепловым движением частиц, из которых состоит вещество.
Пластичность — свойство твердых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные деформации после того, как действие этих сил прекратится.
Внутрення энергия — это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, ионов) и энергия взаимодействия этих частиц Внутренняя энергия одноатомного идеального газа определяется по формуле.
.
Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существует два способа изменения внутренней энергии: теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).
изменение внутренней энергии шмкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой., где — изменение внутренней энергии, — количество теплоты, переданное системе, — работа внешних сил. Моли система сама совершает работу, то ее условно обозначают. Тогда закон сохранения энергии для тепловых процессов, который называется первым законом термодинамики, можно записать так:, т. е. количество теплоты, переданное системе, идет на совершение системой работы и изменение ее внутренней энергии.
применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом.
В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид:, т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.
В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: .
При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е., и уравнение первого закона имеет вид, т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.
Адиабатным называют процесс, протекающих без теплообмена с окружающей средой., следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается,. Кривая, изображающая адиабатный процесс, называется адиабатой.
Взаимодействие между заряженными частицами называется электромагнитным.
Интенсивность электромагнитного взаимодействия определяется физической величиной — электрическим зарядом, который обозначается. Единица электрического заряда — кулон (Кл). 1 кулон — это такой электрический заряд, который, проходя через поперечное сечение проводника за 1 с, создает в нем ток силой 1 А. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух видов зарядов. Один вид заряда назвали положительным, носителем элементарного положительного заряда является протон. Другой вид заряда назвали отрицательным, его носителем является электрон. Элементарный заряд равен .
Заряд частицы всегда представляется числом, кратным величине элементарного заряда.
Полный заряд замкнутой системы (в которую не походят заряды извне), т. е. алгебраическая сумма зарядов всех тел, остается постоянным: .
Основной закон электростатики был экспериментально установлен французским физиком Шарлем Кулоном и читается так:
модуль силы взаимодействия двух точечных неподвижных электрических зарядов в вакууме прямо пропорционален произведению величин этих зарядов и обратно пропорционален квадрату расстояния между ними:
.
где и — модули зарядов, — расстояние между ними, — коэффициент пропорциональности, который зависит от выбора системы единиц, в СИ .
Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. Закон сохранения заряда выполняется абсолютно точно.
Конденсатор — это система двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные диэлектриком, образуют плоский конденсатор. Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность между пластинами будет в два раза Польше, чем напряженность одной пластины. Вне пластин напряженность равна нулю.
Обозначаются конденсаторы на схемах так:
— конденсатор постоянной емкости;
— конденсатор переменной емкости.
Электроемкостью конденсатора называют величину, равную отношению величины заряда одной из пластин к напряжению между ними. Электроемкость обозначается .
Конденсаторы применяются для накопления электрической энергии и использования ее при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного тока, в выпрямителях, колебательных контурах и других радиоэлектронных устройствах.
Из формулы определения напряжения () легко получить выражение для расчета работы по переносу электрического заряда; так как сила тока связана с зарядом соотношением, то работа тока:, или .
Мощность по определению, следовательно, .
Русский ученый X. Ленц и английский учены Д. Джоуль опытным путем в середине XIX в. установили независимо друг от друга закон, который называется законом ДжоуляЛенца и читается так: при прохождении тока по проводнику количество теплоты, выделившееся в проводнике, прямо пропорцинально квадрату силы тока, сопротивлению проводника и времени прохождения тока:
Полная замкнутая цепь представляет собой электрическую цепь, в состав которой входят внешние сопротивления и источник тока (рис. 17). Как один из участков цепи, источник тока обладает сопротивлением, которое называют внутренним, .
Для того чтобы ток проходил по замкнутой цепи, необходимо, чтобы в источнике тока зарядам сообщались дополнительная энергия, она появляется за счет работы по перемещению зарядов, которую производят силы неэлектрического происхождения (сторонние силы) против сил электрического поля. Источник тока характеризуется энергетической характеристикой, которая называется ЭДС — электродвижущая сила источника. ЭДС измеряется отношением работы сторонних сил по перемещению вдоль замкнутой цепи положительного заряда к величине этого заряда .
Пусть за время через поперечное сечение проводника пройдет электрический заряд. Тогда работу сторонних сил при перемещении заряда можно записать так:. Согласно определению силы тока,, поэтому. При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых и, выделяется некоторое количество теплоты. По закону ДжоуляЛенца оно равно:. Согласно закону сохранения энергии,. Следовательно,. Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так:. Эту зависимость опытным путем получил Георг Ом, называется она законом Ома для полной цепи и читается так: сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи. При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.
Магнитное поле — особый вид материи. Его источником является любое переменное электрическое поле. С современной точки зрения в природе существует совокупность двух полей — электрического и магнитного — это электромагнитное поле, оно представляет гобой особый вид материи, т. е. существует объективно, независимо от нашего сознания.
