История создания лазера
Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот (СВЧ диапазоне). В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики Н. Г. Басов и А. М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его «молекулярным генератором… Читать ещё >
История создания лазера (реферат, курсовая, диплом, контрольная)
Слово «лазер» составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Таким образом, в самом термине лазер отражена так фундаментальная роль процессов вынужденного испускания, которую они играют в генераторах и усилителях когерентного света. Поэтому историю создания лазера следует начинать с 1917 г., когда Альберт Эйнштейн впервые ввел представление о вынужденном испускании.
Это был первый шаг на пути к лазеру. Следующий шаг сделал советский физик В. А. Фабрикант, указавший в 1939 г. на возможность использования вынужденного испускания для усиления электромагнитного излучения при его прохождении через вещество. Идея, высказанная В. А. Фабрикантом, предполагала использование микросистем с инверсной заселенностью уровней. Позднее, после окончания Великой Отечественной войны В. А. Фабрикант вернулся к этой идее и на основе своих исследований подал в 1951 г. (вместе с М. М. Вудынским и Ф. А. Бутаевой) заявку на изобретения способа усиления излучения при помощи вынужденного испускания. На эту заявку было выдано свидетельство, в котором под рубрикой «Предмет изобретения» было написано: «Способ усиления электромагнитных излучений (ультрафиолетового, видимого, инфракрасного и радиодиапазонов волн), отличающейся тем, что усиливаемое излучение пропускают через среду, в которой с помощью вспомогательного излучения или другим путем создают избыточною по сравнению с равновесной концентрацию атомов, других частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниями» .
Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот (СВЧ диапазоне). В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики Н. Г. Басов и А. М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его «молекулярным генератором» (предполагалось использовать пучок молекул аммиака). Практически одновременно предложение об использовании вынужденного испускания для усиления и генерирования миллиметровых волн было высказано в Колумбийском университете в США американским физиком Ч. Таунсом.
В 1954 г. молекулярный генератор, названный вскоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара — в Физическом институте имени П. Н. Лебедева Академии наук СССР (группой под руководством Н. Г. Басова и А. М. Прохорова) и в Колумбийском Университете в США (группой под руководством Ч. Таунса).
Впоследствии от термина «мазер» и произошел термин «лазер» в результате замены буквы «М» (начальная буква слова Microwave — микроволновой) буквой «L» (начальная буква слова Light — свет). В основе работы как мазера, так и лазера лежит один и тот же принцип — принцип, сформулированный в 1951 г. В. А. Фабрикантом. Появление мазера означало, что родилось новое направление в науке и технике. Вначале его называли квантовой радиофизикой, а позднее стали называть квантовой электроникой.
Спустя десять лет после создания мазера, в 1964 г. на церемонии, посвященной вручению Нобелевской премии, академик А. М. Прохоров сказал: «Казалось бы, что после создания мазеров в радиодиапазоне вскоре будут созданы квантовые генераторы в оптическом диапазоне. Однако этого не случилось. Они были созданы только через пять-шесть лет. Чем это объясняется? Здесь были две трудности. Первая трудность заключалась в том, что тогда не были предложены резонаторы для оптического диапазона длин волн, и вторая — не были предложены конкретные системы и методы получения инверсной заселенности в оптическом диапазоне» .
Упомянутые А. М. Прохоровым шесть лет действительно были заполнены теми исследованиями, которые позволили, в конечном счете, перейти от мазера к лазеру. В 1955 г. Н. Г. Басов и А. М. Прохоров обосновали применение метода оптической накачки для создания инверсной заселенности уровней. В 1957 г. Н. Г. Басов выдвинул идею использования полупроводников для создания квантовых генераторов; при этом он предложил использовать в качестве резонатора специально обработанные поверхности самого образца. В том же 1957 г. В. А. Фабрикант и Ф. А. Бутаева наблюдали эффект оптического квантового усиления в опытах с электрическим разрядом в смеси паров ртути и небольших количествах водорода и гелия. В 1958 г. А. М. Прохоров и независимо от него американский физик Ч. Таунс теоретически обосновали возможность применения явления вынужденного испускания в оптическом диапазоне; они (а также американец Р. Дикке) выдвинули идею применения в оптическом диапазоне не объемных (как в СВЧ диапазоне), а открытых резонаторов. Заметим, что конструктивно открытый резонатор отличается от объемного тем, что убраны боковые проводящие стенки (сохранены торцовые отражатели, фиксирующие в пространстве ось резонатора) и линейные размеры резонатора выбраны большими по сравнению с длинной волны излучения.
В 1959 г. вышла в свет работа Н. Г. Басова, Б. М. Вула и Ю. М. Попова с теоретическим обоснованием идеи полупроводниковых квантовых генераторов и анализом условий их создания. Наконец, в 1960 г. появилась обосновательная статья Н. Г. Басова, О. Н. Крохина, Ю. М. Попова, в которой были всесторонне рассмотрены принципы создания и теория квантовых генераторов и усилителей в инфракрасном и видимом диапазонах. В конце статьи авторы писали: «Отсутствие принципиальных ограничений позволяет надеяться на то, что в ближайшее время будут созданы генераторы и усилители в инфракрасном и оптическом диапазонах волн» .
Таким образом, интенсивные теоретические и экспериментальные исследования в СССР и США вплотную подвели ученых в самом конце 50-х годов к созданию лазера. Успех выпал на долю американского физика Т. Меймана. В 1960 г. в двух научных журналах появилось его сообщение о том, что ему удалось получить на рубине генерацию излучения в оптическом диапазоне. Так мир узнал о рождении первого «оптического мазера» — лазера на рубине. Первый образец лазера выглядел достаточно скромно: маленький рубиновый кубик (1x1x1 см), две противоположные грани которого имели серебрянное покрытие (эти грани играли роль зеркала резонатора), периодически облучались зеленым светом от лампы-вспышки высокой мощности, которая змеей охватывала рубиновый кубик. Генерируемое излучение в виде красных световых импульсов испускалось через небольшое отверстие в одной из посеребренных граней кубика.
В том же 1960 г. американскими физиками А. Джавану, В. Беннету, Э. Эрриоту удалось получить генерацию оптического излучения в электрическом разряде в смеси гелия и неона. Так родился первый газовый лазер, появление которого было фактически подготовлено экспериментальными исследованиями В. А. Фабриканта и Ф. А. Бутаевой, выполненными в 1957 г.
Начиная с 1961 г., лазеры разных типов (твердотельные и газовые) занимают прочное место в оптических лабораториях. Осваиваются новые активные среды, разрабатывается и совершенствуется технология изготовления лазеров. В 1962;1963 гг. в СССР и США одновременно создаются первые полупроводниковые лазеры.
Так начинается новый, «лазерный» период оптики.