Магнитная индукция — это некоторая физическая величина, равная максимальной силе, действующей со стороны магнитного поля на единичный элемент тока:. Единичный элемент тока — это проводник длиной 1 м и силой тока в нем 1 А. Единицей измерения магнитной индукции является тесла (Тл). .
Магнитное поле является вихревым полем. Для графического изображения магнитных полей вводятся силовые линии, или линии магнитной индукции, — это такие линии, в каждой точке которых вектор магнитной индукции направлен по касательной. Направление силовых линий находится по правилу буравчика.
Если буравчик ввинчивать по направлению тока в проводнике, то направление вращения рукоятки совпадет с направлением силовых линий. Линии магнитной индукции прямого провода с током представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной проводнику (рис. 20).
Полупроводники — это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности.
В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается.
Примесная проводимость полупроводников — электрическая проводимость, обусловленная наличием в полупроводнике донорных или акцепторных примесей.
Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в него легирующих примесей.
Полупроводниковые приборы, ППП — широкий класс электронных приборов, изготавливаемых из полупроводников. К полупроводниковым приборам относятся: Интегральные схемы (микросхемы) Электромагнитная индукцияявление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Она была открыта Майклом Фарадеем 29 августа 1831 года.
Опытным путем был установлен основной закон электромагнитной индукции: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через контур:. Если рассматривать катушку, содержащую n витков, то формула основного закона электромагнитной индукции будет выглядеть так: .
Единица магнитного потока Фвебер (Вб): 1 Вб = 1 В * с.
Из основного закона следует смысл размерности: 1 веберэто величина такого магнитного потока, который, уменьшаясь до нуля за одну секунду, через замкнутый контур наводит в нем ЭДС индукции 1 В.
Индукционный ток имеет такое направление, при котором его магнитное поле стремится скомпенсировать изменение внешнего магнитного потока через контур. В соответствии с правилом Ленца в законе электромагнитной индукции должен стоять знак минус:
Явление самоиндукции — частный случай электромагнитной индукции и, следовательно, для него справедливы все закономерности явления электромагнитной индукции. При этом.
Изменяющееся магнитное поле индуцирует ЭДС индукции в том же самом проводнике, по которому течет ток, создающий это поле.
Вихревое магнитное поле препятствует нарастанию тока в проводнике.
При уменьшении тока вихревое поле поддерживает его.
Индуктивность — характеристика проводника, зависящая только от:
Формы Размеров Магнитной проницаемости среды.
Электромагнитное полеэто поле, посредством которого осуществляется взаимодействие электрически заряженных частиц. Электромагнитное поле характеризуется напряженностью электрического поля и магнитной индукцией. Связь между этими величинами и распределением в пространстве электрических зарядов и токов была установлена в 60-х гг. XIX в. Дж. Максвеллом.
Электромагнитные колебанияэто колебания электрического и магнитного полей, которые сопровождаются периодическим изменением заряда, силы тока и напряжения. Простейшей системой, где могут возникнуть и существовать свободные электромагнитные колебания, является колебательный контур.
Колебательный контурэто цепь, состоящая из катушки индуктивности и конденсатора.
Период электромагнитных колебаний в идеальном колебательном контуре (т. е. в таком контуре, где нет потерь энергии) зависит от индуктивности катушки и емкости конденсатора и находится по формуле Томсона. Частота с периодом связана обратно пропорциональной зависимостью.
В реальном колебательном контуре свободные электромагнитные колебания будут затухающими из-за потерь энергии на нагревание проводов. Для практического применения важно получить незатухающие электромагнитные колебания, а для этого необходимо колебательный контур пополнять электроэнергией, чтобы скомпенсировать потери энергии. Для получения незатухающих электромагнитных колебаний применяют генератор незатухающих колебаний, который является примером автоколебательной системы.
Электромагнитная волна — процесс распространения электромагнитного поля в пространстве. Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.
При любом изменении электрического поля возникает вихревое магнитное поле и, наоборот, при любом изменении магнитного поля возникает вихревое электрическое поле.
При передаче по радио речи, музыки и других туковых сигналов применяют различные виды модуляции высокочастотных (несущих) колебаний. Суть модуляции заключается в том, что высокочастотные колебания, вырабатываемые генератором, изменяют по закону низкой частоты. В этом и заключается один из принципов радиопередачи. Другим принципом является обратный процессдетектирование. При радиоприеме из принятого антенной приемника модулированного сигнала нужно отфильтровать звуковые низкочастотные колебания.
С помощью радиоволн осуществляется передача на расстояние не только звуковых сигналов, но и изображения предметов. Большую роль в современном морском флоте, авиации и космонавтике играет радиолокация. В основе радиолокации лежит свойство отражения волн от проводящих тел. (От поверхности диэлектрика электромагнитные волны отражаются слабо, а от поверхности металлов почти полностью.).
Светэто электромагнитные волны в интервале частот, воспринимаемых человеческим глазом, т. е. длин волн в интервале 380 — 770 нм.
Свету присущи все свойства электромагнитных волн: отражение, преломление, интерференция, дифракция, поляризация. Свет может оказывать давление на вещество, поглощаться средой, вызывать явление фотоэффекта. Имеет конечную скорость распространения в вакууме 300 000 км/с, а в среде скорость убывает.
Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и дифракции. Интерференцией света называют пространственное перераспределение светового потока при наложении двух (или нескольких) когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности (интерференционная картина).
Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называют дифракцией света. Дифракция объясняется тем, что световые волны, приходящие в результате отклонения из разных точек отверстия в одну точку на экране, интерферируют между собой. Дифракция света используется в спектральных приборах, основным элементом которых является дифракционная решетка. Дифракционная решетка представляет собой прозрачную пластинку с нанесенной на ней системой параллельных непрозрачных полос, расположенных на одинаковых расстояниях друг от друга.
Узкий параллельный пучок белого света при прохождении через стеклянную призму разлагается на пучки света разного цвета, при этом наибольшее отклонение к основанию призмы имеют лучи фиолетового цвета. Объясняется разложение белого света тем, что белый свет состоит из электромагнитных волн с разной длиной волны, а показатель преломления света зависит от длины его волны. Показатель преломления связан со скоростью света в среде, следовательно, скорость света в среде зависит от длины волны. Это явление и называют дисперсией света.
На основании совпадения экспериментально измеренного значения скорости электромагнитных волн Максвелл высказал предположение, что светэто электромагнитная волна. Эта гипотеза подтверждена свойствами, которыми обладает свет.
Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеяниючастиц при прохождении через тонкие слои вещества. В этих опытах узкий пучокчастиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых частиц. Было обнаружено, что большинствочастиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторыечастицы вообще отбрасываются назад. Рассеяниечастиц Резерфорд объяснил тем, что положительный заряд не распределен равномерно в шаре радиусом 10−10 м, как предполагали ранее, а сосредоточен в центральной части атомаатомном ядре. При прохождении около ядра-частица, имеющая положительный заряд, отталкивается от него, а при попадании в ядроотбрасывается в противоположном направлении. Так ведут себя частицы, имеющие одинаковый заряд, следовательно, существует центральная положительно зараженная часть атома, в которой сосредоточена значительная масса атома. Расчеты показали, что для объяснения опытов нужно принять радиус атомного ядра равным примерно 10−15 м.
Резерфорд предположил, что атом устроен подобно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.
Планетарная модель строения атома по Резерфорду не смогла объяснить ряд известных фактов: электрон, имеющий заряд> должен за счет кулоновских сил притяжения упасть на ядро, а атомэто устойчивая система; при движении по круговой орбите, приближаясь к ядру, электрон в атоме должен излучать электромагнитные волны всевозможных частот, т. е. излучаемый свет должен иметь непрерывный спектр, на практике же получается иное: электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Нильс Бор.
В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает.
Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона соответствует вполне определенная энергия.
Второй постулат: при переходе из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях:; , гдепостоянная Планка.
При переходе электрона с ближней орбиты на более удаленную атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру и томная система излучает квант энергии. Теория Бора позволила объяснить существование линейчатых спектров.
Совокупность частот электромагнитных волн, которые присутствуют в излучении любого тела, называется спектром излучения.
Спектры бывают сплошные, линейчатые и полосатые.
Сплошные спектры дают все вещества, находящиеся в твердом или жидком состоянии. Сплошной спектр содержит волны всех частот видимого света и поэтому выглядит как цветная полоса с плавным переходом от одного цвета к другому в таком порядке: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый («Каждый охотник желает знать, где сидит фазан»).
Линейчатые спектры дают все вещества в газообразном атомарном состоянии. Изолированные атомы всех веществ излучают свойственные только им наборы волн вполне определенных частот. Как у каждого человека свои личные отпечатки пальцев, так и у атома данного вещества свой, характерный только для него спектр. Линейчатые спектры излучения выглядят как цветные линии, разделенные промежутками. Природа линейчатых спектров объясняется тем, что у атомов конкретного вещества существуют только ему свойственные стационарные состояния со своей характерной энергией, а следовательно, и свой набор пар энергетических уровней, которые может менять атом, т. е. электрон в атоме может переходить только с одних определенных орбит на другие, вполне определенные орбиты для данного химического вещества.
Полосатые спектры создаются молекулами не связанными или слабо связанными друг с другом. Выглядят полосатые спектры подобно линейчатым, только вместо отдельных линий наблюдаются отдельные серии линий, воспринимаемые как отдельные полосы, разделенные темными промежутками.
Характерным является то, что какой спектр излучается данными атомами, такой же и поглощается, т. е. спектры излучения по набору излучаемых частот совпадают со спектрами поглощения. Поскольку атомам разных веществ соответствуют свойственные только им спектры, то существует способ определения химического состава вещества методом изучения его спектров. Этот способ называется спектральным анализом. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава атмосфер планет; является основным методом контроля состава вещества в металлургии и машиностроении.
Спектральный анализ электромагнитного излучения звездединственный способ определения их химического состава. Кроме этого анализ спектров позволяет определять температуру звезд, скорость их движения.